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1. Introduction.

The problem of finding the queue length distribution in a queue with non-independent

arrivals has attracted much attention recently due to applications in the design of

multiplexers for the emergent asynchronous transfer mode (ATM) of data transmis

sion in integrated services digital networks (ISDN). From the technological point of

view it is required to guarantee sufficiently good quality of service: loss probabilities

must be appropriately sma.ll and waiting times sufficiently short. The problem is

resistant to simple exact treatment due to the nature of the arrival process. It is

a superpositiàn. of sources which are typically bursty, in the sense that their activ

ity is highly correlated into bursts rather than occurring independently at different

times; and periodic (when viewed at the short time scales of the multiplexer output)

either due to their origin (e.g. periodic sampling of voice traffic) or their occupa

tion of periodic slots allocated for transmission. The goal of analysis is to provide

mechanisms for design .nd performance prediction, and algorithms for allocation

of resources during the operation of such devices. It is desirable that the results

of such analysis be conservative in the sense that they should not overestimate the

capacity of resources.

In this paper we present a treatment based on. exponential martingales which

allows us to obtain exponential upper bounds of the form ]Pfqueue bJ for

queues whose inputs are described by a Markov Additive Process (MAP). Within.

this framework there is some controlling Markov process X (Xe) of which the

workload W = (We) of the queue is a functional in such a manner that the pair

(X, W) is also a Markov process. One can think of the states of X as labeling

the states of the source of the queue, although they could also include a component

describing a random service rate. One particular class of examples of MAP’s is when

the arrivals at the queue are deterministic functions of the Markov chain X. Within

this class one can make a a large number of multiplexer models. Inhomogeneous

superpositions of such processes are also included in this class. The bounds obtained

generalize some previous work of Buffet and Duffield (7] where the homogeneous

superposition of two-state Markov sources was considered.

The martingale used is an example of a construction which tells us that if

(Ut)tER is a stationary Markov process on state space E, and f is an invariant in

tegrable function on , then f(Ut) is a inartingale with respect to the canonical

filtration generated by U. It is this observation that enables us to construct the

appropriate martingale for the case where the arrivals are a function of a Markov

process. The upper bound on the queue length is obtained by using maximal in

equalities for positive supermartingales based on Doob’s optional stopping theorem:
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if ivI = (ivIt) + is a positive superinartingale with respect to some filtration,

then for m > 0, IP[suptE ÷ M mJ m’IE[MoJ. Some care is needed in the

application order to obtain the best (i.e. least) prefactor in the upper bound.

Exponential rnartingales were used by Kingnian [18] to bound the queue length

in the queue M/G/1. The particular xnartingale used in the present paper is for

mally similar to that used by Baccelli and Makowski to treat queues with Markov

modulated Poissonian arrivals [3,4]. The same general methodology has been used

for risk theory in a finite state Markovian environment by Reinhard [23], by Björk

and Grandell [5], and by Asmussen [1]. (See also the book of Grandell [12] for

a comprehensive review). It turns out that in the application of our result to risk

theoretic models the prefactor obtained in the present paper is smaller in general

than those obtained hitherto.

This is an advantage, because as well as the decay rate y, we also attach great

importance to the prefactor o iii the upper bound. The motivation for this comes

from the main application we have in mind: that the arrival process is a superposi

tion of independent Markov sources. The composite arrival process is a function of

the product of the underlying Markov processes of the sources, and so the results

apply immediately. Such a scheme is used to model ATM inultipiexers. For exam

ple, in a wide class of models with L superposed identical independent sources in

a queue of service rate 3 we are able to obtain the prefactor in the form cp

where derives in an. explicit manner from the prçfactor of a single source in a

queue with rate 3/L.

