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0. Introduction. We consider the application of Abelian orbifold constructions in
Meromorphic Conformal Field Theory (MCFT) [Go,DGM] towards an understand
ing of various aspects of Monstrous Moonshine [CN] and Genera]ised Moonshine
[N]. We review some of the basic concepts in MCFT and Abelian orbifold con
structions [DHVW] of MCFTs and summarise some of the relevant physics lore
surrounding such constructions including aspects of the modular group, the fusion
algebra and the notion of a self-dual MCFT. The FLM Moonshine Module, Vh,

[FLM1,FLM2] is historically the first example of such a construction being a Z2 or
bifolding of the Leech lattice MCFT, VA. We review the usefulness of these ideas in
understanding Monstrous Moonshine, the genus zero property for Thompson series
[CN] which we have shown is equivalent to the property that the only meromorphic
Z. orbifoldings of V are VA and V itself (assuming that Vh is umquely determ
ined by its characteristic function J(r)) [T1,T2]. We show that these constraints
on the possible Z orbifoldings of yh are also sufficient to demonstrate the genus
zero property for Generalised Moonshine functions in the simplest non-trivial prime
cases by considering Z1, x Z orbifoldings of Vh. Thus Monstrous Moonshine implies
Generalised Moonshine in these cases

1 Meromorphic Conformal Field Theory In this section, we will review
some of the basic properties of Meromorphic Conformal Field Theory (MCFT) (or
chiral algebras) as described by Goddard [Go]. This is a physically motivated ap
proach to Vertex Operator Algebras [B1,FLM2,FHL] containing the same essential
ideas. Let fl denote some Hubert space with a dense subspace of states {q} in
cluding a4umque ‘vacuum state’ 0) with properties described below In a MCFT
we define a set of conformal fields or vertex operators V such that corresponding
to each state q5 there exists an operator V(qS, z) V acting on 7-1 with

limV(çb,z)0) =b (1.1)
z—O

It is assumed that there exists Virasoro operators L which form the modes of
V(w, z) (see below) for a Virasoro state w where

[La, V(, z)] =z’[z + (n + 1)h]V(, z) (l.2a)

[Lm, Ln] =(m — fl)Lm+n + m(m2
— 1)Sm,_n (1.2b)
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where h is called the conformal weight of q5 and C is the central charge for the

representation of the Virasoro algebra (1.2b). The Virasoro state w has conformal

weight 2. From (1.2a), L0 defines a discrete grading on 7- with Loq5) = hIq). We
assume that V is unitary so that hçt, 0. By a Meromocrplzic CFT, we will mean a
CFT for which the conformal weights are integral and where the operators V obey

the (bosonic) Locality Property

V(q,z)V(ib,w) = V(Ø,w)V(ç,z) (1.3)

with zl > Iwl on the LHS analytically continued to lzl <Iwl on the RHS. (These as
sumptions ensure that all correlation functions are meromorphic). These operators

can then be shown to satisfy the Duality Property [Go,FHL]

V(q, z)V(’çb, w) = V(V(q, z — w)Ø, w) (1.4)

with zI > 1w and z — w < Iwl respectively and where V(çb, z) is extended by

linearity to any state in 7t. These are essentially the defining properties of a vertex

(operator) algebra as defined in [Bi] and developed in [FLM2]. All the conformal

fields in a MCFT also obey the Monodromy condition:

V(q5,e2z)= V(cb,z) (1.5)

so that the mode expansion for each operator is V(q, z)
= kEZ

kz_k_ with

4kl0> = 0 for all k > —h and 85-h JO) = çz5 from (1.1) e.g. the modes for the

Virasoro (energy-momentum) operator V(w, z) are {L} as above with w = L_2J0).
Then (1.4) leads to an exact form of the usual operator product expansion of CFT

{BPZ]

V(,z)V(,w) = (z _w)k_h#_V(X,w) (1.6)

where x = 4_k+h(’b) is a state of conformal weight k. We will sometimes schem
atically write such an expansion as VV V.

2. The Modular Group and Self-Dual MCFTs. Let V be a MCFT and define
the characteristic function (or partition function) for V by the following trace

Z(T) = Trj(qI0_i’24) (2.1)

where T H, the upper half complex plane. In string theory models, Z(T) arises

when finding the probability for a closed string to form a 2-torus parameterised by
T. The simplest example, is the one-dimensional C = 1/24 bosonic string which has

characteristic function 1/77(T) where 77(r) = qh/24 H>0(1_qfl). For a d dimensional

C = d/24 string compactified by an even lattice A, we obtain a MCFT denoted by
VA, with Z(r) = eA(-1-)/[71(rW where 9A

=

The behaviour of Z(T) under the action of the modular group F = SL(2, Z),
generated by T : r —* T + 1 and S : ‘r —* —1/r, is related to the meromorphic
properties of V and to properties of the meromorphic irreducible representations of



GENERALISED MOONSHINE AND ABELIAN ORBIFOLD CONSTRUCTIONS 3

V. For a MCFT we clearly have Z(T + 1) =e2/24Z(r) and, in particular, Z(T)

is T invariant for C = 24 -

Let us now discuss the meaning of the S transformation. Let V denote an
irreducible meromorphic representation for V acting on a Hubert space 7i” and let
VK be the corresponding set of intertwiners acting on 7- that create the states of
7K from the original vacuum vector 0) 7i {FHL,DGM]. Then as in (1.3) and
(1.4) we have

=V(ib,w)V(q,z) (2 2a)

=V(V(q1, z — w)ib, w) (2.2b)

=VK(x, w)V(q, z)

=V’(V(b, z
— w)x, w)

(up to suitable analytic continuations) for V(q, z) V, V’<(X, z) e
yK with q5, ‘çb

fl and x E K Given such a representation, we thus naturally extend V to act
on 7-t e

7..(K and henceforth we drop the tilde notation distinguishing the space on
which V acts. We also define the characteristic function Z9T) = Tr,jK(q’0l) for
V<. In general, the conformal weights of 7K are not integral but are equal mod Z
and hence Z%r) is T invariant up to a phase.

