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1 The Equivalence of Ensembles

In statistical mechanics, the problem of the equivalence of ensembles goes back to

Boltzmann and Gibbs. Here it is the problem of proving that, in the thermody

namic limit, the microcanonical measures and the grand canonical measures are

equivalent; making precise the meaning of “equivalent” is part of the problem. It is

commonly believed that in good statistical mechanical models such an equivalence

holds, even in the presence of a phase—transition. On the other hand, it is believed

that equivalence of ensembles fails in mean—field models such as the Curie—Weiss

model.
There is a second statement which is also known as the equivalence of ensembles:

in the thermodynamic limit, the negative of the entropy and the pressure are conju

gate functions in the sense of convexity theory. In statistical mechanics, the entropy

function is defined directly in the microcanonical setting and the pressure in the

grand canonical setting. We refer to this statement as the equivalence of ensembles

at the level of thermodynamic functions. This form of the equivalence of ensembles

is known to hold for good statistical models and to fail for mean—field models. One

version of our main result may be stated roughly as: for the classical lattice gas,

equivalence of ensembles holds at the level of measures whenever it holds at the level

of ther’rnodynamic functions.
The problem of the equivalence of ensembles is not confined to statistical me
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chanics; it can be found in other areas of applied probability theory — in information

theory, for example. Here the problem is to prove that a sequence of conditioned

measures is equivalent, in an appropriate sense, to a sequence of “tilted” measures.

Our choice of setting is sufficiently general to cover such applications.

Probabilistic methods have been used for at least fifty years to prove results about

the equivalence of ensembles: Khinchine (1943) used a local central limit theorem

to prove it for a classical ideal (non—interacting) gas; Dobrushin and Tirozzi (1977)

proved that the local central limit theorem is a consequence of the integral central

limit theorem in the case of a Gibbs random field corresponding to a finite-range

potential; however, their application of it to prove the equivalence of ensembles

runs into problems when there is a first-order phase-transition. Typically, local

central limit theorems hold on the scale of the square—root of the volume. The right

scale for the investigation of the equivalence of ensembles, however, turns out to

be that of the volume itself; this is the scale on which large deviation principles

hold. Deuschel et al. (1991) and Georgii (1993) used a large deviation principle

for empirical measures to prove the equivalence of ensembles. One draw-back with

this approach is that it is technically difficult: since it involves measures on a space

of measures, there are subtle points to be settled. Another is that the connection

with thermodynamic functions is obscured. Our approach is more elementary and

direct: we go back to the common origin of large deviation theory and statistical

mechanics, the Principle of the Largest Term, and prove a result about the specific

information gain of a sequence of conditioned measures with respect to a sequence

of tilted measures. This is a “soft” theorem — it uses nothing deeper than the

order-completeness of the reals, but it has a wide applicability. For non-interacting

systems, the equivalence of ensembles for measures then follows from an inequality

relating the information gain 7(,uz’) of ,u with respect to i’ to the total variation

norm ‘v of the difference of the two measures:

2(v)
-
v. (1.1)

This was pointed out by Csiszr (1984). For interacting systems, our “soft” theorem

has to be supplemented by a “hard” theorem, proved using the combinatorial devices

introduced in Sullivan (1973) and perfected by Preston (1976); using it, we prove the

equivalence of ensembles at the level of measures for a lattice gas with translation

invariant summable potentials. In order to state this result precisely, we have to

describe the setting in detail; this we do in § 2. In § 3 we discuss the Principle of

the Largest Term and its consequences, sketching the proof of our “soft” theorem.

In § 4, we give an application to the non-interacting case. In § 5, we state precisely

the general result for the lattice gas. Detailed proofs will be published elsewhere.