The decay constant obtained is the best possible in the sense that it is also

asymptotically the exponential decay rate of a lower bound for the queue length:

liminfb1log .[queue > b]
—

(1.1)

Such a. result (but with a limit and equality) was obtained by explicit calcula

tion in the (Poissonian) risk-theoretic case by Martin-Löf [20]. This thermody

namic approach relates the decay constant 7 to the cumulant generating func

tion for the arrival process, using the convexity properties of the cumulant. To

be more specific, if for example the queue has fixed service rate 3 and the work

arriving at the queue in the interval (0, —tj is A(t) and we define the cumulant

c(r) = lim. t’ log IE[exp(rA(t))] then the decay rate is 7 = sup{r I c(r) rs}.

In fact (1.1) relies only on the existence of large-deviation properties of the family of

distributions of (A(t))>0.This decay rate has been obtained through a heuristic

large deviation argumeit by Kesidis, Walrand and Chang [17], but as far as we
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are aware, a general demonstration of the lower bound (1.1) has not been given

rigorouslY before for non-independent arrivals. For the class of MAP’s we consider,

the required large deviation properties follow from work of Iscoe, Ney and Nurn

melin [151. (See also the book of Bucklew [6] for a discussion of large deviations

for Markov processes).

It is worthwhile to compare the applications of the present results to multiplex

ers with those of existing treatments. Broadly speaking we can divide these into

exact calculations for all queue lengths b, asymptotic ones as b — cz, and bufferless

models, i.e. b = 0. The queue length distribution for homogeneous superpositions a

continuous-time Markov fluid-flow model has been found as an expansion in terms

of eigenvalues and eigenvectors of a characteristic matrix some time ago by Anick,

Mitra and Soudhi [2]. Exact treatments have been given for the corresponding

heterogeneous problem by Kosten [19], and for the heterogeneous N-state Markov

modulated arrival processes by Elwalid, Mitra and Stern [10]. Whereas one can

recover the asymptotic deay constant fairly easily, further detail at finite queue

lengths b seems hard to extract due to the complexity of the algorithms involved. We

mention also the non-exponential Benes bounds due to Norros et.aJ. [22]. Gibbens

and Hunt [11] have considered the limit b —+ co of Kosten’s treatment, an approach

developed further by Whitt [27]. This takes us into the regime of the ab initio

asymptotic methods: the heuristic large deviation calculations of Weiss [26] and of

Kesidis, Wa.lrand and Chang [17], and the entropic techniques of de Veciana, Olivier

and Walrand [25]. For b = 0, large deviation bounds for the arrival process alone

are obtained by Hui [13]. The advantage of the bound of the present paper in this

context is that it provides a simple estimate valid for all queue lengths b. The bound

for homogeneous L-fold superpositions of On-Off Markov sources has been worked

out fully by Buffet and Duffield [7]. In this case the optimal prefactor cp, which can

be written as for some ‘ < 1 is exactly that found by Hui. Thus our bound

can be seen as a simple interpolation between the bufferless resource models b = 0

and the asymptotic case b —p c, taking into account the large deviation properties

of the tail probabilities in terms of both b and L. This is important, since it is not

clear at present whether multiplexers will operate in a short queue regime or an

asymptotic one.

The paper is organized as follows. In section 2 the large deviation lower bounds

for the queue-length distribution are obtained. In section 3 the exponential mar

tingale is given and upper bounds for the queue length distribution derived. In

section 4 we apply these in a number of directions: to Markov modulated arrivals

(section 4.1); to arrivals which are deterministic functions of the control process X

(section 4.2); to superpositions of MAP’s (section 4.3); in particular heterogeneous
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superpositions of arrivals, with service at a constant rate (section 4.4). In section

4.5 a special case of this is worked out in detail: the homogeneous superposition

of multistate On-Off sources. Finally in section 4.6 we give a further bound for a

heterogeneous superposition of differing homogeneous groups.

