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Abstract

We develop a phase space path-integral approach for deriving the Lagrangian

realization of the models defined by Hamiltonian reduction of the WZNW theory.

We illustrate the uses of the approach by applying it to the models of non-Abelian

chiral bosons, W-algebras and the GKO coset construction, and show that the well

known Sonnenschein’s action, the generalized Toda action and the gauged WZNW

model are precisely the Lagrangian realizations of those models, respectively.
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In the last few years it has become clear that the Wess-Zumino-Novikov-Witten

(WZNW) theory [1] is acting as a ‘master theory’ for a large number of interesting

conformally invariant models in 1+1 dimensions. A powerful method for extracting

those models out of the WZNW theory is the method of Hamiltonian reduction,

i.e., the reduction of Hamiltonian systems with symmetry [2]. The Hamiltonian re

ductions of the WZNW theory are defined by placing constraints on the conserved

currents generating the left x right Kac-Moody (KM) algebras, whereby the result

ing models possess new (reduced) symmetry algebras realized explicitly in terms of

the constrained currents [3]. For example, one can in this way obtain field theoretic

models of W-algebras, non-linear extensions of the Virasoro algebra by conformal

primary fields [4], realized as reduced KM algebras.

Once the constraints are given it is in principle straightforward to find the

reduced Hamiltonian system. However, it is not obvious how to find the underly

ing Lagrangian from the Hamiltonian system, because the natural variables of the

WZNW theory (and those of the reduced models) are not the canonical ones, which

can be defined only locally and are also quite involved when expressed in terms of

the conserved currents. The purpose of this paper is to present — through examples

— a direct approach to the Lagrangian realization of the reduced WZNW models.

The crucial point is that the passage to the Lagrangian becomes quite simple if

one uses the natural, globally well-defined variables, rather than the local canonical

variables, for describing the WZNW phase space which can be identified as the

cotangent bundle of the ioop group endowed with a modified symplectic form [5,6].

We shall illustrate the uses of our approach by deriving the Lagrangians of the re

duced WZNW models of non-Abelian chiral bosons and the models of W-algebras.

The respective actions will turn out to be the much-studied Sonnenschein’s action

[7,8] and the generalized Toda action [3]. In these two cases one can in fact find the

reduced variables for the Lagrangians, but in general it is not easy to choose them

from the WZNW variables. This problem, however, can always be circumvented by

considering a gauged system, i.e., a gauged WZNW model, if the constraints are

first class and linear in the current. We shall obtain two types of gauged WZNW

models, one of which yields the Lagrangian realization of reductions by general first

class chiral constraints [3], and the other leads to the Lagrangian realization of the

Goddard-Kent-Olive (GKO) construction [9]. The latter gauged WZNW model

turns out to be equivalent to the usual gauged WZNW model considered in [10].
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The WZNW theory is most frequently defined in the Lagrangian formalism [1],

but for our purpose we need its Hamiltonian description, which we shall recall here

briefly [5,6]. In general a Hamiltonian system is specified by manifold M, Poisson

bracket {, } and Hamiltonian H. Using some irreducible matrix representation of

the underlying finite dimensional simple Lie group G and its Lie algebra , the

manifold (phase space) of the WZNW theory can be given as M = { (g, J) g(cr)

C, J(cr) }, where g(u) and J(or) are periodic, smooth functions of the space

variable a-. On the phase space the fundamental Poisson brackets are *

{g(u), g(a)} = 0,

{ Tr (a J(a)), g(o) } = —ag(a-) S(o — a) , (1)

{Tr(aJ(a-)), Tr(bJ(ã))} =Tr([a,b]J(u))8(a-—ã)+2icTr(ab)S’(cr—ã)

for a, b . Defining the ‘right-current’,

i = —g’Jg + 2ig’g’, (2)

which forms a KM algebra with the centre opposite in sign to the one of the KM

algebra formed by the ‘left-current’ J in (1), we consider the Hamiltonian

H= _fduTr(J2+J2). (3)

This leads to the usual field equation

and i={J,H}=J’. (4)

We shall also need the symplectic 2-form of the WZNW theory. It is known

[5,6] to be given by

w = f da-Tr[S(J6gg’)+ k(8gg1)(8gg1)’], (5)

where S is the functional exterior derivative. To see that the above Poisson brackets

can indeed be derived from the sympletic 2-form (5), we first note that for a function

F = F(g, J) on phase space a vector field X acts as

X(F) = (SF)(X)
=

fda- Tr( X(g) + X(J)), (6)

