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ABSTRACT

In this paper we apply the finite-temperature renormalization group from the point
of view of “environmentally friendly” renormalization. We study both )çb theory
and the magnetic sector of QCD. At one loop level the complete temperature range
of A is successfully described in terms of the parameters of the zero temperature
theory. We show also how the critical temperature can be calculated in terms of
the latter. For the magnetic sector of QCD, in distinction to a one-loop finite
temperature renormalization group improvement is not sufficient to describe the
high-temperature regime.

1. Introduction

Since its introduction the finite-temperature Renormaiization Group’ has been
repeatedly studied and applied. Here we consider it as an example of “environment
ally friendly” renormalization2.The latter is based on the notion that the effect
ive degrees of freedom (fluctuations) of a system are sensitive to the environment.
With environmentally friendly renormalization one renormalizes (reparameterizes)
the theory in an environment dependent way so as to enable the renormalized para
meters to track the evolving nature of the effective degrees of freedom as a function
of scale in a perturbatively controllable manner.

Temperature is an interesting example of a relevant environmental parameter,
as a field theory at very high temperatures exhibits qualitatively different effective
degrees of freedom than those of the zero-temperature theory. In earlier work2’3this
crossover of the effective degrees of freedom was accessed completely for .\q theory,
both in the symmetric and broken phases, using an environmentally friendly renor
maiization group. The running parameter used was the finite-temperature mass
(inverse screening length) m(T), the limit m(T) —* 0 corresponding to a second
order phase transition. Although the latter is a natural parameter it is often the
case that only the zero-temperature parameters are experimentally known. To re
late these to the finite-temperature parameters one must run a parameter other
than m(T). The temperature itself is the obvious candidate, or rather one runs
an arbitrary renormalized temperature scale r, and after the renormalization group



equations are solved, r is set equal to the physical temperature T. This is necessary

in any case in order that perturbation theory in terms of the renormalized para
meters be well behaved. As we will show, by running the environment itself in this
way, one may answer questions such as: what is the critical temperature?

2. Running the Environment for \q Theory

In this section we consider the renormaiization of .Acb4 theory at an arbitrary
fiducial temperature scale r. We apply the normalization conditions

— 0 m \ T — — m2 -‘-
— r, 7, F’T ) — T 2 i”n1

= = r) =

F(po = 0,p,mT,AT,T,T = = 1 (1)
p

where O represents the minimum of the effective potential, i.e. it satisfies the
equation of state

I’’(p = = r) = 0. (2)

The beta functions, obtained by differentiating these renormalization conditions

with respect to r for fixed bare parameters, depend on derivatives d/dT. These

can be eliminated with the equation of state (2). The equations relevant for the

symmetric phase are

T-2
= .AT(N+2)Tf0s_fS_(1mT)

d.) )2(NH-8) CO 2 dm2
=

— 622 f dsee(2m_r_-2) (4)

In fig. 1 we present a plot of the solutions of these equations for the case where the

system is in a state of broken symmetry at T = 0. We have chosen the arbitrary

temperature r = T. This is not simply because T is the relevant physical scale but

also because without this choice perturbation theory would break down in the vi

cinity of a phase transition. The place where the mass curve is zero determines the

critical temperature T in terms of the initial conditions for the flow equations (3)
and (4). For temperatures T >> T the mass increases linearly with temperature and

a “mean field” regime is reached where infrared (IR) fluctuations are suppressed due

to the large thermally induced mass. The solution of these equations can be per
turbatively controlled at higher order (though a resummation technique should be

used in the vicinity of the phase transition) thereby providing a technique by which

the critical temperature can be calculated to all orders. Notice that it is in no way

assumed that the behaviour near the critical point is three dimensional. One starts



off at zero temperature, heats the theory up, then examines what occurs without

any prejudice as to the expected behaviour. We believe this to be an important

advantage of environmentally friendly methods. In fig. 1 the coupling constant goes

to zero as the critical point is approached. As has previously been emphasized2this
doesn’t imply that the interactions there vanish. The appropriate coupling constant

in the vicinity of the phase transition is .\T/m(T) and this approaches a non-zero

fixed point.
The results here are completely consistent with those found by environment

ally friendly methods wherein the finite-temperature mass is the running para

meter. It is important to realize that in the above equations we have evalu

ated the appropriate diagrams with propagators of mass m(r). Hence if we write
d/dT = 8/8r + (rdm?,/dT)O/8m, the latter acts non-trivially. Diagramatically one
can think of this as being equivalent to summing up all “daisy” insertions into
the internal lines of the B function diagrams. Such a maneuver is crucial in that
without it the tadpole insertions, which constitute the largest temperature effects
in the daisy diagrams, would ensure a breakdown in perturbation theory.