2. Lower Bounds.

We consider a queue with infinite buffer. Tasks arrive at the queue and are pro

cessed in the first-come first-served (FCFS) discipline. Let A = (A)>0 denote the

backward arrival process at the queue: A0 = 0 and for t > 0, A is the work brought

by the tasks which arrive in the interval (0, —tJ. The service performed is described

by an increasing positive function S (S)>o. S = 0 and for t > 0 S is the service

which could be performed in the interval (0, —t} if the server were never idle. For

example, with a deterministic service rate s then S = st, But generally the service

can be a random variable. Define the workload (or excess work) W = (W)>.o by

— St. Then the queue length at time zero is

Q := sup V7
t>0

For each t > 0 and r JR define

(r) = t1 log JE{exp(rWt)J and (r)
=

At(r) , (2.1)

where the limit exists, each possibly infinite. Note by Holder’s inequality that the

A and hence ..X are convex functions.

Theorem 1. Assume that the distributions of (Wt/)>0 satisfy a large deviation

lower bound with some rate function I, i.e.

liminft’ log 1P[W/t > w] —1(w) . (2.2)

Then

liminfb’ log IP{Q > b} — inf rI(r1) . (2.3)
r>0

Proof:

[Q > b] {W/t > b/t]

for any t> 0 so that in particular for t = t& rb (any r> 0) we have
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lininf log IP[Q > b T liininf log IP[W/t >

Tf(T)

But r > 0 is arbitrary, so the stated variational form follows.

S

As we remarked in the introduction, the variational expression in the right hand

side of eq. (2.3) has been previously been proposed as the decay constant for the tail

of the queue on the basis of heuristic large deviation arguments, but the argument

seems not to have been made rigorous before apart from the case of Poissonian

arrivals. This bound now established, we can relate the infimum in eq. (2.3) to the

function A under various hypotheses concerning A in Theorem 2 below. (We remark

that this next step was made under stronger assumptions on. the arrival process A

by Kesidis et.al. [17]).

First some terminology from convex analysis from the book of Rockafellar [24].

The effective domain of a (possibly infinite) convex function is the region where it

is finite. The function A is essentially smooth if it is differentiable on the interior

of its effective domain and A(r)I —* cxz for any sequence of points (rn) in the

interior of the effective domain converging to a point on its boundary. Finally, A

is essentially strictly convex if it is strictly convex on its effective domain. The

Legendre transform A’ of a convex function A is defined as A*(z).. = sup,. (zr — A(r)).

A’ is essentially convex and essentially smooth if and only if A is.

Theorem 2.

(1) Assume that I in Theorem 1 is the Legendre transform of A. Then

inf rI(r’) := sup{7 I A(7) 0}
i->O

(2) Assume A to be essentially smooth and essentially strictly convex. Then A’(O) <

0 iff’5’ is the unique positive solution of the equation A(7) = 0.

Proof: (1) Pick -y such that A() 0. Then since I is the Legendre transform

of A,

infrl(r’) infrsup(’r1-A(’)) inf(-rA()) 7

The bound is got by taking the supremum over all y such that A() 0.
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(2) First, the assumptions of (1) are satisfied since the essential smoothness of

A ensures by the Gartner-Ellis Theorem [9J that the distributions of W(t)/t satisfy

a Large Deviation Principle with rate function I being the Legendre transform of

A. In particular, equation (2.2) is satisfied with this I. Since A is essentially strictly

convex, if A’(O) 0 then there is no positive solution of y) = 0, since then ()
must be strictly positive for all > 0. Otherwise there is a unique solution, namely

7.

Since A is essentially smooth and essentially strictly convex, so is its Legendre

transform I. In particular I is differentiable on the interior of its effective domain.

T I—+ rI(r1) is stationary when for the value of r such that

0 = (d/dr)rI(r’) = I(T’) — r’I’(r’) . (2.4)

But since I and A are Legendre transforms of each other, then for this value of r,

I’(r’) = r where r is the unique solution of A’(r) = r1. Thus

r = TI(T’) by eq. (2.4)

= TfrT’ — A(r)) by definition of the Legendre transform

= r — rA(r)

so that for this value r is the unique solution of the equation A(r) = 0 so that r = P5’.