By a Rational MCFT, we will mean a MCFT which has a finite number M of
such irreducible representations {yK}, K = 0, ..., — 1 (with V V°) and where
every representation of V is reducible. For a Rational MCFT, Zhu has shown that
each characteristic function ZK(r) is holomorphic on the upper half plane H (given
a certain growth condition which is conjectured to follow from rationality) and the
functions {ZK} transform amongst themselves under the modular group F [Z].

These properties can also be understood if V together with (possibly multiple
copies of) its intertwiners form a non-meromorphic CFT which we call the Dual
CFT to V and denote by V. We can think of V as comprising the maximal
(in some sense!) set of vertex operators of central charge C that are local with
respect to V. V is expected to satisfy an operator product algebra given by some
generalised version of (1.6) where schematically

4 V’V NIJKVK

where N1 are non-negative integers determining the decomposition in terms of
irreducible representations of V of the non-meromorphic algebra - these are the
Fusion Rules for V [ye). The coefficients Nl< satisfy a commutative associative
algebra which is diagonalised by 5: Z — S’Z where 5I is a unitary symmetric
matrix [Ve]. In addition, we assume V* is a unitary CFT, so that S’°/S°° 1 with
equality if we have Abelian Fusion Rules i.e. for every given I, J = 0, ...M — 1,
N1 = 1 for some unique K so that every pair of intertwiners fuses to form
a unique intertwiner. Assuming Abelian Fusion Rules we then find, since S is
symmetric and unitary, that

5: Z(r) EsZK(T) =
(2.4)

(q!, z)T2(’çb, w)

7(g, z)ff(’Ø, w)
r(ç, z)V’<(, w)

q5, z)VK(x, w)

(2.2c)

(2.2d)

(2.3)
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where esj = 1 and .H* denotes the Hubert space ZflK for V EfKVK and
M = )fl*/7iI. If furthermore {ZK} is charge conjugation invariant then 51 is real
so that e = 1. This formula can be verified for an even lattice A MCFT where the
irreducible representations for VA are indexed by A*/A where A* is the dual lattice
[Dl]. In this case, VA is naturally embedded in the non-meromorphic CFT yA*

so that (VA)* = yA Furthermore, the fusion rules are abelian from the abelian
structureofA* [DL]. Then, under the action of S, ZA = 8A/ —*

in the usual way in agreement with (2.4) with ES = 1. Similarly, (2.4) holds with
Es = 1 for the Abelian orbifold constructions discussed below.

If Z(r) is S invariant and hence V is the unique irreducible representation for
itself, we define V to be a Self-Dual MCFT. This is only possible for C = 0 mod 8
[Go]. For C = 24, then Z(’r) is modular invariant with a unique simple pole at
q = 0 on H/F which is equivalent to the Riemann sphere of genus zero. Hence Z(T)
is given by J(r), the hauptrnodul for F [Se]

Z(r) =J(-r) + N0 (2.5a)

J(T)
=

— 744 = +0+ 196884q + 21493760q2+ ... (2.5b)

with E2(r) the Eisenstein modular form of weight 4 [Se] and where N0 is the number
of conformal weight 1 operators in V. Examples of such theories are lattice models
where A is a Niemeier even self-dual lattice. Then VA is meromorphic self-dual
because A is even self-dual. In particular, for the Leech lattice which contains no
roots, N0 = 24. Other examples of self-dual C=24 MCFTs are the Moonshine
Module Vb with Z(T) = J(r) and other orbifold constructions as we now describe.
In general, there are thought to be just 71 such independent self-dual MCFTs [Sch].

3. Abelian Orbifolding of a Self-Dual MCFT. Let V be a self-dual MCFT
and let Aut(V) denote the automorphism group preserving the operator algebra for
V with

gV(q, z)g’ = V(gçS, z) (3.1)

for each g Aut(V). Consider C any finite abelian subgroup of Aut(V) generated
by m commuting elements {gi, ..., gm} of order n1,

..., Tim. Let PGV denote the
operators invariant under G with projection operator PG

= j- EgEG g. PGV is a
MCFT but is not self-dual as can be seen by studying the corresponding character
istic function Trp(qL0_l) which is not S invariant. In particular, consider the
trace for each g E G

Z(1,g) Tr(gq’0’) (3.2)

where we introduce standard notation indicating boundary conditions on the 2-
torus where the first label 1 refers to the monodromy condition (1.5). Using path
integral methods in string theory [DHVW] one can argue that under S : r —* —1/r
the boundary conditions are interchanged for Z(1, g) charge conjugation invariant
and V a self-dual theory so that