3. The QCD case

We now turn our attention to QCD. We have used as a renormalization condition

that the static (i.e. zero energy), spatial three-gluon vertex equals the tree-level

vertex in the symmetric momentum configuration

= 0, , g,, T =
= gfabc

[gij(pi — p2)k + cycl.]. (5)

In contradistiction to the previously discussed case this chosen renormalization con

dition depends on two parameters, the momentum scale ,, and the temperature
scale r. Therefore we can perform a renormalization group analysis with respect to

both parameters, i.e. we can run more than one environmental parameter at the
same time.

For the calculation we have used the Landau gauge Background Field Feynman
rules5 resulting from the Vilkovisky-de Witt effective action in order to get rid
of ambiguities arising from gauge. dependence6. Due to the corresponding Ward
Identities the calculation is simplified in that we only have to calculate the transverse

gluon self energy function 11Tr in the static limit. In terms of the coupling a,- :=

g,/47r2 the functions are then

da dllTr dakT dll
= a,,7- P ..

, T = a,,. T . (6)
d,c d p ‘L dT dT

The ‘r renormalization group is needed to draw conclusions about the temperature

dependence of the coupling. This can not be done using the ic-scheme alone without
assuming something about the temperature dependence of the initial value of the
coupling used in solving the differential equation.



More details of the ingredients of the calculation can be found in reference ‘.

The result is

da,c,r da,,r
= /3vac + /3th, T = /3th, (7)

dr

where the vacuum contribution is, as usual,

— 2 1 11r irN
/—‘vac

— ‘2ic,6C +‘1f)

and where, in terms of the JR and TJV convergent integrals
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F=I dx log —2 (9)
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and
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G=I dx p , (10)
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the thermal contribution is given by

13th =

(F-1 + F’ -

- G1) Nf]. (11)

Small differences with the thermal gluon contribution obtained by Antikainen et.al.8
(which contains + F2’ — — G) are probably caused by the use of the

Background Field Feynman gauge, as may possibly be checked with Gauge Depend
ence Identities9.

Because the two beta functions (7) are not exactly each other’s opposite the
renormaJization group improved coupling is not just a function of the ratio i’/’r.
There is another dimensionful scale (such as AQCD) that comes from an initial con
dition for these differential equations. The solution of the set of coupled differential

equations can be written in the form

11

1
(12)

(TNC — Nf)
‘AqcD — f()

where the function f satisfies /3th = ct,icdf/di with the initial condition urn40 f = 0
so that we can identify AQCD with the usual zero-temperature QCD scale. Actually
this function f can be found in terms of the functions F and G:

f = (F + + G) N0 + (F + F1) Nf. (13)

Fig. 2 is a contour plot of the effective coupling as a function of both momentum-

and temperature-scale. The results are best trusted in places where the coupling is



small. For physical reasons we have to restrict ourselves in any case to the region
where the coupling is positive, which is below the uppermost line in the graph.

The high-temperature behaviour (i.e. for -r >> c) is determined by

f —÷ Nfi2+ (N - N) in + 0(1). (14)

The coefficient of the dominant contribution is the same as in Landsman’s result’°,
but others found different coefficients8”and even different signs’2 with a strong de
pendence on the gauge parameter and the details of the renormalization condition6.
The sign of this coefficient is of crucial significance for the behaviour of the coupling
in this limit. For increasing temperatures at fixed momentum scale, our sign makes
the coupling grow to a pole, an indication that we are entering a strong-coupling
regime, whereas the opposite sign would lead to asymptotic freedom in this limit.
Stimulated by the original belief’3 that high-temperature QCD would be asymptot
ically free as in the high-momentum situation, Landsman suggested that this sign
would be an artifact of the one-loop calculation and that a higher-loop calculation
or a resummation could change it. We however believe that this will not happen,
as the sign appears quite naturally if one realises that this limit r/ic — 00 is an
JR limit where confinement takes place. Unless at higher ioop order the magnetic
mass increases quickly enough with temperature in order to act as an sufficient JR
cutoff, we cannot get around this problem without actually solving confinement. We
believe this to be an important consideration when considering phase transitions
which involve non-abelian gauge fields.