This stationary value is an upper bound for the infimum inf.,.>o TI(r1), and by

part (1) is also a lower bound, and hence it equal to it.

N

3. Upper Bounds for Markovian Arrivals

In this section we restrict our attention to the case that the increments of the (time-

reversed) workload W occur at integer times a.nd are distributed according to the

state of an underlying Markov process X describing the configuration of the source of

the arrivals. A convenient description for this is that of a Markov Additive Process.

To be precise, upon some underlying probability space (c2, F, IF), let X = (Xt)tE +

be a stationary ergodic vtarkov process on. a state space E (with a-fteld ), and

adjoin to it an additive component W = (Wt)tE + with Wo = 0 such that (X, W)

is a Markov process on the state space E x IR+. Furthermore, for each t E IN the

joint distribution of the increment Zt1 := — W and Xt+1, conditioned on

(Xi’, )o<t’ < depends only on X. This dependence can be expressed through

the kernel
x B) :=IP{Xt+i e E B X =
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for G E and B a Borel set of IR. We emphasize that in accordance with the

conventions of the previous section, for t E IN, W is the excess work due to arrivals

at times {—t,.. , —2, —1} so that the queue length at time zero is Q SuptE + w.

Within the framework of Markov Additive Processes the connection with the

lower bounds of the previous section follows immediately from results of Iscoe, Ney

and Nummelin [15] on large deviations for MAP’s which we state in Lern.ma 1 below.

For 7 E JR define the transformed kernel P(7) by

P(z,G;7): fP(,G x dz)e7Z

A technical recurrence condition for the kernel P (eq. (3.1) of [15]) is required

for what follows, and we assume it to be satisfied. Recall from equation (2.1) the

definition of;\ as the cumulant of W. Henceforth we assume the non-trivial case

that the effective domains of A and A include a common open interval about 0.

Lemma 1.

(1) For all 7 in the effective domain of A, eA(7) is the simple maximal eigenvalue of

P(7)

(2) The corresponding eigenfunction (v(; 7): E E) (i.e. the function such that

e’(7)v(z; ) = f P(x, dy; 7)v(y; 7)) is positive and bounded above.

(3) A and each A; t E IN are strictly convex and essentially smooth.

(4) Let F be the cr-algebra generated by (X0,... , X, Wo,... , We). The sequence

of functions (Mt(7))t€ ÷ defined by

Mt(7) := ett_t)v(Xt;7)

is a. martingale with respect to the filtration (.Ft)tE +.

Proof and comments: (1) and (2) are proved in Lemma 3.1 of [15]. These can

be regarded as an extension of the standard Perron-Frobeaious Theorem on the

ma.dmal eigenvalue and corresponding eigenvector of matrices with positive entries,

a result which would suffice for E a finite discrete set. But we do not impose this

restriction. (3) and (4) are proved in Lemma 3.4 and Lemma 3.2 of [15] respectively.

We repeat the simple proof of (4):

E{M(7) Ff1] = M1(7)(v(xt_i;7)ejE[ev(X ;7) Ft-i]

= Mti(7) (v(xt_i;7)eA)f F(xt_i,dx x dz)ev(x;7)

= M_1(7)(v(Xti; 7)e7))
-i f P(X, dx; 7)v(x; 7)

=Mt...1(’y) *
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The basic stability criterion for the queue is that the asymptotic decay rate -5’
is strictly positive

Lemma 2. 5’ >0 if and only if IE{Z1j <0.