* Convention: tc = — with k being the level of the KM algebra. Prime and
dot stand for derivative with respect to the space, a- = x, and time, T = x0; and
we use = 1(x° ± x1)
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where and are functional derivatives of F with respect to g and J. Then for

two vector fields X and Y we have

w(X,Y) = fduTr (x(J)Y(g)g’ — Y(J)X(g)g’
2 (7)

+ J [X(g) g’ ,Y(g) g’] + 2k(X(g) g’)(Y(g) g’)’)

We associate the Hamiltonian vector field XF to the function F by the formula,

SF = 2w(., XF), which of course means

(SF)(Y) = 2w(Y, XF) , for VY. (8)

Comparing the two sides of (8) given in terms of (6) and (7) and using the non-

degeneracy of ‘Tr’, i.e., the non-degeneracy of the 2-form w, we find that XF oper

ates as
SF

XF(g)= -jg,

SF SF ‘ SF
(9)

XF(J)[,J]+2k()
-.

Then, as usual, the Poisson bracket of two functions F = F(g, J) and H(g, J) on

M is defined to be

{F,H} XH(F) = —XF(H) = 2w(XH,XF). (10)

By using eqs.(7), (9) one can now easily obtain the Poisson bracket of any two

functions on M. The fundamental Poisson brackets (1) arise as special cases of this

general formula [6].

In order to set up the path-integral of this system, we define the measure

VJ Vg by using an invariant volume form of the phase space, which is obtained

by taking a suitable power of the sympletic 2-form w. From (5) it turns out to be

quite simple:

VJVg=fJSJSgg’ , (11)

where the product is over the group and the space-time. Another point to be noted

is that the sympletic 2-form (5) is closed but riot exact, Still, in general we can

construct a first order Lagrangian if we extend the parameter region of the phase

space, which is normally parametrized along one-dimensional curves by the time

variable x0, to a two-dimensional region by introducing a new parameter in such
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a way that the extended region has the original region of time in its boundary

[11]. Usually in the WZNW theory the extended region is chosen such that, if it is
combined with the space x1 dimension, it becomes a three dimensional manifold B3
whose boundary is the 1+1 dimensional space-time itself. This construction allows

us to formally write down the phase space path-integral of the WZNW theory,

Z
= fvJvgei(fw_f0.

(12)

From (5) the integration of (the pull-back of) w performed over the extended region
reads

fLU = fd2xTr(J — 8gg’)(8ogg1)— f Tr(dgg1)3. (13)

Performing the Gaussian integration of the ‘momentum type’ variable J we obtain
the configuration space path-integral,

Z = fDgei19), (14)

where Swz(g) is the usual WZNW action

Swz(g) =
fd2Tr(8gg’)(8_gg1)—

JB3
Tr(dgg’)3, (15)

as expected. The expression of the phase-space path-integral (12) is the basis upon
which the Hamiltonian reductions of the WZNW theory are to be implemented in

the following.

Non-Abelian chiral bosons

One of the simplest examples of the Hamiltonian reduction of the WZNW

theory is that in which one of the chiral currents, say the left-current J, is entirely

constrained to zero leaving the right-current J alone. Naturally, the reduced theory

is chiral and hence it can serve as a theory of (non-Abelian) chiral bosons. Let, us
examine the content of the reduced theory in detail.

We first note that the constraint surface, M C M, defined by

Tr(aJ(u))=O, for Vag, (16)

is nothing but the loop group LG of G. Since the constraints (16) satisfy

{Tr(aJ()), Tr(bJ(ã))) }M = 2kTr(ab)S’(cr
—

o) , (17)
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they are almost second class, apart from the set of zero-modes Jo = 0 in the Fourier

expansion (the horizontal subalgebra) which is first class. This set of zero modes

generates a gauge symme fry, and, accordingly, the reduced phase space is identified

as Mred = M/G = LG/G. (The factorization is by the left-action of G generated

by the zero modes.) To put it differently, one would need to use some (local) gauge

fixing conditions* Xo = 0 in order to reach Mre from M. The fact that the left-

and the right-currents commute,

{ Tr (a J(o)), Tr (b J(o)) } = 0, (18)

implies that J, which on the constraint surface reads

— —1 IJ=2kg g

is gauge invariant, and it is also easy to see that J provides a complete set of gauge

invariant functions of g. It follows that the KM symmetry algebra of the right

current survives the reduction, that is the Dirac brackets of the right-current,

{Tr(aJ(cr)), Tr(bJ())}* = Tr([a,b] J(cr))S(u
- ) - 2KTr(ab)6’(cT

- ), (20)

are the same as the original Poisson brackets. On account of (19), the reduced phase

space LG/G can be regarded as a submanifold of the space of the right-current —

it is in fact one of the coadjoint orbits of the centrally extended loop group [12].