S: Z(1,g) —* Z(g, 1) =Tr7g(qL0_l) = Dgq + ... (3.3)
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the characteristic function for ?ig, the ‘g-twisted’ Hubert space We assume that
is uniquely defined (up to isomorphism) for each g E C The parameters E

and Dg are called the g-twisted vacuum energy and degeneracy Note also that
the remaining coefficients of the powers are necessarily all non-negative integers.
We assume that each twisted state i/i’ e ?(g of conformal weight h is created from
0) by the action of a twisted operator with the following g-twisted Monodromy

property:
V(cb,e2z) = gV(?/, z)g1 =e2”V(çb, z) (3.4)

We denote the set of such operators for each g e C by Vg We also assume that

EI3gEGVg satisfies a non-meromorphic version of the Locality property (1 3) and a
C-invariant operator product expansion generalising (1 6) (up to suitable analytic
continuation) where

V(i/,z)V(,w) =e,xV(,w)V(’çb,z) (3.5a)

V(’t/’, z)V(, w) = (z — W)’P
—h —h V(p, w) (3.5b)

for b e ?g, x E 74 and p E 71gh for g, h G The Locality phase iS

of order dividing Cl and is unity for q5 PG?i and any ‘i,b E 71g This latter
property implies that each twisted sector Yg is the intertwiner for a meromorphic
representation of PQV as in (2.2c,d). This representation can be then further

decomposed into Cl irreducible representations Vg = EEjk vJ labelled by the
eigenvalues {exp 2rijk/nk} of the generators {gk} for G. Thus, in the language of
the last section, we have a set of Cl2 irreducible representations for the Rational

MCFT PGV which together form the Dual CFT given by (PGV)* = g,jg{Jk}

with Abehan Fusion Rules v4’ y{k+Jk} from (3 5b) Then (2 4) is

recovered with Es = 1 using (3 3) where

S Z(1,2c) = Trp(qL0_l) —÷ Z(g,1) =
(36)

gEG

where (PG7)* EJgeG7tg.
Since tae operators of Vg are eigenvalues of g, the centraliser of C(gAut(V))

has a natural extension as the automorphism group, which we denote by Cg, of
the non-meromorphic algebra VVg Vg This extension depends on the g-twisted
vacuum degeneracy Dg Defining G = C(glAut(V))/(g), in general one finds that

Cg = L C for some extension L = (g) L determined by the automorphism group
acting on the twisted vacuum of 7’g (Here A B denotes a group with normal
subgroup A where B = A.B/A). If the twisted vacuum is unique (Dg = 1), then
Cg = (g) x G. For each h e Cg we can then generalise (3.2) to define

Z(g,h) = Triig(hqL0_l) (3.7a)

T: Z(g,h) —* Z(g,g’h), 5: Z(g,h) —* Z(h,g1) (3.7b)

which transform under 2’ as given in (3 4) and under S by an interchange of g and
(a bN

h boundary conditions assuming (3 3) in general Then for any = d)
in F,
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7: Z(g, h) —÷ Z(h_cga, hdg_l). In particular, for all g, h E G, these characters form

a basis for the characters of the irreducible representations 431e of the Rational

MCFT PGV [DVVV]. Thus, each Z(g, h) is expected to be holomorphic on H [ZJ.

Other important properties of Z(g, h) are that given charge conjugation invariance

then Z(g, h) = Z(g’, h’) so that 7 and —-y act equally for each 7 E F. Finally,

given the uniqueness of the twisted sectors, it also clear that under conjugation by

any element x E Aut(V), with g —

gZ
= xgx’, then x(Vg)x1 is isomorphic to

Vg so that Z(g,h) = Z(gz,hz) for all x E Aut(V).
The construction of operators obeying (3.4) is only known in string theory-like

models [DHVW,L,DGM,DM1J where the automorphism g is lifted from an auto-
morphism of the embedding space of the string, typically a lattice automorphism.

The properties of (3.5) are assumed in the physics literature [DFMS,DVVV] and
are only so far understood in limited settings for vertex operator algebras [H]. The

modular transformation properties (3.7b) for Z(g, h) can be explicitly demonstrated

in many cases [Va,DM1].
The G orbifold MCFT is now constructed from the projection Vo,b = PG((PGV)*)

which has characteristic function Zorb = Eg,heG Z(g, h). In general, g may act pro

jectively on Vg in (3.4) for a given g G of order n so that gfl is a global phase.

Then Vb is not meromorphic and Zorb is not T invariant. Such a ‘global phase
anomaly’ is absent whenever riE = 0 mod 1 [Va] so that the operators of P(g) Vg

are of integer conformal weight. Assuming no such anomalies arise then Vo.b is a

self-dual MCFT and so Zorb(T) = J(T)+NTt as in (2.5) where N1’b is the number
of conformal weight 1 operators in Vo.b.