Proof: Since A (resp. A) is essentially smooth A’(O) (resp. A’(0)) exists, and since

A is the pointwise limit as t —. co of the convex functions A differentiable at zero,

then by (for example) Lemma IV.6.3 of [9] A’(O) = limt_. A(0). Thus we have

A’(O) = A(0) = t1E{WtJ = IE[Z1]. Since A is strictly convex, if

A’(O) 0 then A(7) is strictly positive for all -y > 0 and so = 0. If A’(O) < 0

then either the equation A() = 0 has exactly one positive solution, namely 5, or

A(7)<Oforafl>Oinwhichcasewetake-5’=+co.

S

We now turn to thç main result of this section: the upper bounds for the queue

length distribution. The martingale of Lemma 1(4) is our fundamental tool for

this. First we normalize the eigenfunction v(.;-y) so that IE[v(Xo;)] = 1 and hence

IE[Mo()] 1.

Theorem 3. Suppose IE[Z1] <0 and let b > 0. Then for any 7 [0, -5’]

IP{Q b Fo} v(Xo;)y()e and so ]P[Q bJ p(7)e_7b (3.1)

where

= ess sup (I{z>o}/v(Xt; 7)) . (3.2)

Here 1{z >J} is the indicator function of the set {Z > 0} and the essential supremum

is with respect to the underlying measure F. By stationarity this is independent of

t 1. Finally, the asymptotic decay rate of the queue length distribution:

urn b’ log IP[Q 6] = — . (3.3)
b—+co

Proof: Let Qt = maxo<t’<t so that since 6> 0

{Q b} = {supQt b} = Ut>i{Qt b,Q_1 <b} C U>1{W b,Z > 0}
t>i

Now for ‘y 0, {W b} C {e7Vt e} {M(-y) ev(X;7)} since A() 0

for ‘y <-5’. Therefore for t 1,

{W 6, Z > 0} {M() e7bv(Xt;.), Z > 0}
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(Here, if necessary, we can choose a version of (X, W) for which the essential supre

mum in (3.2) is never exceeded). Hence by the maximal inequality for positive

superrnartingales (see e.g. the book of Neveu [21]),

P[Q b FoJ IP{supMt(7) e7b/o(7) F0] v(XO;7)o(y)e_7b
t>1

since M0(-y) = v(Xo;7). The second inequality of (3.1) follows by taking the expec

tation over Xo using the stated normalization IE[v(Xo; ‘y)] 1.

Choosing 7 = from (3.1) limsup.. 51 log IP[Q bj —‘ and so (3.3)

follows by combination with Theorems 1 and 2(2).

Finally we note that since we work in the FCFS service discipline, our upper

bound (indeed any upper bound) for IP[Q bJ is in turn an upper bound for the

probability of overflow for the same arrival process into a buffer of finite size b.

4. Examples.

In this section we apply Theorem 3 to various classes of queueing theoretic models.

In section 4.1 we show how to calculate - and for Markov modulated arrivals. In

section 4.2 the same is done in the case that the workload is a deterministic function

of the underlying process X. In the context of multiplexers we are interested in

workloads which are superpositions of workloads from a number of independent

sources. The service function can still be random: in the multiplexer context this

could correspond to a service rate controlled externally in order to regulate output

of the multiplexer into a network. Thus X would have components describing the

state of the network as well as the state of the sources. This is dealt with in section

4.3, and deterministic service in section 4.4. In section 4.5 we work an example

of a homogeneous superposition of L multistate On-Off sources. That is to say,

for each source in the superposition, the state space of the control process X can

we written as a disjoint union E = E0 U E1, and the increments A — A_1 of the

arrival process are deterministic, being 0 or 1 according to whether the state of the

control process X is in E0 or E1. The prefactor can be written cp = t” where is

calculated explicitly in terms of single source eigen.functions. Finally in section 4.6

we give an alternative prefactor, polynomial in b, which can be used in the case of

heterogeneous superposition of groups of homogeneous sources.
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4.1. Markov. modulated increments.

