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Abstract

We present a SU(2) X SU(2) X U(1) model in (3+1) dimensions, which has instanton

solutions in 1R4, and a sphaleron on in the static limit.
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Sometime ago, Manton1found a very interesting property of the Dashen, Hasslacher and

Neveu2 (DHN) solution to the SU(2) Yang-Mills-Higgs (complex doublet) system in 3

dimensions. He showed that the DHN solution occured at the maximal energy position on a non-

contractible-loop (NCL) in field space, and hence argued that it should be unstable. This instability,

against a one-parameter family of fluctuations, was later demontrated by Burzlaff3explicitely.

This solution, which is unstable against decay into the vacuum, occurs at the maximum of

a minimum energy path connecting topologically inequivalent vacuua of the Edidean Theory, and

was named a sphaleron by Klinkhamer and Manton 4) The physical interest of the sphaleron

derives from its relevence to the fermion-number violation in electroweak theory. In the electroweak

theory however there are no instanton solutions, so that the topologically distinct vacuua referred to

above are characterised by the instantons of the YangMills (YM) model, which does not feature a

Higgs field. Futhermone, the DEN sphaleron has SU(2) gauge group, and not SU (2)xU(l) as the

electroweak theory. The latter point was largely settled in ref [4], where it was shown numerically

that it could be justified to include the U(l) field. Also, more vecently, Kleihaus, Kunz and Brihaye

6) have included the U(l) fled in their construction of the electroweak sphaleron, by departing from

a 3 dimensional radial field configuration which would suppress the U(l) field, and working with

an axial field configuration, which being radial in 2 dimensions,still features a non-trivial U(l)

field.

While the latter question of employing the DEN solution as the sphaleron of the

electroweak theory is to same extent justified 4,6) the previous matter, namely that strictly speaking

there is no instanton solution to the Weinberg-Salam model remains open. This leads us to the

question whether we can have a model, which has instanton solutions, and, a sphaleron solution in

its static limit ? This is the main question we address ourselves to in the present work.

Before analysing it more closely, we note that this question has been answered positively

in the case of lower dimensions, to different degrees of completeness. First, Forgacs and Horvath

7) classified models in (1+1) and (2+1) dimensions which have this propertly, namely the Abelian

Higgs model with vortex8 solutions as instantons, and the (adjoint-representation) SU(2) Higgs

model whith the ‘t Hooft-Polykov monopole as instanton9,respectivily.

In the case of the Abelian Higgs model in (1+1) dimensions, Bochkarev and
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Shaposhnikov’° and Grigoriev and Rubakov” showed that the static limit of this system had a

sphaleron solution on IR In the static limit, this system reduces to the 04 model in 1R1.To

construct unstable solutions to it is rather more subtle than to the SU(2) YM-Higgs (doublet) case in

]R3,. and involves requiring the fields to be periodic, resulting in an instability 10) against a

parameter t (oo t - oo), the sphaleron ocurring for t = -, in contrast with the DHN case where the

instability is parametrised by an angular parameter ji (0 .t it). Manton and Samols’2)showed that

this was equivalent to putting the field on a circle of finite circumference L, where the sphaleron

occuurs for L—oo.

The case of the (adjoint) SU(2) Higgs model in (2+1) dimensions is simpler and more akin

to the (3+1) case, and hence deserves further study, but we defer this because even as a toy model,

it does not feature any explicit solutions. As it is, we have recently proposed’3a (non-gauge) toy

model in (2+1) dimensions satisfying these criteria, and with an explicit sphaleron solution.

In addition to the above mentioned lower dimensional models7’3,Mottola and Wipf’4

have employed a (1+1) dimensional toy model based on the 0(3) sigma-model, which has technical

advantages over the corresponding Abelian Higgs model of Ref [7, 10, 11]. This model14

however, shares with the electroweak model’ the feature that the instantons and sphaleron are

supported by different dynamics.

Finally we come to our above stated aim of constructing a model in (3+1) dimensions,

which features both instantons on ]R4, and a sphaleron on 1R3, in the static limit. This task was

previously addressed by Ratra and Yaffe’5,who considered the field configurations of the

Weinberg-S alam model, that correspond to a non-zero Chern-Pontryagin (C-P) charge. These

however are not solutions, since the (scaling) Virial theorem8in this case contradicts the existence

of finite action solutions with non-trivial Higgs field.

The model we propose is the SO(4) x U(l) Higgs model introduced in ref [16], which has

topologically stable finite action solutions on 1R4. It differs from the standard electroweak theory in

that the gauge group is SU(2) x SU(2) x U(l) SO (4) x U(1), instead of SU(2) x U(1), and

consequently the Higgs multiplet consists of two independent Higgs doublets (one for each

SU(2)), instead of a single doublet. We denote the S0(4) x U(1) connection A as

(la)
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A=[
A]

(ib)

where A are respectively the SU± (2) (antihermitian) connections, and a the U(l) field. The

Riggs multiplet is the (antiselfdual) 4x4 matrix field

(2)
-41

where the 2x2 consituent matrix field N consists of the two independent doublets, and is therefore

subject to no constraints.