The OPA (3.5) is also preserved by the action of the dual automorphism group
G*, defined as follows. Recalling that G = (g, ...,

g) with gj of order k, we
define g by

gV(/,z)g1=e2TTcV(i.,,z) (3.8)

for each ‘çb Vg where g = g1 .. .g. Then G* = (g, ..., g) is clearly an auto-

morphism group for (3.5) and is isomorphic to G. We may then consider the
orbifolding of Vo,b with respect to G*. The G* invariant operators of Vo.b are

PG* V = Ps)) as before. Therefore the projection of the dual is PG* (PGV)* =

i.e. orbifolding Vo.b with respect to G* reproduces V. Thus the two self-dual

MCFTs V andVO.b are placed on an equal footing with each an Abelian orbifolding
of the other. Thus we have:

(PG V)*
‘PG* PG

/ \
G

1 G* ‘orb

PG PG*

/
PQV

where the horizontal arrows represent an orbifolding with respect to the indicated

automorphism group and the diagonal arrows are projections.
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4 The Moonshine Module and Monstrous Moonshine The FLM Moon

shine module Yb is historically the first example of a self-dual orbifold MCFT
[FLM1] and is constructed as a Z2 orbifolding of Y’-, which will denote the Leech
lattice MCFT from now on. The Z2 automorphism r of VA chosen is lifted from the
lattice reflection i so that P(T)YA contains no conformal weight 1 operators. The
r-twisted space ‘H,- on the other hand has vacuum energy E’ = 1/2 (and is hence
global phase anomaly free) but likewise contains no conformal weight 1 operators
since E’ > 0 The resulting orbifold MCFT, Yb = P(r)(YA V,-), therefore has
characteristic function J(T) As shown by FLM, a symmetrisation of the vertex al
gebra of the 196884 conformal weight 2 operators (including the Virasoro operator
V(w, z)) forms an affine version of the 196883 dimensional Griess algebra [Gr] whose
automorphism group is the Monster M. FLM went on to show that M = Aut(Yb)

[FLM1,FLM2J. Note that we can identify as in (3.8), the automorphism group (r*)

dual to (r). By considering Aut(P(,-)VA) and AUt(P<,-)Y), the centraliser C(r*M)

can be found to be C(r*JM) = 2i24 Co1 where Co1 denotes the Conway simple

group (i.e. the automorphism group Co0 of A modulo ), is an extra-special
2-group. Then M is generated by C and another involution that mixes the twisted
and untwisted sectors [Gr,FLM1,FLM2J. Furthermore, Yb can be orbifolded with
respect to (r*) as in (3.9) to recover yA

FLM have conjectured that Yb is characterised (up to isomorphism) as follows
[FLM2)

Yb Uniqueness Conjecture. Yb is the unique CFT with characteristic function
J(T).

This is stated in the context of the assumptions of Sections 1 and 2 where Z(r) =

J(r) is modular invariant and hence Yb is a self-dual C=24 MCFT. Furthermore,
Yb forms the unique irreducible representation for itself [D2j We will now consider
briefly some evidence for this conjecture

We may consider other possible Z orbifoldings of VA with characteristic function
J(T) which should reproduce yb according to this conjecture. In general, we can
classify all automorphisms a of VA lifted from automorphisms E Co0, (for which

Va can be explicitly constructed) so that [T2]
(i) P(a)YA4contains no conformal dimension 1 operators i.e. is fixed point free.

(ii) E > 0 i e Va contains no conformal dimension 1 operators
(iii) Va, is global phase anomaly free i.e. nE = 0 mod 1 for of order ii.

There are 51 classes of Co0 obeying (i) and (ii) only and 38 classes satisfying
(i),(ii) and (iii). These 38 classes include 5 prime ordered cases for which (p— 1)24.
These have been considered in much greater detail by Dong and Mason [DM2) who
reconstructed yb exactly for p = 3 and by Montague who also analysed the = 3

case [M] For each of these 38 classes, we expect that a self-dual MCFT V with

characteristic function J(r) exists. Furthermore, orbifolding V with respect to
the dual group (a*) defined as in (3.8) reproduces Y” with Y = yA, C = (a) and

= yb in (3.9). By analysing Aut(P(a,)Va,k) for Ic = 0, ...,n — 1 we can calculate
explicitly the centraliser [T2]

C(a*IAut(V)) =L G (4 1)
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where G = C(ICoo)/() and L = nL is a cyclic extension of L = A/(1 — )A.

For the prime ordered cases, this reduces to a well-known centraliser formula for M

[CN]. (4.1) can also be shown to hold for all 51 classes obeying (i) and (ii) once

is appropriately defined and is verified for Aut(V) = M in many cases [T2]. All

of this provides evidence that = V in each construction lending weight to the

uniqueness conjecture. Further evidence is given below.

Let us now define the Thompson-McKay series Tg(T) for each g E M

Tg(r) = Trn(gqL0_l) = + 0 + [1 + (g)}q + ... (4.2)

where xA() is the character of the 196883 dimensional adjoint representation for

M. This trace is obviously reminscent of (3.2) and this interpretation will be further

explored below. The Thompson series for the identity element is J(T), which is the

hauptmodul for the genus zero modular group P = SL(2, Z) as already stated. By

calculating the first ten terms of Tg(r) for each conjugacy class of M, Conway and

Norton [CNJ conjectured

Monstrous Moonshine. For each g E M, Tg(T) is the hauptmodul for a genus

zero fixing modular group Pg.