Consider the subclass of MAP’s in which the distribution of the increment Z,

conditional on X, is independent of X_1. In other words, increment Z is chosen

according to a distribution determined by X. Assuming the eustence of a regular

conditional distribution Q(y, B) IP{Z B I = y] then we can write

P(x, dy; 7) = R(z, dy)e’ (4.1)

where R is the Markov kernel for the X process alone and

:= f Q(y, dz)e7z (4.2)

when this is finite. If it is further the case that the increments Z take positive

values with some non-zero probability for any conditioning X (i.e. Q(y,IR+) > ()

for all y e E) then the prefactor simplifies to

(7) sup(1/v(,;7))
tEE

We remark than in the risk theoretic context, a larger prefactor SUpyEE

(v(y; 7)/v(; -y)) has been obtained previously [12], although the relation between

the existence of a constant prefactor ço, a positive decay rate ‘, and the stability

criterion IE[Z1} <0 seems not to have been worked out completely. An equivalent

bound has been obtained for finite state Markov modulated Poisson processes in [1].

Translated to queueing these give the following setup. The modulating process X is

a Markov chain on some finite dimensional state space E, with backward transition

matrix {R, :
,

y E}. Conditioned on the modulation X y e E, the individ

ual arrivals at time t have a fixed service requirement a(y) and the number of such

arrivals has Poisson distribution of mean r(y). The service rate is s, independent of

y. In this case we find ;\(y,7) = r(y)(e(S’) —1) —73. e>’ is the largest eigenvalue

of the matrix Conditioned on X1, the expected increment in the work

load is IE{Z1 = .\‘(X1,0) = r(Xi)a(Xi) —3. Hence the stability condition of

Lemma 2 reads ZEEpZ(a(z)r() — s) < 0, where p is the stationary distribution

for the transition matrix R.

It is worth noting in general that in order to find the kernel for the time-reversed

process (X, W), we need only find the kernel R for X in terms of its corresponding

forward process.
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4.2. Deterministic increments.

The following class of processes is very useful for models of multiplexers. Con

sider a degenerate case of Markov modulated increments in which each Z =

for some ±ced function ç : E — JR. Thus we can write Q(y, dz) = 8c()(dz), the

Dirac measure on JR with support ((y). Applying equations (4.1) and (4.2) in this

case gives

P(,dy;7) R(,dy)e’

and for the prefactor

cp(7) = sup (1/v(z;7)) . (4.3)

(This time we do not consider the case that the increments Zt have non-zero prob

ability of being positive, for all X, for then Z > 0 with probability 1 and hence

IE[Ztj > 0, violating the stability condition.) We consider a more specific application

of this result in section 4.5.

4.3. Superposed Markov Additive Processes.

Consider the case that the workload process is compose of the sum of workloads

of a finite set ( (X(), W()) of independent MAP’s, each X taking values

in some space E(t). The product process (X, W), with X = (X(”,. . . , X() E =

x1E(t) and W E W(t), is clearly also an MAP. Denoting by F((7) the

transformed kernel for (X(t), W(t)), then the transformed kernel for (X, W) is the

Kronecker product

i.e. P(7) is the tensor product of L copies P(t)(7), acting as a kernel for functions

on the L-fold topological product E. It follows that that the maximal eigenvalues

and the corresponding eigenfunctions (; -y) of F(7) are products:

= fi and ;) = fl v(x; ), (4.4)

where = ((1),... , ()) E, and e and are the eigenvalues and eigenfun.c

tions for (t)• Thus when the stability condition JE[ZJ <0 is satisfied, 5’ is

determined as the unique positive solution of

= 0
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4.4. Superpositions with uniform service rates.