2 Conditioning and Tilting

Let {(cL, Fn, pn)}n>i be a sequence of measure spaces; here p is a positive measure

referred to as the reference measure, which may or may not be normalized. Let

:= {4 (0, oo)}> be a scale, a sequence of positive numbers diverging to +co

as n —* cc. Typically, in the applications to statistical mechanics, V will be the

volume of a region A in a Euclidean space JRd or the number of lattice sites in

a box A in an integer lattice 7Ld and Q, will be a configuration space associated

with A. Let T0 := {T :
—

X}>1 be a sequence of random variables taking

values in X, a closed convex subset of E, a locally convex topological vector space;
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we denote the Borel subsets of X by 5(X) and the topological dual of £ by E*. In
this exposition we will assume that X is compact and that £ = IRk (k 1). These

assumptions are not necessary (for the general case, see Lewis et al. (1993)) but
they simplify the proofs and yet are adequate to cover the applications we make to

the lattice gas.
For C 5(X) such that 0 < p[T;’C] < for all n sufficiently large, we define

the conditioned measures on F7 by

[dwj :=
lT-1C(w)pfl{dw]

(2.1)
p[T C]

for t E such that 0 < j’ exp(V(t, T(w)))p[dw] < cc for all n sufficiently large,
we define the tilted measures on F7 by

exp(V(t,T(w)))p[dwj
7[ J. f exp(V,(t, T(w )))p{dw]

We shall compute the specific information gain lirn —7((v’y); recall that

7(1R’2), the information gain of A. with respect to \2, is defined by

(12) :=
fln(w)i[dw], <<2, (2.3)

I +cc, otherwise.

In the statistical mechanical applications, the T7., are k-tuples of functions such as

energy-per-site and magnetization-per-site; then v7 is the microcanonical measure

conditioned on T taking values in C and ‘-y is the grand canonical measure at gen

eralized chemical potential t. Notice that both z and -y are absolutely continuous

with respect to the reference measure pr, and their densities are both functions of

T; we exploit this by using the change of variable formula in computing the specific

information gain. Define the distribution iM of T under p by 1M := p o T;’; we

have

—

jJ[.
i/n C

— 1LV1nL LIj

.— iM C

7t T1 = t[ X] := (2.5)

where 1M[dx] exp(V(t, x))IM{dj. Thus we have

= 7-((I1[. C]IvI[ X]). (2.6)

We shall see that this formula is the basic manoeuvre in our treatement; it reduces

an integral over i2 to an integral over X and relates the information gain ?i(v ‘y)
to the thermodynamic functions which we are about to define in this setting.

3 The Principle of the Largest Term

We need to examine the behaviour as n — cc of the measures on X defined in §
2. Since the spaces (EL, F, Pn) and the random variables T play no part in the
considerations of this section it is best to start afresh. Let 1M0 {1M}>1 be
a sequence of locally finite positive measures on 5(X), the Borel subsets of X, a
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compact convex subset of B = IRIC. Let V0 be a scale; define set-functions m, Tn,

on 5(X):

m[B] := -1nIM{B], (3.1)

1iminfrn[B] , (3.2)

urn sup m[B] . (3.3)
fl—* 00

The following properties are straightforward consequences of the definitions

rn[B] <[B] for all B 5(X) ; (3.4)

and i are increasing on 5(X) . (3.5)

The next property is an abstract version of the Principle of the Largest Term, well-

known in traditional accounts of statistical mechanics (see, for example, Huang

(1963)). Since it is central to our development, we give a proof. (For a, b IR, we

denote the maximum of a and b by a V b.)

Lemma 3.1 On 13(X), we have

rn[B1 U B2] = [B1]V m[B2] . (3.6)

Pro of:
For j = 1,2, we have

iM[B3]<1M[B1U B2] < IM{B1]+ 1M[B2] (3.7)

so that
iM[B1]V ]M7[B2]<1M[B1U B2] <2IiV[[B1]V 1M{B2] ; (3.8)

it follows that
[B1 U B2] = liinsup(m[B1]V m4B2]). (3.9)

But for each pair {a}>i, {b}>1 of sequences of real numbers, we have

limsup(an V b,) = (urn sup a) V (urn sup b) . (3.10)

Thus (3.6) follows from (3.9) and (3.10).