Borcherds has now demonstrated this rigorously although the origin of the genus

zero property remains obscure [B2j. In general, for g of order n, Tg(r) is found to

be invariant under Po(n)
= {(a ) del = 1} up to hth roots of unity where hin

and h124. Tg(T) is fixed by Pg with P0(N) ç Pg and contained in the normaliser of

Po(N) in SL(2, R) where N = nh [CNj. This norma]iser always contains the Fricke

involution WN : T —+ —1/Nr where W = 1 modP0(N). We will refer to those

classes with h = 1 as Normal and those with h t 1 as Anomalous i.e. the fixing

group of TgQr) is of type n + e1,e2, ... for normal classes and of type nh + ci, e2,

for anomalous classes in the notation of [CNJ. This terminology is motivated by

whether the corresponding twisted sector Pg described below has a global phase

anomaly or not.
For a normal element g M of prime order p (there is only one anomalous prime

class of order 3 with h = 3) we find either Pg = Po(p) or Po(p)+ = (Po(p), Wy).

Po(p) is of genus zero only when (p — 1)24. There is a corresponding class of M,

denoted by p—, for each such prime with this Thompson series e.g. the involution

r* above belongs to the class 2—. Po(p)+ is of genus zero for all the prime divisors

of the order of M. There is a class of M, denoted by p+, for each such prime with

Thompson series fixed by Po(p)-f-. In general all the classes of M can be divided into

Fricke and non-Fricke classes according to whether or not Tg(T) is invariant under

the Fricke involution WN. It is also observed that the Thompson series for Fricke

classes have non-negative integer coefficients whereas the coefficients of non-Fricke

Thompson series are integers of mixed sign. There are a total of 51 non-Fricke

classes of which 38 are normal and there are a total of 120 Fricke classes of which

82 are normal.
For each of the 38 constructions above based on classes {ã} satisfying the con

ditions (i)-(iii) we can compute the dual automorphism Thompson series Ta* and
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this agrees precisely with the genus zero series for the 38 non-Fricke normal classes

of the Monster which also obey the centraliser relationship (4.1). Likewise, we can

identify the other 13 anomalous non-Fricke classes and find the corresponding cor

rect genus zero Thompson series [T2j This is further evidence for the assertion that

= V1 implied by the uniqueness conjecture for V which we will now assume

to be true from now on.
We now turn to the interpretation of a Thompson series as an orbifold trace

with Tg(r) = Z(1, g) as in (3 2) where now V = Vh For g in a non-Fricke class, we
can construct the twisted sector Vg by choosing g = as above with characteristic

function obeying (3.3). In particular, all the coefficients of Z(g, 1) are non-negative

integers and hence Z(1, g) — Tg(O), which is inverted up to a multiplicative constant

under the Fricke involution to give Z(g, 1)(Nr) — Tg(O), has mixed sign coefficients

as observed. For the 38 normal non-Fricke classes we may orbifold V with respect

to (a*) to obtain VA. Then the vacuum energy = 0 for the twisted sector Vg
so that conformal weight 1 operators are reintroduced. On the other hand, for an

anomalous non-Fricke class, a global phase anomaly parameterised by the parameter

h 1 occurs and we cannot obtain a MCFT from the resulting orbifolding [Ti].

Consider next f e M, a Fricke element of order n. The corresponding twisted

sector can be constructed when f is lifted from a lattice automorphism. We will

assume that Vf exists in each case obeying (3.3)-(3.5). For normal elements, no

global phase anomaly occurs and we may orbifold Vh with respect to (f) to obtain a

self-dual MCFT V. Assuming Tf(T) is a hauptmodul we then find that V =

for each normal Fricke element. The converse is also true, where given that V =

V for some f e M then Tf is the hauptmodul for a genus zero modular group

containing the Fricke involution [T2]. In general, we find (assuming the uniqueness

conjecture for V) that for all normal elements of M

(cL)

(f)V V V Ta*, Tf are hauptmoduls (4.3)

(4.3) can be understood briefly for the prime ordered normal Fricke classes as

follows. Sippose that f is a p+ element with Fricke invariant hautpmodul Tf(r).

Then Z(f, i)(T) = Z(i, f)(T/p) = q/P + 0 + ... so that Vf has vacuum energy

=

—i./p, degeneracy Df = 1, contains no conformal weight 1 operators and

has non-negative integer coefficients. Thus P(f) V does not reintroduce conformal

weight 1 operators. Similarly P(f)Vfk, Ic 0 mod p, contains no such operators (f
and fk are conjugate) so that V = V since the characteristic function is J(T).

Conversely, if V = V for a prime p ordered element f then since f and fk are

conjugate, Tf(T) is automatically Fo(p) invariant. The fundamental region H/Fo(p)

for Fo(p) has only two cusp points [Gu] at T = cc where Tf(T) has a simple pole of

order 1 from (2.2) and at r = 0 which is singular if E <0 with residue Df from

(3.3). We can then argue that since = V, E = —i/p with Df = 1. This

follows by considering the dual automorphism f* M to f as in (3.9) and showing

that Tf = Tf Then the corresponding centralisers must be equal which implies

that Df = 1, since no extension occurs. Furthermore, Vf contains no conformal
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weight 1 operators which implies that either El = —i/p or El > 0. The latter

possibility is ruled out because then Tf(-r) = q’ +0+0(q) would be a hauptmodul

for Fo(p) which implies El = 0 when the constant term of Tf is zero. Thus we

must have E = —i/p with Df = 1. Finally, consider q(T) = Tf(T) — Tf(W(r))

which is Fo(p) invariant and is holomorphic on the compactification of H/Fo(p),

which is a compact Riemann surface. Hence q5(T) is a constant which is zero since

it is odd under W1,. Hence Tf(T) is Fo(p)+ invariant and has a unique simple pole

on H/I’o(p)+ and is therefore a hauptmodul for Fo(p)+.