In the regime r >> i the beta functions behave as in a three-dimensional theory
so that we designate this as the region where dimensional reduction occurs. Here it
is natural, as for ?, to use a different dimensionless coupling u = since then

fixed points may turn up more clearly. However in this case such a reparametrization
cannot remove the pole and will not give a different behaviour.

If we allow the momentum-scale to change with temperature simultaneously, the
high-temperature limit can be taken in many ways. In the region r>> i the shape of
the contours is given by r i in

A•
This characterizes exactly along which paths

in the (‘r, ic)-plane the coupling increases or decreases. For example at a fixed ratio
r/c (no matter what this ratio is) we eventually find a coupling that decreases like

1/in i, much in the same way as at zero temperature. This is a natural contour to
consider for a weak-coupling regime’4where one could treat the quark-gluon plasma
as a perfect gas, as then the thermal average of the momentum of massless quanta

at temperature T is proportional to the temperature. However at low momenta
the assumption of weak coupling breaks down. Furthermore, instead of considering

quantities at the average momentum it is more appropriate to use thermal averages

of the quantities themselves as a weighted integral over all momenta’2. But once
again one runs into problems at the low-momentum end as long as we cannot treat
the strong-coupling regime.



4. Acknowledgements

We thank R. Kobes and G. Kunstatter for organizing the 3rd Workshop on
Thermal Theories and Their Applications in Banif. CR5 is grateful for the hospit
ality of the Theoretical Physics group at Imperial College where part of this work
was carried out.

5. References

1. H. Matsumoto, Y. Nakano and H. Umezawa, Phys. Rev. D29 (1984) 1116.
2. Denjoe O’Connor and C.R. Stephens,Nuc. Phys. B360 (1991) 237; “Envir

onmentally Friendly Renormalization”; Preprin THU-93/14, DIAS-STP-93-
19; (to be published in mt. Jou. Mod. Phys. A).

3. Denjoe O’Connor, C.R. Stephens and F. Freire, Mod. Phys. Lett A25 (1993)
1779; Class. Quam. Gray. 23 (1993) S243; F. Freire and C.R. Stephens, Z.
Phys. C60 (1993) 127.

4. P. Elmfors, NORDITA preprint 92/38P (1992).
5. A. Rebhan, Z. Phys. C30 (1986) 309.
6. N. Ashida, A. Niegawa, H. Nakkagawa and H. Yokota, Phys. Rev. D44

(1991) 473.
7. M.A. van Eijck, Can. J. Phys. 71 (1993) 237; M.A. van Eijck, C.R. Stephens

and C.W. van Weert, Mod. Phys. Lett. A9 (1994) 309.
8. J. Antikainen, M. Chaichian, N.R. Pantoja and J.J. Salazar, Phys. Lett.

B242 (1990) 412.
9. R. Kobes, G. Kunstatter and A. Rebhan, Nuci. Phys. B355 (1991) 1.

10. N.P. Landsman, Phys. Lett. B232 (1989) 240.
11. R. Baier, B. Pire and D. Schiff, Z. Phys. C51 (1991) 581.
12. K. Enquist and K. Kainulainen, Z. Phys. C53 (1992) 87.
13. J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353.
14. K. Enquist and K. Kajantie, Mod. Phys. Lett. A2 (1987) 479.



Figure Captions

Fig. 1: Solutions of the coupled differential equations (3,4) for the running mass m and coupling \ of

the one-component model as a function of temperature T. At the critical temperature

the coupling goes to zero simultaneously with the mass.

Fig. 2: Contour plot of the running coupling a,-(i, r) for QCD with three colours and six fermion

flavours. The fermions have been taken massless. Only below the curve aK,T = c (close to

= 1000) the coupling is positive and finite.
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