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Abstract

We consider from a thermodynamic viewpoint queueing systems where the work

load process is assumed to have an associated large deviation principle with arbitrary

scaling: there exist increasing scaling functions (at, Vt, t E D+) and a rate function I

such that if (W,t e +) denotes the workload process, then

limv1logP(Wt/a> w) = —1(w)
t—+oo

on the continuity set of I. In the case that at = Vt = t it has been argued heuristically,

and recently proved in a fairly general context (for discrete time models) by Glynn and

Whitt [8], that the queue-length distribution (that is, the distribution of supremum

of the workload process Q = supt>o W) decays exponentially:

P(Q > b) e6

and the decay rate S is directly related to the rate function I. We establish conditions

for a more general result to hold, where the scaling functions are not necessarily

linear in t: we find that the queue-length distribution has an exponential tail only

if limt at/Vt is finite and strictly positive; otherwise, provided our conditions are

satisfied, the tail probabilities decay like

P(Q > b)

We apply our results to a range of workload processes, including fractional Brownian

motion (a model that has been proposed in the literature (see, for example, Leland et

al [10] and Norros [13]) to account for self-similarity and long range dependence) and,

more generally, Gaussian processes with stationary increments. We also show that

the martingale upper bound estimates obtained by Daley and Duffield [5], when the

workload is modelled as an Ornstein-Tjhlenbeck position process, are asymptotically

correct.
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1 Introduction

Consider a general single-server queue. For s, t 6 T (T = Z or we denote by A5,

the amount of work that arrives to be processed in the time interval [.s, t), and by S the

amount of work that can be processed in the same time interval. (If more work arrives

than can be processed, the surplus waits in the queue.) The workload process W is defined

by

— s_t,o, (1)

and the queue-length at time zero is given by

Q=supWt. (2)
t>o

There has been a recent flood of literature and discussion on the tail behaviour of the

queue-length distribution, motivated by potential applications to the design and control

of high-speed telecommunication networks. In this paper we generalise results of Glynn

and Whitt [8] (see also references therein) on the problem of characterising the tails of

the queue-length distribution in terms of the large deviation properties of the workload

process. Our results are quite general and can, for example, be applied to processes that

exhibit long range dependence, as have been proposed by Leland et at [10]. They can also

be applied in other areas of probability theory.

We begin our discussion with the following easy inequality: for b> 0,

P(sup W > b) sup F(W> b). (3)
to to

At first sight, this may seem a rather crude estimate. However, there are circumstances in

which for large b we have

P(sup W,,> b) sup P(W> b). (4)
to to

The heuristics behind this claim are:
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• The principle of the largest term, or Laplace’s method: Suppose that T = L, and

consider the following calculation.

P(supW>b) = FIJ{W>b} (5)
n

P(W>b). (6)

Roughly speaking, if the probabilities P(W > b) decay sufficiently fast in b, then the

principle of the largest term applies, yielding (4).

• Rare events occur in the most likely way: this well known principle is the probab

ilitistic counterpart of the principle of the largest term. In this case it translates

as “suppose that the process W is unlikely to ever reach a given level b; if W is

conditioned to reach b, then it will do so at the time when this is most likely to

occur”.

This argument (namely that (4) can provide a good estimate) has been exploited and

made rigorous in a variety of contexts: we refer the reader to the books of Dembo and

Zeitouni [6] and Aldous [2] for details and references. (For a general introduction to large

deviation theory, the paper of Lewis and Pfister [11] is an excellent source.) However, more

relevant to our discussion here is the acute observation that using (4), the tail behaviour

of the queue-length distribution can be derived from the large deviation behaviour of the

workload process: this was originally proposed by Kesidis et al [9] and later made rigorous

by Glynn and Whitt [8] (see also references therein and Chang [4] for related work).

Roughly speaking, Glynn and Whitt proved the following result. If T = Z (discrete

time) and the pair (Wa/n, m) satisfy a large deviation principle with some well-behaved

rate function, then

lim b’ log P(Q > b) = —8, (7)
b—.oo

where

8 = sup{& : )(8) O}, (8)
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and ; is the cumulant generating function defined by

.\(8) :=1imn’logEe’. (9)

This is a very general result, and extremely useful for applications. In particular, it can

be applied to any stable system with stationary arrivals and deterministic service rate,

provided the arrivals process does not possess long range dependence. However, there

has been some suggestion recently that real traffic can exhibit long range dependence,

most notably by Leland et al [10], who propose fractional Brownian motion (with negative

drift) as a canonical model for the workload process. This has motivated us to generalise