This argument can be generalised to any normal Fricke element f e M of order

n. Then (4.3) is equivalant to the fact that (i) Yf has vacuum energy El = —i/n

and degeneracy Df = 1 and (ii) if if is Fricke then so is f3 with s = ri/(r, n)

where r and s must be co-prime. These conditions are then sufficient to supply all

the poles and residues of Tf(T) so that Tf(’r) is a hauptmodul for some genus zero

fixing group [Ti ,T2J. Finally, the genus zero property for an anomolous class of M,

which follows from the Harmonic formula of [CN], is described in [T2].

5. Generalised Moonshine from Abelian Orbifolds. Let us now consider the

more general set of conjectures suggested by Norton [NI concerning Moonshine for

centraJisers (or extensions thereof) of elements of the Monster M. Specifically, in

the notation of (3.7a) we consider:

Z(g,h) = Tritg(hqL0_l) (5 1)

for h Cg Aut(Vg). For all Fricke elements, the twisted Hubert space vacuum,

which we now denote by flg 0, is unique and hence Cg = (g) x G where G =

C(gM)/(g) whereas for g non-Fricke Cg = K.G (for some extension K). Norton

has conjectured:

Generalised Moonshine Conjecture. Z(g, h) is either constant or is a haupt

modul for some genus zero fixing group for every pair of commuting elements

g,h EM.

This conjecture has been explicitly verified for an orbifold construction based on

the Mathieu goup M24 [DM11. In terms of the orbifold picture reviewed in the

earlier sections we can note the following properties for Z(g, h):

(i) Z(g,h) =

(ii) Z(g, h) = Z(gz, hZ) for conjugation with respect to any x E M.

(iii) S : T9(r) —* Z(g, 1) = DgqE + ... is a series with non-negative integer

coefficients decomposible into positive sums of the dimensions of the irreducible

representations of Cg where E is twisted vacuum energy and Dg is the vacuum

degeneracy, the dimension of ‘Hg lo, the twisted Hubert space vacuum.

(iv) From (3.7) we find that : Z(g, h) Z(hg, hdg_b) for
= (a ) E F

Note that g = exp(—27riE) on ‘Hg 0. In particular, for a normal Fricke element of

order m, g = w = e2/m and each h E Cg acts as some element of (w) on ‘Hg i.

(v) As a consequence of (iv), Z(g, h) is invariant up to roots of unity under

I’(m, n) = { E Fja = 1 mod m,b = 0 mod m, c = 0 mod n, d = 1 mod n} where
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m = 0(g), n = 0(h). These extra factors appear if hga is anomalous for some

co-prime a and c.
(vi) The value of Z(g, h) at any parabolic cusp a/c (a and c co-prime) is determ

ined by the vacuum energy of the Ic = gah_c twisted sector from (iv). In particular,

only the Fricke classes are responsible for singular cusp points [N]. The residue of

these cusps is determined by the action of hg_b on lko• We will assume, as
discussed in section 3, that Z(g, h) is holomorphic at all other points on H.

Thus given any commuting pair of elements g, h as above, the location of any
singularities for Z(g, h) is known by finding which of the classes Ic = g’h_’ is Fricke

for (a, c) = 1. The strength of the pole is then determined by the corresponding

vacuum energy E. However, the residue for each singular cusp still needs to be

found. We will argue below that this extra information is also supplied by the
constraints of (4.3), at least in the simplest non-trivial prime cases. Once these

singularities are known, then Z(g, h) can be shown in each case to be either constant

or to be the hauptmodul for a genus zero modular group.
The basic idea is to consider the orbifolding of VU with respect to (g, h) and

to re-express this as the composition of two 7Z orbifoldings. If (g, h) = Zk, Ic
mn/(m, n), then Z(g, h) can always be related to a regular Thompson series via an
appropriate modular transformation e.g. for m, m co-prime with am + bn = 1 then

(g,h) = Zmn and ( a)
: Z(1,gh) , Z(g,h) from (iv). For (g,h) we

will consider here the simplest non-trivial case where (g, h) contains only normal

prime order p elements. Then Z(g, h) is F(p) I’(p,p) invariant from (v). We will

further assume that h’hk for Ic 0 mod p i.e. conjugate in Cg. This is sufficient

to ensure that the coefficients in the q expansion of Z(g, h) are rational since all

the irreducible characters are rational. Furthermore, this condition restricts the

possible conjugacy classes in M generated by g and h to just three i.e. gga,

Mb Mabhih and gh’—’g h for a, b z 0 mod p. From (iv), we have that Z(g, h) is fixed

by i’g(p) = {y FJb = c = 0 mod p} Fo(p2) (under conjugation by diag(1,p)

so that Z(g,h)(pT) is Fo(p2) invariant). Z(g,h) therefore has parabolic cusps on

H/Fg(p) at r = joe, 0,1, ...,p—l [Gu] with behaviour determined, from (vi), by the
vacuum energy of the sectors twisted by g, h,g1h, .. .g2h, gh respectively where
the last p4— 1 classes are conjugate. Within these assumptions we then find that

there are 5 possible cases (up to relabelling) that may occur for any p as follows.