(One could obtain any coadjoint orbit as the reduced phase space by constraining

J to other fixed values instead of zero.)

We next notice that the WZNW Hamiltonian H commutes weakly with the

constraints defined by (16), i.e., { H, Tr (a J(u)) }M = 0. This implies that the

WZNW dynamics, defined by (4), leaves M invariant and thus it gives a natural

projection on Mred. The Hamiltonian H in (3) reduces on M to

Hc=_fduTrJ2=kfduTr(g_1g1)2, (21)

which can be used to generate the dynamics of the reduced theory through the

Dirac bracket. We then find that the gauge invariant object J obeys the chiral field

equation

a1J=o. (22)

* The bundle LG —÷ LG/G is topologically non-trivial [12].
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As for the group valued field g, the WZNW field equation (4) becomes the chiral

equation 8g = 0 upon restriction to M, but the chiral solutions can be subjected
to arbitrary time dependent gauge transformations without changing their physical
meaning, i.e., their projection on Mred = LG/G. In short, g is a chiral field in the
reduced theory up to the gauge freedom inherent in it.

It is clear that the reduced theory inherites the conformal invariance of the
WZNW theory, since the constraints (16) are invariant under the conformal trans
formations generated by the usual left and right Virasoro densities,

= —TrJ2(u) and L() = _TrJ2(c7). (23)

Evidently, L, which is manifestly gauge invariant, generates the conformal symme
try of the reduced theory (while L vanishes upon imposing the constraints). We
have therefore shown that the present reduction gives rise to a conformaily invari
ant theory of chiral bosons possessing a chiral field equation as well as a single KM
algebra in a rather trivial way.

Having described the Hamiltonian system of chiral bosons, let us find the

corresponding Lagrangian. We are going to read off the Lagrangian from the phase
space path-integral of the reduced theory following the standard prescription [13]
which implements the constraints in the path-integral (12). Namely, we define the
phase space path-integral for our constrained WZNW theory by inserting the 8-
functions of the total, second class constraints, q = {J, J,xo} (n 0), in (12)

together with the associated determinant factors,

Z
= f VJ Dg 6(çb) det {, eff (24)

More explicitly, the factors inserted read

S(g5)det {&4’}I = 8(Jn)8(Jo)8(o)det{Jo,o}det4l{Jn, Jm}I. (25)

Note that the second determinant factor in (25) is just a constant on account of
(17). Then the integration of J yields the reduced path-integral,

Z = J DgS(Xo) det {Jo,xo}Ie’, (26)

where

I(g) = d2xTr(8gg’)(81gg1)— f Tr(dgg’)3
3 B3 (27)

= Swz(g) —

fd2xTr(8+gg_1)2.
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This is exactly the action of chiral bosons proposed by Sonnenschein [7]. The

invariance of the action (27) under

g(x)—+g(x)R(x) and g(x)—T(x°)g(x), (28)

for R(xj, T(x°) E G, reflects the fact that there exists the aforementioned gauge

symmetry generated by the zero-modes in addition to the usual right-symmetry

which survived the reduction. Because of this, the field equation ã+(g’8ig) = 0

(or Oi(Ogg1)= 0) admits the solution

g(x) = go(x°)gR(x), (29)

which is not quite chiraL However, it is evident that the non-chirality of g can

always be eliminated by using the gauge freedom. The importance of the gauge

invariance was recognized also in [8], where the action (27) has been derived by a

coherent state path-integral method. Here we provided another perspective on the

action of non-Abelian chiral bosons (27) by showing that it naturally arises from the

Hamiltonian reduction of the WZNW theory, whereby some of its crucial physical

properties, i.e., a chiral field equation, a single KM algebra, conformal invariance,

are transparent.

Models of W-algebras

Another interesting example can be found by those WZNW reductions which

yield field theoretic models of W-algebras. There is a natural way to associate a

W-algebra to each embedding of the Lie algebra sl(2) into the simple Lie algebras,

and these extended conformal algebras occur as symmetry algebras of (generalized)

Toda theories (e.g., see [3] and references therein). It has been shown earlier by

using an intermediate gauged WZNW theory that the Toda theory may be regarded

as a reduced WZNW theory, belonging to left-right dual constraints which reduce

the two chiral KM algebras to chiral W-algebras. Here we wish to derive the Toda

theory directly from the WZNW theory.