The special property of the Higgs field(2),, is that it can be subjected to spherical

summetry contraints with respect to the gauge group S 0(4), without trivialising, in contrast with

the complex Riggs doublet in electroweak theory’). (It was remarked also by Manton’, that the

radial symmetry of the energy functional of the DFIN sphaleron can be understood by considering

these fields as an S 0(4) gauge theory).

The most important consequence of this property is that we can set the U(l) field in (la)

equal to zero by imposing spherical symmetry in 1R4, or as the case may be, axial symmetry,

corresponding to spherical symmetry in JR3 for the static case. This last configuration pertains to

the sphaleron solution to be discussed below. Accordingly, we do not have to resort to a

perturbation method4,as in the case of the DHN sphaleron corresponding to 9w = 0 electroweak

theory. In our case, we can restrict our considerations to the S0(4) gauge field (2b), A, just by

imposition of symmetry, and not by setting 0w = 0 by hand.

Our SO(4) x U (1) model, which was derived’6from the 8-dimensional generalised YM

(GYM) system’7by dimensional reduction, is given by the Lagrangian.

L = tr [Svpcy + 22 Svp + 32.2 A.2 Sv + 3.2 A.3 S +33.2A.4 (S2)2], (3)

where the dimensionless numbers A.,,..,A.4may take any real positive values except A.,=A.2=X3=A.4

= 1 as explained in ref [16], and
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Svp vpa Fpa) + cycL (v,p,a) (4a)

Stvp = {iv p} + cyci. (i,v,p) (4b)

s, = i {s, F,) + [DD, Dv]) (4c)

sR i {s, i5 ci) S =
- (2

+ 12. (4d,e)

The dimensional constant 11 in (4e) is the inverse of the radius of 54, the four-sphere, over

which the dimensional reduction from 1R4 x S4 was performed to derive (3). Naturally

F and denote the curvature and the covariant derivatrive, respectively, of the connection

(la), For the actual instanton fields given in ref [16], we replace (A,F, D ), by (A,F,D cL)

pertaining to (ib), as the former is a spherically symmetric system.

As the SO(4) instanton of the model (3) was discussed in quite some detail in ref [16], we

suffice here by only recording the surface integral, which provides the lower bound on the volume

integral of (3),

J = f + + c21?) dEw. (5)

with

= -
- ii8vp tr 7 A (Fpa - AAa) (6a)

= - 11 tr 7 {Fpa. D ()} (6b)

tr 7 ({S,Fpc) +[D , Dy 1]) D . (6c)

We have parametrised (6) in terms of (F,D(I)), even though more generally, this surface

integral is given by (6) in terms of (F,D L). This is done in anticipation of the fact that the

instantons under consideration are spherically symmetric’6or, as the case may be, axially

symmetric.

Together with the lower bound (5), the existence of instantons can be assured by requiring

suitable boundary conditions, most important amongst which is
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(7)

1x1j —f 00

We now address ourselves to the question, whether in the static limit, the model (3) has a

sphaleron solution. To discuss this static limit, we first recast the important quantities (3) and (6) in

axially symmetric configuration. Following the procedures used in refs [15,18,19], we express the

SO(4) axially symmetric field A,. = (At, A4), i = 1,2,3 and 1, as function of r = and t = x4,

A
(X2+ 1) jj nj + [ ij - a2) n nj (8a)

A4=a14nJ (8b)

(8c)

where aa = (a1,a2), x = x1, X) and 0a (0k, 02) are all real functions of the two variables xa=

(r,t), with the unit vector defined by x1 r n1. Introducing furthur the notation X = + i, P

+ i O2 u = (1x1 2
- 1), v = (kp2 — 2) and w = (xp* + *q), (3) and (6) are expressed as,

L

+32.23 [v f - i D (p Dp*]2+ V2 Dq

2 2+- (vDaX+wDap)(vDaX*+wDp*)

2 ‘5
(uDp+w

r2

+ 2. 33 4 + 23 v2 w2 +
2232

(w2 + 2uv)2, (9)
r2

and

c=e[2a +i(x* D
-

XDX*)] (lOa)

= 2 [2 fr2 (x* D x - x D x*) +2 (Ix- 1) ((p*D p - p D (p*)

(lOb)
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e [I (x* D x - x D x*) + 2 (2 1x12- 1) ((p*D (p - ( D (p*)

+ 2 q2((px*2D (p - (p* 2 D x*)] (lOc)

where f is the (Abelian) curvature of the connection a, and D = ( + i a) its covariant

derivatrive.