Define functions i, 71 on X as follows:

(x) := inf rn[G] , 0 open , (3.11)
— Gx

71(x) := inf rn[G] , 0 open. (3.12)
G3z

The following properties are direct consequences of the definitions:

u and 71 are upper semicontinuous functions; (3.13)

[G]sup71(x), Gopen, (3.14)
xEG

rn{G]sup(x), Gopen. (3.15)
xEG
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The lower bound (3.14) for on open sets is rarely used; of greater importance is
the following upper bound for Th on compact sets, a consequence of the Principle of

the Largest Term (3.6)

[K] sup 11(x) , K compact . (3.16)

Our first application of (3.16) is to the concentration of measures. Let 1M0 be
a sequence of probability measures on 5(X); if 1M0 converges weakly to a Dirac
measure S at some point x e X, we say 1M0 obeys a weak law of large numbers

(WLLN). In the absence of a first-order phase transition, a WLLN holds in the grand
canonical ensemble. We require a substitute for a WLLN which holds regardless of

phase transitions. We say that a sequence 1M0 of probability measures on 5(X) is

eventually concentrated on a set A if, for each open neighbourhood G of A, we have

1imIM[G] = 1. (3.17)

[If A = {x} and ]M0 is eventually concentrated on A, then 1M0 converges weakly to

the Dirac measure 5.] We shall need the following

Lemma 3.2 Let 1M0 be a sequence of probability measures on 5(X) which is even

tually concentrated on a set A; if f : X — IR is lower semicontinuous and bounded

below on X, then

if(x) liminfJf(x)n[dx]. (3.18)

There is an obvious complementary upper bound; together they yields the usual

characterization of the WLLN in terms of bounded continuous functions when A

reduces to a single point.]
The function , defined at (3.12) for the pair (1M0,V0), enables us to determine

a concentration-set for the sequence 1M0. (Row useful it is depends on how well we

have chosen the scale V0.) Notice that, for probability measures, the function l is

bounded above by zero; in fact, it always attains this bound and the set on which

it attains it is a concentration—set for 1M0. Let N be the set defined by

N := {x e X : 11(x) = 0} (3.19)

Lemma 3.3 Let ]M0 be a sequence of probability measures and V0 a scale. Then

(a) N is compact and non—empty;
(b) the sequence 1M0 is eventually concentrated on N.

The proofs of both (a) and (b) make use of the bound (3.16)
Let , be the upper and lower functions determined by the pair (IM,, V0);

they are related to Z and ji as follows:

z(x) = i(x) + (t, x), (3.20)

t(x) = (x) + (t, x). (3.21)

These relations are a consequence of the continuity of the function x —* (t, x). We

are now ready for our third application of the bound (3.16): we prove a special case

of Varadhan’s Theorem (see Varadhan (1966)). If 11(x) = ,u(x) for all x E X, we

ay the Ruelle—Lanford function (RL—function) ,u exists for the pair (1M0,V0) and is
given by

(3.22)
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When the RL—function exists, the bounds (3.15) and (3.16) can be restated as

m4K] < sup ,u(x) , K compact , (3.23)
xEK

rn[G] sup li(x), G open; (3.24)
zEG

When (3.23) and (3.24) hold, we say (following Varadhan (1966)) that a large devi

ation principle (LDP) holds with rate—function I = — for the pair (1M0,V0). This

means that the sequence m0 of set—functions m, defined at (3.1), converges to the

set—function
B—*sup(x) (3.25)

xEB

in exactly the same sense that a sequence of probability measures 1M0 converges

to a measure St,, in a WLLN (remember that X is assumed to be compact). [ We

have given u the name “Ruelle—Lanford function” because, in the setting of a lattice

gas with translation—invariant summable potentials, our definition coincides with

the definition of entropy given by Ruelle (1965) and Lanford (1973). Ruelle and

Lanford understood that giving precise meaning to Boltzmann’s formula

S=klnW, (3.26)

relating the entropy S of a macroscopic equilibrium state to the number W of

corresponding microscopic states is the same problem as that of making sense of

the convergence of the sequence m0 to the set—function (3.25); by so doing, they

introduced a new technique to the theory of large deviations (compare Bahadur and

Zabel (1979)).]
We are now ready to begin the calculation of the specific information gain using

(2.6). First we have a result which is proved using (3.23) and (3.24):

Lemma 3.4 Suppose the RL—function ,u exists for the pair (1M0,V0) and the set

C E B(X) is such that

— co <sup li(x) = rn{C] = ii[C] = sup li(x); (3.27)
xEC xEC

then the sequence 1M0[ C] of probability measures is eventually concentrated on the

set
{x : li(x) = sup(y)}. (3.28)

yec

Lemma 3.5 Suppose that the RL—function ,u exists for the pair (1M0,V0); then

(a) the RL—function ,j, exists for the pair (1M, V0);