For this purpose, let us consider a non-compact real Lie group G and choose

a set of elements, {M_, M0,M}, which forms an sl(2) subalgebra of 7. Then the

adjoint action of M0, adM0 = [M0, ], provides a grading of by its eigenvalues,

i.e., by the sl(2)-spins. By using this grading, we can decompose the algebra q into
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the spaces of positive, zero and negative grades,

(30)

For simplicity, we here assume that only integral spins occur in this decomposition.
(This is true for example for the principal sl(2) subalgebra, which is relevant for

the standard W-algebras.) Let us choose some bases {} and {5’i} in and ,
and consider the reduction defined by the first class constraints,

q(o.) =Tr72(J(u)—icM_) = 0 and (u) = Tr5’(J()+iiM+) = 0. (31)

Note that in this formula we have set to unity the dimensional constants which in

principle occur in front of M± to match the mass dimension. In spite of having
the (hidden) mass parameters the conformal invariance can still be maintained by
adopting the modified Virasoro density,

LM0(U) = L(u) — 2Tr(MoJ’()), (32)

and similarly the right Virasoro density, which commute weakly with the con
straints. Moreover, it is possible to find a set of gauge invariant differential polyno

mials of J consisting of the Virasoro density (32) and conformal primary fields which

form a W-algebra. Accordingly, the reduced theory possesses the W-symmetry,
which is larger than the conformal symmetry [3].

As before, we shall derive the reduced theory by starting with the phase space

path-integral with first class constraints,

Z
= f VJ Vg S() S()8(x) 6(i) det {, xH det {, }I ef w-f dx°H) (33)

where we have inserted delta-functions of gauge fixing conditions x and corre

sponding to qS and çb. In order to describe the theory in terms of reduced variables,

we associate to (30) a ‘generalized Gauss decomposition’ of the group G,

g = g+gog—, with g = go = e0, g_ = e3-, (34)

where are from the respective subalgebras in (30). We restrict ourselves to

considering the ‘big cell’ of the phase space where g is Gauss decomposable. Then,

by using the gauge transformations generated by the first class constraints, we can

choose the ‘physical gauge’,

g = g go g_ —* go, (35)
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in which the determinant factors in (33) are constants. Also, in this gauge the

second delta-function can be written as

= (det V(go))’ .5(Trjj(J — goM+g’)), (36)

where we have defined V,(go) = Tr(7go’g’). The determinant factor appearing

in (36) is cancelled by the factor arising from the measure Vg computed in the

physical gauge, which in fact is a result ensured by the construction of the path-

integral reduction [13]. We may now perform the J-integration by two steps as

follows. We first decompose J according to (30) as

J(x) = J+(x) + Jo(x) + J_(x), (37)

and carry out the J+- and J_-integrations. Then we find

z=fvJovgo ei(f wo_f Fl0), (38)

where

H0
= J dx’Tr [(J + J) + goMg1M_] . (39)

Here Jo is defined similarly to (2), and f w0 is given exactly by (13) with g and J

replaced by go and J0, respectively. We thus see from the reduced Hamiltonian (39)

and the phase space path-integral (38) that the reduced theory (i.e., the generalized

Toda theory) is nothing but a WZNW theory based on co plus a potential term.

Finally, the integration of the momentum variable Jo yields the configuration space

path-integral,

Z = fvgo IToda(0) (40)

The action appearing in (40),

IToda(go) = Swz(go) — kJd2xTr(goM+g1M), (41)

is the generalized Toda action [3] we have been after.

As far as the Hamiltonian reduction leading to a W-algebra is concerned, one

does not need to take the constraints in the dual form as in (31); one can take the

constraints on the left- and right-currents independently. One could also generalize

the reduction by considering arbitrary chiral first class constraints, although the
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reduced theory might no longer possess a W-algebra. For those general cases the

above procedure to reach the reduced Lagrangian may not be easily carried out,

since the separation of the variables into reduced and ignorable ones is difficult in

general. (Note that in the Toda case it is the grading structure and the dual nature

of the constraints which permitted the simple J-integration by the use of the Gauss

decomposition, which also provided us the reduced variables in the physical gauge.)

However, even in those cases we can at least have a Lagrangian realization by a

gauge theory, that is, by the gauged WZNW theory.