The form (9) of the Lagrangian is very useful in analysing the Ansatz for the NCL in the

field space of the static system, which following Mantons prescription’, is found by identifying

the asymptotic Higgs field with T°° = y p, in terms of the unit four-vector

p = (sin p. sin 8 cos 0, sin p. sin 8 sin , sin2 p. cos 8 + cos2 p.,

sin p. cos p. (cos 8 - 1)) (11)

Here, we shall defer this detailed analysis, and concentrate instead on a preliminary search for the

sphaleron, following rather Burzlaffs prescription 3)
, generally.

We take the static limit’5by requiring that f vanish and (p and X be time independent up

to a U(l) gauge transformation with parameter A = A (r,t),

a = )€- A
,

= e’ (r) , (p = (p (r), (12)

and by further restricting (p = ih (r) and X (r) = (f(r)+ 1), where h and f are real functions of r.

The resulting energy density descending from (9), is the S 0(3) spherically symmetric field

configuration on ]R3, of the following Lagrangian,

L3=tr[221Sk+322S+33223 S+324(S2)21, (13)

where we have employed the notation given by (4b-e) with the spherically symmetric fields on

(l4a,b)

We have not yet expressd (13) explicitly in terms of f(r) and h(r), because we shall arrive at that
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expression presently in a more instructive way.

That a spherically symmetric solution to the Euler-Lagrange equations of the energy

functional of (13) exists, is not in question. That is evident from a consideration of the

corresponding (scaling) Virial theorem8,and the defmite sign of (13), L3. It is even easy to find a

surface integral20)in this case, giving the energy integral topological stability. But for this solution

to be a sphaleron, we must demonstrate that it is unstable against, for example3),perturbations in

some parameter, and that the energy functional, namely the 3-dimensional volume integral of (13)

for the field configuration (14), be the maximal point of this one parameter family.

In analogy with the one parameter Ansatz of Burzlaff3forthe DHN Sphaleron, we make

here the following Ansatz

h (r) i°°, A = - f (r) [1°°, j (l5a,b)

with

(16a)

q1 = (sin .i sin 0 cos 0, sin sin 9 sin 0, sin i cos 0, cos p.) (16b)

Notice that (, A) given by (14), coincide with the fields (15-16) for p. =

It is left to calculate (13) for the fields (15)-(16), and inquire as to whether the maximal

value of the former occurs at . If so, and if the energy functional vanishes for p. = 0, 7t, then (14)

is unstable against the fluctuations of p., and is a sphaleron solution at p. =

We give the result, term by term,

tr = 2. [f (f+2) h’+h (f+l) f j2 sin4p. (17a)

tr S = -
2 [2 ([h2-rj2)(f+1)J’)2 + —.- (f(f+2) (h2-T12)+ 2h2 (f+l)2)2sin2p.J sin2p. (17b)

tr S = - 16 (h2-fl2)2 [h2+ 2h2 (f+1)2 sin2p.] (17c)

tr (S2)2 = - (h2-2)4
(17d)



9

For u = -, substitution of (17) into (13) coincides with the static limit of (9). Jr is clear

from (17) that L3 for the fields (14)-(15) is (negative) definite, as it is expected to be. So we would

expect that the nonzero topological lower bound, (c.f. ref [20] ) not explicitely constructed here,

would ensure a nontrivial solution. It is not however easy to give a strict proof of existence, for

example by adapting the Tyupkin, Fat e’ev, Schwarz (TFS)21)existence proof of the monopole, as

was done in ref[3]. This is because of the unusual kinetic terms in (17), which are not simply the

velocity terms f’2 or h’2, but some functions of f and/or h times these velocity terms.( This is in

principle feasible, and for a simpler example of this kind, namely for the seven dimensional selfdual

GYM-Higgs ‘monopole’, the TFS proof was successfully adapted22)23).

There remains finally the question as to whether this solution, is indeed a sphaleron, by

testing to fmd out if the energy functional

E = 4it J (r2 L3 [f, f; h, h’j) dr

is maximal for ji = This is manifestly so, because each term in (17) has definite sign, and

depends on the parameter p. only through the function sin2p.. This is exactly analogous to the

situation for the DHN sphaleron3).

We have presented a (3+1) dimensional 50(4) x U(1) Higgs model which has instantons

in
,

and in the static limit a finite energy solution in JR3. We have explicitly demonstated that this

finite energy solution lies at the maximal energy point of a one parameter family and is therefore a

sphaleron in JR3. This sphaleron field configuration is not obtained by putting the U(1) field of the

model equal to zero by hand, but rather by the imposition of spherical symmetry (in 1R3).

The explicit construction of the NCL in field space, and the analysis of its properties on the

lines of ref [1], which is a straighforward task, is deferred elsewhere. We also defer the less

straightforward task of attempting to analyse the t-dependence24of the instability parameter p..

Both these questions are at present under active consideration.
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