In applications to rnultiplexers we will want to consider the case that the total

workload due to L independent arrival processes (A())’’ L is serviced at a con

stant service rate s (i.e. the total service function is S = 3t). Thus we will have

Markov processes such that each (X),A(t)) is an MAP. Consider again the

product process X (X,... , X(’)) with summed workload process W given by

W=At)_3t

Let c(-y) = t’ log 1E[ej be the cumulant for A. Then the identifi

cation through Lemma 1(1) of the (exponential of the) cumulant of W with the

maximal eigenvalue of P(7) enables us to write the cumulant for W as A(7) =

c()(7) — 73. Hence when the stability condition E{A} <3 is satisfied,

‘5’ is the unique positive solution of

— 37 = 0 . (4.5)

The quantities () := c)(’5’)/’5’ are called the effective bandwidths of source £. That

is, 3 is the service capacity which must be allocated to the source £ in order that,

asymptotically as b —* c, IP{Q bj e6. (See [14,16] for general discussion of

effective bandwidths).

But the upper bounds hold not just in the asymptotic case b —÷ co. We can

apply the formalism of the previous subsection, by notionaily assigning to each
(1) . (t) (t) () . L ()

source £ a service rate s and setting W = —3 t, noting that 3 = 3.

(Any other choice of positive service rates summing to 3 could be made; this one is

distinguished by the fact that ‘5’ solves \((7) = c()(7) — 3()7 = 0 independently

for all £. See [8]). The prefactor for the superposition is then obtained using the

product from of the eigenfunctions (4.4) in (3.2).

4.5. Some homogeneous deterministic multiplexer models.

In this section we consider a class of models in the intersection of those treated

in sections 4.2 and 4.4. We perform the construction of section 4.4 in the special

case that each of L MAP’s in the L-fold superposition is an independent identical

copy of some MAP (X, A), the superposition being serviced at a constant rate s.

Then from eq (4.5), -5’ is the solution of c(7) = 3/L, where c is the cumu.lant of A.

i.e. -5’ is determined from the solution of the equation \(‘y) = 0 for a queue with a
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single source (X, A) and service rate s/L. This much is by now well known through

examples. But we can now also express the prefactor 3 of the superposition in terms

of the single source MAP (X, W) where W = A — t3/L. For simplicity we make the

following assumption (which should suffice in many multiplexer models of interest):

the state space E of X can be written as a disjoint union E = E0 U E1; the

increments Y of A are deterministic in the sense that Y : A — =

for some function i: E {O, 1} with the property that

lo ifEo
ifeE1

Note that with this specification of Y we will consider only the case L > .s:

otherwise the service rate exceeds the largest possible increment of the arrivals and

th (stationary) queue is always empty.

The transformed kernl P. for the single source MAP (X, W) is P(, dy; ) =

R(, dy)e7((Y)) where R is the transition kernel for X, and we have written a- :=

s/L. is the maximal eigenvalue of P(7). Let v(.; 7) denote the corresponding

eigenfunction, normalized so that IE[v(Xo; )] = 1, and set

vo(7) = minv(;7) and vi(7) = minv(z;7)
zEE0 zEE1

For a configuration = (p),... , (L)) in thç product space E = E let

n() = : E1} be the number of sources which are on. (So Z > 0

translates to n(Xt) > 3). Using the product eigenfunctions (4.4) in (3.2) then we

find that the prefactor for the superposition is

= sup
:n()>s Vl (7) )o (y) )

<fv1() if vo() > v()
vi(7)vo(7) if v0() <v1(7)

Note that in either case in the last inequality, if one considers a sequence of L

fold superpositions of the same individual MAP, then increasing L whilst fixing

a- = s/L < 1 (thus maintaining a constant load across all values of L), the upper

bounds scale as IP{Q b} ( )Le_7b for

— f v1() ifv0() > v1()
— o—iu) vo(7) if vo(7) <v(7)

14



One special case of this class of models has been worked out completely al-

ready by the methods of which those in this paper are a generalization: the case of

superposed On-Off Markov arrivals. We summarize the result from {7j.