(b) the pair (]M, V0) obeys an LDP:

t[K] sup lit(x) K compact, (3.29)
xEK

rjt[G] sup lit(x), G open; (3.30)
xEG

(c) lit is given by
= (t, x) + li(X). (3.31)
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If t[Xj = rnt[X] for all t E, we say that the scaled generating function p exists
for the pair (1M0,V0) and is given by

p(t) :=it[Xj = rnt{X]. (3.32)

(In the statistical mechanical setting, p is called the grand canonical pressure.) Recall

that if f X — , then f* : —* is defined by

f*(t) := sup{(t, x) - f(x)}. (3.33)
xEX

Corollary 3.1 Suppose the RL—function u exists for the pair (]M0,V0); then the

scaled generating function p exists and is given by

p(t) = *(t) (3.34)

Pro of:

Since X is both compact and open (as a topological space), we have

supjt(x) rnt{X] rnt[X] suptt(x). (3.35)
EX

We define the set Xt for t e E* by

Xt := {x X p(t) = (t, x) + (x)}. (3.36)

Theorem 3.1 Suppose the RL—function 1u exists for the pair (iM, V0) and condition

(9.27) holds; if X C X, then the specific information gain is zero:

1
lim V7i(v’H) = 0. (3.37)

Proof:
By (2.6), we have

1Ct)
= C]I[. X]) (3.38)

=
— J(t, x)1{dyC] + m[X] — m[Cj.

By Lemmas 3.4, 3.2, Corollary 3.1 and condition (3.27), we have

— inf (t,x)+p(t)— sup (y) (3.39)
fl*OO Vn YEXj yEX

= sup {p(t) -
(t,y)

-

yEX

=0

ifXCXt.

4 An Application

To illustrate how Theorem 3.1 may be applied, we consider a case of sums of indepen

dent identically distributed random variables. We set A {1,. . . , n}, and in this
example V,., = n, c2 := {0, 1}, J P(). For ui L, put e()
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j e A,., and set pn[Ej = 0] = = pn[j = 1]. Then T :=

[0,1],E:=IR=E*. Defines:X—*[0,1] by

s(x) = —xlnx —(1— x)ln(1 — x), (0,1), s(0) = s(1) = 0. (4.1)

Choose C = (ci, c2) C [0, 1]; the RL—function exists for the pair (]M0,V0) and is

given by
(x) = s(x) — 1n2; (4.2)

the set X = {x*} where

ICi, cl,

= C1 < < C2 (4.3)
c2, c2;

p is given by
p(t) = ln(1 +et)—1n2; (4.4)

and the set X = {Xt} where

= p’(t)
= 1 et

(4.5)

Given C, we can find t such that X- = Xt*; thus we have

llm -7’y) = 0 (4.6)

We can use (4.6) to obtain a result on the limit of the sequence {v}>, where

v is the restriction to a finite subset A of IN. Notice that -y is a product measure;

this has two important consequences:

1. the restriction of to A C {1,. . . , m} is independent of m and we denote it

by -y;

2. if A and A2 are disjoint copies of A such that A1 U A2 C {1,. .. ,n}, then

) + (v2f72). (4.7)

But
=(v272), (4.8)

so that

(I7) [] 7); (4.9)

hence (4.6) implies that
1im(v-y) = 0. (4.10)

It now follows from (1.1) that {v}>1 converges in total variation norm to the

product measure
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5 The Lattice Gas

We consider the lattice gas model: let 7L” (d 1) be an integer-lattice, let {A7,}7,>1
be an increasing sequence of cubes in d with V7,. := A —* cc as n —+ cc; at
each site j A, we have a configuration space S which is a copy of some fixed
compact Hausdorif space S. For each n 1, the configuration space 12 is the space