Glynn and Whitt’s result. Roughly speaking, we show that if there exist increasing scaling

functions (at, Vt) such that the pair (Wt/at, Vt) satisfy a large deviation principle with rate

function I, and if there exists a scaling function (he) such that the limit

g(c) = lim
v(a’(c/t)) (10)

t-*ao

exists for each c> 0, then (under suitable hypotheses)

lim h’ log P(Q> b) = — inf g(c)I(c). (11)
b—*oo c>O

It is not hard to check that this agrees with Glynn and Whitt’s result in the case at = Vt = t

(see Lemma 2.1 below). For fractional Brownian motion (with negative drift), at t

and Vt 1S polynomial in t; in this case the appropriate scaling function is h := vb. A

natural generalisation of fractional Brownian motion as a model for the workload is to

consider more general Gaussian processes with stationary increments: we demonstrate, as

one might expect, that the tail behaviour of the queue-length distribution is governed by

the asymptotic variance of the workload process.

We include one more example. Daley and Duffield [5] have justified the Ornstein

TJhlenbeck position process (with negative drift) as an approximation for the workload in a

queue with a large number of independent bursty sources; we show that the upper bound

estimates which they obtain via maringale methods are asymptotically correct.

We present our results in §2, and the applications in §3.
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2 Large deviations and overflow probabilities

Consider a stochastic process (We, t E T), where T = Z or , and set

Q=supWt. (12)
t>o

Recall that for the general single-server queue, we are thinking of W as the workload and

Q as the queue-length at time zero. In this section we characterise the tail behaviour of

Q in terms of the large deviation properties of W, based on the heuristics described in the

introduction. We use the terminology of Dembo and Zeitouni {6J. Our basic assumption is

the following.

Hypothesis 2.1 (i) There exists functions a, v : T — T that increase to infinity, such

that for each 9 e il, the cumulant generating function defined as the limit

lirnvhlogEeSh1t’t1t (13)

exists as am extemded real number.

(ii) (Note that ) is automatically convex.) )(.) is essentially smooth, lower semi-continuous

and there exists & > 0 for which )(&) <0.

(iii) There exists an increasing function h: T —p T such that the limit

g(c) := lim
v(a1(t/c))

(14)
t—oo

exists for each c> 0, where

a’(x) := sup{s T : a(s) x}. (15)

If Hypothesis 2.1 is satisfied, then by the Gartner-Ellis theorem, the pair (Wt/at, Vt) satisfy

a large deviation principle with good rate function given by the Fenchel-Legendre transform

of .\, which we denote by ). In other words, for any Borel set I’,

limsupv’logP(W/at E I’) _infA*(x), (16)
t—oo xEP
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and

liminfv’logP(Wt/at e I’) _i0\*(x), (17)

where

sup{9x — (18)

For x > 0, it follows that

limsupv’logF(W/at > x) _*(x), (19)
t—+cG

and

liminfv’logP(Wt/at > x) _*(xj. (20)
t-c

The following lower bound result is essentially an immediate consequence of the basic

inequality (3).

Theorem 2.1 If Hypothesis 2.1 is satisfied, then

liminfh1logP(Q > b) _infg(c))*(c+).
b—.co. c>O

Proof. For each c> 0,

liminfh’ log F(Q > 1,) liminfh’ log P(Wa—1(b/c) > b) (21)
b—’co b—boo

= g(c)liminfv’1ogP(W/at > c) (22)

g(c)\*(c+). (23)

The result follows. D

To state a complimentary upper bound, we first record some hypotheses.

Hypothesis 2.2 There exists d> 0 such that

(i)

infg(c)k*(c) = infg(c)A*(c) <cc;
c).O
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(ii)

________

*urn inf = inf A (c)g(c);
t—*ooc>d h(cat) c>d

(iii) for each > 0,

lirnsuph’log e7 _ing(c)A*(c);
k={cz’(b/d)j

C

(iv)

lirnsuph1loga’(b/d) = 0.
b—+oo

The next hypothesis is not required if T = Z; in the case T = R define, for ri E

W sup Wn+r. (24)
Or<1

Hypothesis 2.3 (T = ) Either

limsupv’ logEe8_W’ = 0 (25)
n—oo

for all 6> 0; or (25) holds for some 6 > 0, and

limsupv’logP(W — W > xa) _A*(x) (26)

for all x > 0.

Although we state the above hypothesis in terms of what happens over unit intervals, the

length of the intervals can be arbitrarily small; in words, the hypothesis ensures that the

continuous-time process is locally well-behaved.