Case 1 : g, h, gh = p—. None of the cusps are singular and therefore Z(g, h)

is holomorphic on H/I’ (p) and hence is constant.
We may now assume for the remaining 4 cases (without loss of generality by

relabelling) that g = p+ so that

Z(g, h) = q41P + 0 + 0(q) (5.2)

We also note from (iv) that g acts as w = e2’ on flgIO.
Case 2 : g = p+, h, gh = p—. In this case Z(g, h) has a unique simple pole at

q = 0 as in (5.2) on H/I’(p) and therefore Z(g, h) is a hauptmodul. This is only
possible for p = 2, 3, 5 (where Z(g, h)(pT) is a hauptmodul for T’o(p2)). For p = 5,
no such Generalised Moonshine function is actually observed which, interestingly,
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is also the case for regular Monstrous Moonshine where 25— is one of the so-called
ghost elements [ON]

Case 3 : g, h = p+, gh = p—. Z(g, h) has two singularities at ‘r = ioo and 0.

Under S: r —* —1/r we have

Z(g,h) —÷ Z(h,g) (5.3)

where g = on flgo, kg Z, We may conjugate h to h in Cg so that
Z(h,g) = Z(h_’,g_1)= Z(h,g), from (i), which implies that 2kg = 0 mod 2.
Hence for p> 2, kg = 0 mod p. For p = 2 we will show below that kg = 0 mod 2

also. Consider f(r) = Z(g,h)(r) — Z(g,h)(S(T)) = 0 + O(q1/’). f(r) is I’(p)
invariant without any poles on H/I’ (p) and hence is constant and equal to zero.
Therefore, Z(g, h) is (i’g(p), S) l’o(p2)+ invariant with a unique simple pole
and is a hauptmodul. This is only possible for p = 2, 3, 5, 7. For p = 7, no
such Generalised Moonshine function is observed which corresponds to the ghost
element 49+ of Monstrous Moonshine!

To understand the p = 2 case it is necessary to consider the interpretation of
Z(g, h) in terms of a (g, h) = Z2 x Z2 orbifolding of Vt’. The orbifold so obtained

is meromorphic self-dual (since no anomalous Monster elements occur) and is ex
plicitly

“orb = P(g,h)(VU Vg Yh Vgh) (5 4)

where P(g,h) = (1+g+h+gh)/4 l(g)l() We can consider this as two successive
Z2 orbifoldings

= ‘P(g)(P(h)(Vh V,) P(h)(Vg e Vgh)) (5.5)

i e is a Z2 orbifolding with respect to (g) of V P(h)(V e Vh) Since

h = 2+, we know that = V and hence P(h)(VgEJWgh) is a g twisted sector for V

for g of order two by the assumed uniqueness of the twisted sectors. Thus g = 2+ or

2— when acting on V. However, we can determine from (5.5) that the character

for this g twisted sector is [Z(g, 1) + Z(g, h) + Z(gh, 1) + Z(gh, h)]/2 = q_u/2 +

using (5.2). This implies that g is Fricke when acting on V and hence =

with g = 2+ We can represent this sequence of orbifoldings diagramatically as
follows

(h) (g)

/ (5.6)
(g,h)
-*

where each copy of Vh is orbifolded with respect to the denoted group.
We can similarly consider the orbifolding of V with respect to g = 2+ followed

by h The resulting orbifold must be V’ = Vb and hence P(g)(Vh Vgh) must be

a 2+ twisted sector. This forces g = 1 on as was claimed earlier. In general,

for any p, it is straightforward to see that = = V in this

case.
Case 4 : g, gh = p-b, h = p—. In this case Z(g, h) has singular cusps at

ioo, 1, ,p—1 on H/Fg(p) We can find the residues of these poles by decomposing
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1(g) kQ) (gh)
the orbifolding with respect to (g, h) to obtain since g =

(gh) k Awhere we necessarily find that either VOTb = or V from (4.3). If we altern
(Ii) A (g) (gh)

atively orbifold with respect to h = p— first we then obtain V —*V *Vorb

In order that = Vh, it is necessary that the g twisted sector of yA so ob

tained, P(h)(8Vghk), has positive vacuum energy from condition (ii) of section

4. However, from (5.2), this is impossible since ‘P(h)Vg has character qh/P + 0 +

O(qh/). Hence = V’ in this case.
We can similarly decompose P(g,h) = P(gh)P(f) for f = gah a p+ element with

a 0,1 mod p. Then Vh LV-2v’ = VA. This implies that gh must act

as a p— element on V = V and hence the corresponding gh twisted sector

Pf(E=oVghfk) has zero vacuum energy from (4.3). In particular, this implies that

Pf?Igh o = 0 so that f = gh 1 on 7j,jo for any a 0 mod p (noting that

gh = W Ofl 71gh10). Let h = w be the action on Nghjo (from (iv)) so that g =

But we can always choose a 0 mod p such that gah acts as unity on 71gh o unless

r = 0 mod p. Hence the orbifolding is only consistent when h = 1 on 1Io In

general, by conjugation, we then find that h = 1 on ?(ghb o for all b 0 mod p.

Hence, the residue of any of the singular cusps is known. This allows us to find the

full fixing modular group.