To see this, let us choose two subalgebras F and F of independently and

consider the generalized chiral constraints,

= Tr7(J(u) — iM) = 0 and q(u) = Tr5’(J(u) + iM) = 0, (42)

where {‘-y} and {} are bases from F and f’, respectively, and M and M are some

constant elements of . The first-classness of the constraints requires that

Tr (7i7j) = 0 and Tr (M [‘yj, 7,]) = 0 , (43)

and a similar relation for the constraints on the right-current. (The first relation

implies that such constraints are possible only for a non-compact group C.) The

phase space path-integral is given similarly as in (33) and we first exponentiate

S(çi5) and S(q) by introducing two independent Lagrange multiplier fields A_ E F

and A e F. By choosing appropriate gauge fixing conditions x and (e.g., the

physical gauge defined analogously to the Toda case) the remaining determinant

factors and 6-functions can be taken to be J-independent and thus we can integrate

J out as usual. This way we arrive at the the following effective path-integral

Z = J VgVA_ VA6(x)6() det {,x}I det I{} iIeff(gAA+) (44)

where

Ieff(Th A_, A+) = Swz(g) + k fd2x Tr [A_(8gg’ — M)

+ A(g1ftg — J) + A_gA+g’]

The gauged WZNW action (45), which is invariant under

g —* ag&’, A_ —+ aA_ a1 + &a1, A —* &A & + 8+&&’, (46)
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for any a(x) e er’, &(x) er’, provides a Lagrangian realization of the WZNW

reduction by the general chiral first class constraints, although it is not given in

terms of the reduced variables alone.

GKO coset construction

For our final example we consider a coset theory obtained by the GKO con

struction [9]. The GKO construction is designed to produce representations of the

Virasoro algebra based on the coset G/H, where H is a subgroup of a simple (or

semi-simple) group G. If it is to be realized in the WZNW context, H will be a

diagonal subgroup of the left x right group G x G. Let us find the constraints which

lead to the GKO coset construction. Actually, we need not look far; the constraints

are given by

= Tr7j(J(a) + J(u)) = 0, for ‘y (47)

where 7- C is the Lie algebra of H. These constraints are first class and indeed

generate the symmetry corresponding to the diagonal subgroup H.

It is also easy to find the modified Virasoro density which commutes (strongly)

with the constraints (47),

LG1H(g) = L(u) — L”(u), (48)

where LH = LTr(H)J2is the usual Sugawara construction of the Virasoro density

with the summation taken only over the subalgebra 1-(. Thus the reduced theory

is invariant under the conformal transformations generated by LH, which is the

Virasoro density used in the GKO construction.

The Lagrangian realization of the reduced theory purely in terms of reduced

variables is difficult to find in general, since the constraints involve both of the left-

and right-currents simultaneously and thus it is hard to disentangle them to select

the reduced variables for the Lagrangian. Therefore we again content ourselves

with deriving a gauged WZNW theory, similarly as in the previous example. As

before, we first introduce a Lagrange multiplier field A E ‘H and write the phase

space path-integral as

Z = f VJVgS()8(x) det {&x} eff°

= f VJVgVA 8(x) det {,x}Iet(jw_j), (49)
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where A = f dx Tr A(x)q(x) and x = 0 is a gauge fixing condition. Then, by

the J-integration we find

Z
= f VgVA 6(x) det {&x} Ieff(A) (50)

where

‘eff(g, A) = Swz(g)— f dx Tr [A(gg)— A(g 8_g)+AgAg — A2] . (51)

The action (51) is invariant under the gauge transformation,

g —* hgh , A —* hAh +80hh , (52)

for h = h(x°) H, but it is not invariant under the gauge transformation for

fully space-time dependent h(s). However, if one writes A = A0 one finds that

the effective action (51) is nothing but the ‘axial gauge’ A1 = 0 version of the

gauged WZNW action considered in [10], which is invariant under the full h(x). In

summary, we have shown that the action (51) provides the Lagrangian realization

of the GKO construction, and that its gauge invariant content is the same as that

of the (fully-)gauged WZNW theory of [10].

In this paper we presented a direct approach to the Lagrangian realizations of

the WZNW reductions and thereby derived Sonnenschein’s action of non-Abelian

chiral bosons, the generalized Toda action, and the two types of gauged WZNW

models implementing the general chiral first class constraints and the GKO con

struction. This approach should be applicable in general to any WZNW reduction,

and could be used to extract further interesting (known, or unknown) models out

of the WZNW theory.
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