= flieA S which we regard as a subspace of the product space 12 = fJ7S
equipped with the product topology, hence which is compact; the a—field F7, is the
a—field of Borel subsets of 12 generated by the coordinate projections 12 —+ S. For
each j e ZLd we have the action of 7Zd on itself given by i F—* i + j, i e Zd; this lifts
to 9, : 12 — 12 given by (8w)(i) = w(i — j) for each configuration w e 12. On each

we define a reference measure p3, a copy of a fixed positive measure on S with

p’(S3) = 1; on 12 we define the product measure p = fJ •i p3 and we take p to be
the restriction of p to F. The interaction in the modef is given by a k—dimensional
vector of translation—invariant absolutely summable potentials with either free or
fixed boundary conditions. Using these potentials, we define mappings T7, : —k X
which give the energy per site of a configuration; here X is a compact convex subset
of E = IReIc. We now define the conditioned measures ii and the tilted measures

as in § 2; in this setting, the measure v is the microcanonical measure on the
cube A7, condition on T,., taking values in C (if C is an open neighbourhood of a
point in X, then T;’C is what is sometimes called an “ energy-shell” in 12) and
is a Gibbs measure on A7, with generalized chemical potential t = jp,k Using
standard methods, we prove that j and ,u are independent of boundary conditions.
Let B(x) be an open ball of radius E and centre x in X; we prove, in the case of
free boundary conditions, the following result.

Lemma 5.1 Let x, x1, x2 X satisfy x0 + xi = 2x2 and let 0 < e’ < ; then

2rn[B(x2)j (B(xo)} + [Bt(xi)]. (5.1)

From this and the independence of ]i and i on the boundary conditions, we deduce
the

Corollary 5.1 The RL—function t exists for the pair (iM0,V0) and is concave on
x.
We have reserved the name “entropy” for the RL—functions which are concave;
henceforth in this section, we refer to i as the entropy of the pair (IMc, V0) and to

p, given by p(t) = (_)*(t), as the grand canonical pressure. We now choose C to
be an open convex subset of X; using convexity theory, we prove

Lemma 5.2 Let C be an open convex subset of X; if ji is concave, then
(a) supc p(x) = rn[Cj = =

(b) the entropy jic of the pair (1M0[. Cj, V0) is given by

/ — I (x) — supYEc(y), Y E C,
/cX) —

— 5.2
yX\C.

We see from (a) that, provided C is chosen so that it contains a point at which

p is finite, condition (3.27) is satisfied. Part (b) gives an interpretation of X- in
this case: X- = the set on which the entropy attains its supremum. There
is also an interpretation of the set Xt which follows from the concavity of p: using
convexity theory we can show that

= ôp(t) , (5.3)
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(ãf denotes the subgradients to a convex function f; when dimX = 1, the interval

ôp(t) is “a phase—transition segment” in the grand canonical ensemble; it reduces

to a point in the absence of a first order transition.) We see that Theorem 3.1 now

yields

Theorem 5.1 Let p be the entropy of a lattice gas with translation invariant summable

potential. Let C be an open convex neighbourhood of a point at which u is finite.

Then there exists t such that

Em
1(Ct*)

=0. (5.4)

Because, in the presence of a non—trivial interaction, the Gibbs measures

are not product measures, the subadditivity argument used in § 4 fails. There is

a second difficulty: in § 4 we exploited permutation—invariance (exchangeability)

at (4.8); here we must replace it by translation—invariance, but the measures

associated with the cubes A are not translation—invariant. The way—out is to

introduce translation—averages: define

:= — o (5.5)
jEA7

where ji is extended to Q in the usual way. We are able to prove

Theorem 5.2 Suppose that (5.4) holds; then any weak limit point of the sequence

{E’}>1 is a Gibbs state with respect to the specification associated with
{y*}>j

The statement of this theorem make precise the sense in which the measures i7 and

are “equivalent” in the thermodynamic limit — something we said in § 1 was part

of the problem.
Putting Theorems 5.1 and 5.2 together, we see that the entropy can be used

to find a value t of the chemical potential such that any weak limit of the se

quence {7’}> is a Gibbs state with respect to the specification determined by

{‘y’}n>i. This is possible because, as a consequence of the concavity of , we have

u(x) = _p*(x) as well as p(t) = (/j,)*(t); but these statements together constitute

the equivalence of ensembles at the level of thermodynamic functions. It is in this

sense that equivalence of ensemble holds at the level of measures whenever it holds

at the level of thermodynamic functions.
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