Theorem 2.2 Suppose that Hypotheses 2.1 and 2.2 are satisfied and, if T = that

Hypothesis 2.3 is also satisfied. Then

limsuph’logP(Q> b) _infg(c)A*(c).
b—+co c>O

In most applications the scaling functions are polynomial: we present this case as a corol

lary. Note that in this case there is no need to check Hypothesis 2.2.
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Corollary 2.3 Suppose that Hypotheses 2.1 is satisfied and, if T = that Hypothesis 2.3

is also satisfied. If at = ta and Vt = t” for some a, v > 0, then

limsupb_1logP(Q > b) :$; _infc_).*(c).
b—oo c>O

[f )* is continuous we cam combine this with Theorem 2.1 to get

urn b_v/a log P(Q > b) = — inf c_1)*(c).

b—*co c>O

The following lemma, due to Kesidis et al [9] and Duffield [7], reconciles our result with

that of Glynn and Whitt [8] for the linear case.

Lemma 2.1 In the above context, if Hypothesis 2.1 is satisfied,

inc_l*(c) = sup{6

Proof of Theorem 2.2. First suppose that T = Z. Let d> 0 be such that Hypothesis 2.2

is satisfied.

P(Q>b) sup W>b +P sup W>b (27)
\n<cz(b/d) J \na1(b/d) J

a’(b/d) sup P(Wa_1(b/c) > b) + P(W > b). (28)
c).d na’(b/d)

By Hypothesis 2.1 we know that there exist 8, e > 0 for which (8) + e < 0. Thus, by

Chernoff’s inequality and the definition of A, we have for k sufficiently laige,

P(Wk > b) e°Ee’’ (29)

< (30)

Combining this with Hypothesis 2.2(iii) we get

limsup h1 log P(W > b) _infg(c)A*(c). (31)
na(b/d)

c>O
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To treat the first term in (28) we appeal to the large deviation upper bound (19) and

Hypothesis 2.2(ii, iv): for any S > 0,

urn sup h1 log a’(b/d) sup F(Wa-l(b/c) > b)
b—boo c>d

= limsupsuph(ca)’1ogP(W/a > c) (32)
fl+CO c>d

lirnsupsuph(ca)’v[S— *(c)] (33)
fl+OO c>d

A* ( c)v
— lim inf +Sg(d) (34)

rZ—OOc>d h(ca)
= _infg(c)..*(c)5g(d) (35)

c>d

Since S is arbitrary, we can combine the inequalities (28), (31) and (35), and Hypo

thesis 2.2(i), to obtain the result.

Now suppose T = +. If (25) holds for 6 6* cc, then by Holder’s inequality we

have

limsupv’ log Ee6 W/a .)(6/p), (36)
n—oo

for 0 <p < 1, 6 (1 — p)6*. If (25) holds for all 6> 0 we can let p / 1 and combine this

with the trivial lower bound

liminfv’ log Ee” 6), (37)

to get

1imvlogEe’” = )(6). (38)

We have thus shown that in this case Hypothesis 2.1 is satisfied by the (discrete time)

process (W, m z) and the result follows.

Finally, if (25) holds only for some 6> 0 we modify the proof of the discrete-time case:

step (30) is justified by (36) and step (33) by the hypothesis (26); the rest of the proof is

identical.

Proof of Corollary 2.3. In this case we have h = bhh/a, g(c) = c” and the statement

follows from Theorem 2.2 provided Hypothesis 2.2 is satisfied. To check (i) we observe the
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following (given Hypothesis 2.1, this is standard convex analysis):

0< )*(Q) .f\(6) < ; (39)

the interior of the effective domain of AK contains the origin, so we have

<co (40)

for c > 0 sufficiently close to zero. It follows that

lim C V/a).*()
= +co, (41)

c—*O+

which, together with (40), implies (i).

Condition (ii) is trivial in this case.

We check (iii) by appealing to the asymptotic properties of incomplete gamma functions

(see, for example, [1, p26Oj):

lim supb log = lim sup b_v/a log e_7t cIt (42)
k=[(b/d)l/a] b—*oo (b/d)/a

= lim sup b_V/s log I’(v’, c(b/d)t1) (43)
b—+co

= (44)

where

P(w,x) :=jrw_1e_rdr. (45)

Now we can choose cI sufficiently small to ensure that (iii) is satisfied.

Condition (iv) is trivial.

3 Applications

3.1 Gaussian processes with stationary increments

Let (Z, t ) be a zero-mean Gaussian process with stationary increments and covari

ance function

I’(s,t) = EZ3Z, (46)
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and set

:= Z — jut. (47)

This is quite a general model for the workload process, and includes fractional Brownian

motion; the practical generality is that we allow “different levels of burstiness at different

time-scales”.