For the individual sources in the superposition we take E {O, l} (these states

corresponding to silence and activity respectively), with 77(0) = 0 (no arrival) and

77(1) = 1 (a single arrival). The matrix for transition in X between silence and

activity is
a

— d 1—d

This matrix has stationary distribution p = (a + d)1(d, a), and one shows that X

is reversible: = pR for all x, y E E. The stability condition of Lemma 2

reads a/(a + d) <o.

is the maximal eigenvalue of the matrix

- 71—a
P(7) = R = e I

d (1—d)e7

The definition of - as the solution of A(7) = 0 gives -5’ as the solution of the implicit

equation

1 = (e7(1 — d) + 1 — a + (e7(1 — d) + 1 — a)2 — 4e (1 — a — d))

We parametrize the eigenvector v(.; ) by setting &h(7) = v(1; 7)/v(0; 7) so that with

normalization we have

v(.;
= ae( + d

(1, e)

The dependence of O. -y follows from the eigenvector equation giving

= a’e (e7)+7 + a —

In Proposition 3 of [7) it is shown that

/L(7)>O ifandonlyif a+d<1

(This corresponding statement with inequalities replaced by equalities also holds.)

In this case v(1;7)/v(0;7) > 1 so that the constant in eq. (4.6) is

+ d

(a + d)e(7)
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[n Theorem 2 of [7] it is furthermore shown that

<1 for all 7 E (O,5’1

The condition a + d < 1, which we have just seen is required to give a prefactor less

than 1, can be seen as a “burstiness” condition: the correlation

lE[Y+1Y} — IE[Y+1Y} (1 — a — d)ad/(a + d)2

is positive if a + d < 1.

Actually, minE(o} L is not attained at 7 = ‘5 but rather at some 7mi <5’.
Furthermore, the corresponding prefactor )L is equal to the large deviation

upper bound obtained by Hui [13] for the probability of overflow for a bufferless

queue with the same arr:ival process. (i.e. our model with b = 0). This demonstrates

that the value of -y for which one obtains the least upper bound on IP{Q b] depends

on b, but lies in the interval [yj, 5’}. Clearly the optimal choice of 7 approaches 5’
as & — . We note also that the bound obtained using and := p7min)

instead of and ,u(-’) can be written explicitly in terms of the parameters a, d and

a with

dcr . &‘ ((1 — a) + ae’n)
eimn = and e7 =

a(1 — o) ((1 — d) + defin)

This bound turns out to be extremely close numerically to those using -5’ in the case

of extreme burstiness where a + d is very close to 0.

4.6. Further bounds for heterogeneous superpositions.

Finally, we give another upper bound for heterogeneous superpositions of dif

fering groups of homogeneous superpositions of MAP’s. Let the superposition be of

L = L1 independent sources comprising L1 MAP’s of type i, the total super

position of the .1 groups being serviced at constant rate s. Then from section 4.4 it

follows that -‘ is the solution of L1c1() — 37 = 0 where c1 is the cumulant for

the arrival process of a single MAP of type i.

Let s = Lc(-5’)/-5’ so that = s. Denote by A = (A,)>0 the summed

arrivals of all MAP’s of type i. Consider a MAP with workload = —

s1t. The queue length for this process is Q = supt>o Let ‘Ej denote the

corresponding prefactor from section 4.4. Denoting by Q the queue length for the

total superposition over all groups then clearly Q Q.
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By Chebychev’s inequality then for

IP[Q > bJ <e6lE[ej

< flEfe71 (independent sources)

eñ(i +7f db e{Q > bj)

<e7b II(’ + 7ça(7)/(7
- 7))

Rather than minimize this expression over ‘y, we look for the dominant behaviour

for, large b which occurs by making 7 close to P5’. Thus we are led to find the value of

which minimizes eb/(
—.

This turns out to be 7 = — I/b for 6 sufficiently

large, yielding finally

F{Q bJ <ee fl(’ + (fl/I
-

A better but more complex bound is obtained by an extension of the present

methods for superposed Markovian On-Off sources in [8]. The method employed

there also generalizes to the present case.
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