Let
= ( which is of order p inl’g(p). ‘y permutes the p cusps

of Z(g, h) where : Z(g, h) —÷ Z(gh, h—1) = qu/P + 0 + O(q’I”) and similarly

for the other singular twisted sectors. Then f(r) = Z(g, h)(T) — Z(g, h)(7(r)) is

holomorphic on H/F(p) and is therefore zero. Hence Z(g, h) is (i’g(p), Fo(p)

invariant with a unique simple pole and is a hauptmodul. This is only possible for

p = 2, 3, 5, 7, 13. Once again, the largest possible case is not observed, p = 13,

although this does not correspond to a ghost element for regular Moonshine.

Case 5 g, Ii, gh = p+ In this last case all sectors are Fricke and Z(g, Ii)
Cg k

has singular cusps at zoo, 0,1, ..., p — 1. With the assumption that all h h for

k 0 mod p we need only in practice consider p = 2,3 and 5 where Cg = (g) x

for G = B, Fi4 or HN respectively [CCNPWJ. Following a general argument as

in Case 3,3it is easy to see again that V’ = V since both g and h are Fricke and

(5.2) is obeyed.
For p = 2 we again decompose the orbifolding of V with respect to (g, h).

Referring to (5.5), we note that P(h)(V9 V9,,,) has a 2+ character and that gh is

Fricke. Hence h = —1 and g = 1 on 71gho Similarly, we can orbifold with respect

tog first and find that P(g)(VhEDVgh) also has 2+ character. Hence g = —1 on

Thus all the residues of Z(g, h) are known. In particular, ST of order three permutes

the cusps {ioo,0,1} with ST: Z(g,h) —* Z(gh,g) =q_h/2OO(q_h/2). Then, by

the usual argument, Z(g, h) is a hauptmodul for (1’(2), ST) of genus zero, which is

of level 2 and index 2 in F. In fact, Z(g, h) is invariant under the full modular group

F up to ±1 with Z(g,h) = —Z(g,gh) so that Z(g,h)(2T) =E2(r)/i’2(’r) —252 is
the hauptmodul for 212 in the notation of [CNJ.

For p = 3,5 we may repeat the argument of Case 3 to show that g = 1 on ?Ih lo
so that Z(h,g) = q/P + 0 + ...O(qh/P). But Z(g,h) and Z(h,g) have the same
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singular structure and hence we may interchange g and h. Since Ygh is preserved

by this interchange, g = h on ?tgh lo with gh = w so that g = h = w(1)/2. Hence

by conjugation as in (ii), all the residues of the singular cusps of Z(g, h) are known.

For p = 3, let 72 = T’ ST which is of order 2 and interchanges the cusps

{oo, 0} ÷-* {2, 1} whereas S interchanges {oo, 1} ÷-* {0, 2}. Then 72 : Z(g, h) —*

Z(gh,h’g) = q_h/3 + 0 + ... and 5: Z(g,h) —+ Z(h,g’) = q”3 + 0 + ... and

similarly for the other cusps. By the usual argument, we then find that Z(g, h) is

the hauptmodul for the genus zero group (I’(3), 5, T ST) of level 3 and index 3 in

F. Further analysis shows that Z(g, h) is invariant under F up to third roots of unity

with Z(g,h) =w2Z(g,gh) = wZ(g,g2h), so that Z(g,h)(3-r) =B3(r)/i78(r) — 368

is the hauptmodul for 313 in the notation of [CN].

For p = 5, let 3 = TST3 which is of order 3 and cyclically permutes the

cusps {oo, 0} —* {1, 4} —* {2, 3} whereas S interchanges the cusps {oo, 1, 2} —*

{0,4,3}. Then 73 : Z(g,h) —* Z(gh1,g3h3)= Z(gh,(gh’)3)= q_h/5 + 0 +

by conjugation and similarly for the other cusps. Z(g, h) is invariant under F(5)

whose normaliser contains F and so Z(g, h)(T) — Z(g, h)(7(T)) is holomorphic on

H/F(5) for both 7 = S and and hence is zero. Thus Z(g, h) is the hauptmodul

for the genus zero group (F(5), S, which is of level 5 and index 5 in F. In the

notation of {FMNJ, the fixing group of Z(g, h)(5r) is 5)5. In this case, there are five

independent functions fk(T) = Z(g,gvh), k = 0,1,..., 4 which are permuted under

F.

We summarise Cases 2-5 in the following table where we reproduce the genus

zero fixing group for Z(g, h)(pT) with g = p+ and where only the actual observed

values of p are indicated.

gh=p— gh=p+
h=p— Fop2),p2,3 Fo(p)—,p2,3,5,7

h=p+ Fo(p )+,p=273,S 212,313,5115

6. Conclusion. We have shown that the genus zero property for the Generalised

Moonshine functions (5.1) follows from the genus zero property for Thompson series

in the simplest non-trivial prime cases. It remains a much greater challenge to

extend this arguments to all cases. The major difficulties of this method for general

commuting elements g, h are (i) the proliferation of possible Fricke classes in (g, h)

giving the location of poles and (ii) the determination of the corresponding residues.

Once this information is known, then any generalised moonshine functions should

be reconstructible if it is a hauptmodul. Finally, it is interesting that the ghost

groups 25— and 49+ are absent from the above table (as indeed is 50+50 from the

list of modular groups for the centraiiser moonshine of the 5+ or 10+ elements of M

where it might be expected to arise). These hauptmoduls are also distinguished by

having non-quadratic irrationalities at their non-singular cusps [FMN] suggesting

some possibly deeper number theoretic significance.
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