Setting

F(t,t), (48)

we have

lim -- log Ee8tWt (49)
t—oo 2

= 182 — (50)

and we see that Hypothesis 2.1 is satisfied with scaling functions at = t and Vt =

provided the limit

g(c) :=
22

(51)
t/c

exists for each c> 0. If o issuch that Hypothesis 2.2 is satisfied, and if Hypothesis 2.3 is

satisfied, then by Theorems 2.1 and 2.2 we have

llrnlogP(supW > b) = -infg(c)(c±)2/2. (52)

In particular, if the variance o is asymptotically linear in t:

> 0 (53)

say, as t —* oo; then

urn b’ log P(Q> b) = — inf c’(c +)2/22 (54)
b—*oo c>O

= _2/2. (55)

Finally we remark that to check Hypothesis 2.3 it is sufficient to check that

E sup Z < cc. (56)

This follows from Borell’s inequality [3] for Gaussian processes (see also [6, Exercise 5.2.14]).
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3.2 Fractional Brownian motion

A special case of the above is where

21’(s, t) = 32H + t2H tI2H, (57)

for some 0 < H < 1. In this case the process Z is called fractional Brownian motion.

The parameter H is called the Hurst parameter, and when H > 1/2 the process exhibits

long range dependence. This has been proposed as a model for the workload by Leland et

al [10], based on observations of Ethernet traffic data. A lower bound for the tail of the

queue-length distribution in this case was obtained by Norros [13], using the inequality (3).

Since the scaling functions are polynomial in this case, we need only check (56) and

apply Corollary 2.3 to get

urnb2’log P(Q > b) = — inf c2(1_(c +1u)2/2. (58)
b—.oo c)’O

This is consistent with the lower bound estimate of Norros, and moreover demonstrates

that it is asymptotically correct.

We now check (56). By symmetry it is sufficient to show that

E sup Z < cc. (59)
o<t<1

To do this we use the stochastic integral representation of fractional Brownian motion (see,

for example, [12]): if B1 and B2 are two independent, one-dimensional Brownian motions

started at zero, and if we set

:= f [(t +3)H_4
—

3H-41 dBi(s) + — s)H_4dB2(s) (60)

then Z is fractional Brownian motion with Hurst parameter H. Now by Ito’s formula—or

more specifically, by [15, p139, Remark 5°]—we have

= (H
- ) f [H-

- (t + s)}] Bi(s)ds + (H
— ) f(t )HdB(s) (61)

f° [3H2
- (1+ s)] B(s)ds + (H

- ) f(t - s)dB(s), (62)
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and so

B sup Z
< f [3H — (1 +3)H_] EB(s)ds + B sup B(t) (63)

ot1 0 o<t<i

< j°°
[3H_

— (1 + s)} s”2ds +2 (64)

< cc, (65)

as required.

3.3 Ornstein-Uhlenbeck position process

Another example where the workload is modelled by a Gaussian process with stationary

increments is the following. Consider a queue with constant service rate, for which the

workload W, is the position component of a stationary Ornstein-Uhlenbeck process with

negative drift. Such an arrival process has been proposed by Norros et al [14] as a model of

continuous correlated arrivals. It has been shown by Daley and Duffield [5] that this arrival

proceess occurs as theheavy traffic limit of superposed 2-state markov fluid sources under

suitable rescaling of time and mean activity. Moreover, using martingale methods they

obtain exponential upper bounds for the tail of the corresponding queue length distribution.

Here we show that the exponential decay constant is equal to that obtained by the foregoing

large deviation arguments, so that the upper bound estimate is asymptotically correct.

To be precise we consider the stationary Ornstein-T.Jhlenbeck process (4, t E

defined to be the solution of the stochastic differential equation

= _T/dt + \/(u/v) dB(t) (66)

where V0 is normally distributed with zero mean and variance (u/u)2. Here B is standard

Brownian motion, ii > 0 is a load parameter (the case ii = 0 corresponding to unit load),

and ,u is the service rate. The corresponding position process (with zero initial condition)

is

Z
=

V3ds, (67)
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and the workload is

W=Z—p.t. (68)

In [5] it is shown that

P(Q> b) <e_2/2_2b. (69)

In fact, as we now confirm,

urn b’logP(Q > b) = (70)
b—÷oo

To do this we note that Z is a centered Gaussian process with stationary increments, so we

can use the arguments of §3.1. We begin by calculating the variance o of Z. The solution

of (66) is

= etV0 +et(/v)f e3 dB(s), (71)

and so the covariance function of V is (for t s 0)

E(s,t) := (72)

= e_(t+5). (Var(Vo) + 2(/v)2E(f et’dB(tI) f e3’dB(s’))) (73)

= (/)2e_(t+3) (i + 2 L3 e23) (74)

= (/)23_t (75)

hence

= 2f E(s,s’) dsds’ (76)
O<s’<s<t

= 2(/u)2(t+ et — 1). (77)

The result now follows from (55), provided (56) is satisfied. Again, by symmetry, it is

sufficient to check that

E sup Z <cc. (78)
o<t<1

But

B sup Zt = B sup fvdt! (79)
0
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EsupT4 (80)
ot<1

V(/v)E sup B(t) (81)
Ot<].

= 2V’,u/i.’, (82)

and so we are done.
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