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Abstract

We obtain upper bounds for the loss probability in a queue driven by an M/M/c

source. The bound is compared with exact numerical results, and with bounds for

two related arrivals models: superposed two state Markov fluids, and the Ornstein—

Uhienbeck process. The bounds are shown to behave continuously through approxim

ation procedures relating the models.
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1 Introduction.

There has been much interest recently in obtaining bounds for queue length distributions

in ATM multiplexers driven by Markovian traffic. Two fundamental arrival processes have

been investigated: superposed two-state Markov arrivals [5]; and the Ornstein—Uhlenbeck

process [11]. In both cases, exponential bounds of the form

P[queue> b] e_Sb
(1)

are obtained. The latter treatment was motivated in part as a heavy traffic approximation

to the queue driven by an M/M/cc process, which in turn approximates superpositions of

Markov fluid sources. Queues with Markov fluid arrivals were studied in [1]. The queue with

M/M/oo arrivals has been investigated numerically in [6]. We mention also other recent

work on bounds for queues with Markovian arrivals [2, 7].

The purpose of this note is to give explicit upper bounds of the form (1) directly for the

M/M/co arrival process. Moreover, the bounds can be compared with existing results in

a number of directions. Firstly, by bounding the mean queue length we can compare with

the exact results of [6]. Secondly, we can compare the bounds with those for queues with

finitely superposed Markov fluid arrivals, and queues with Ornstein—Uhlenbeck arrivals. The

M/M/cc process can be regarded as intermediate between these: the arrival process of L

Markov fluid sources each with activity proportional to L’ converges as L —* cc to the

M/M/cc process, which in turn converges in a rescaled heavy traffic limit to the Ornstein—

Uhlenbeck process. We show that the bounds we obtain for M/M/cc converge in the same

manner. This is useful for the following reason. The prefactor of (1) found in [5] for L-fold

superpositions of bursty sources is of the form for some < 1 depending only on the

load of the system and the parameters of a single source. This demonstrates the economy

of scale which is to be obtained by statistical multiplexing. Our comparison of the bounds

shows how this economy behaves through the approximation procedures described.

2 The M/M/o process: bounds

Let X = (X)a÷ denote the stationary M/M/co process. X is the birth-death process with

Poissonian births at some rate \, each of which dies after an i.i.d. time which is exponentially

distributed with mean More precisely, X has sample paths in D+[O, cc), the space

of non-negative integer valued paths which are right continuous and have left limits. The

stationary distribution is Poissonian with mean A/n. The corresponding Markov semigroup

on t (the space of real sequences topologized with the supremum norm) has generator G
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corresponding to the rate matrix (Gy),€z+ where

(y=x—1),
—(A±x) (x=y),
A (y=x+l), (-)

O (otherwise).

The existence of such a closed G generating a Markov semigroup follows from standard

conditions (see e.g. section IV.4 of [8]).

The queueing process is as follows. X is the number of sources active at time —t. Each

active source empties fluid into the buffer of a queue at rate a. Fluid is drained at rate s

from the buffer. Defining the workload

= f

(aXti — s) dt’ (t 0), (3)

the fluid remaining in the buffer at time 0 is (see e.g. §6—9 of [41)

Q=supWt. (4)
t>o

The offered load is p = E[aXo]/s = aA/(su).

Let 11 denote the identity on % and H the number operator, densely defined in 40 by

(J\fv)(x) = xv(x). For 8 E R let w(8) and v(.;&) be the maximal eigenvalue and cor

responding eigenvector of the densely defined operator G(O) G + 8(aH — sI). Define

S = sup{8 w(8) = O}, and abbreviate v(.; 8) by v(.). Finally, let J’ be the canonical

filtration generated by X.

Lemma 1 M :=e5Tv(X) is an F-martingale.

Proof: Consider the joint Markov process (Wi, X)>0 taking values in R x Z. Its generator

G is densely defined on C(R) 40 by

(Og (5)

Letting f(w, x) =e5’v(x) then Of = (II 0 G(8))f = 0, since G(8)v = 0. Consequently, by

Dynkin’s Theorem (see e.g. [10]), f(W,X) is an .F-martingale. C

Let us find S and v. The eigenvector equation G(S)v = 0 becomes

(v(x —1) + (Sa — )v(x)) + (Av(x +1) — (A + Ss)v(x)) = 0 (6)

for x E N. This is solved by setting

v(x+1) A+Ss

_____

= =
(7)

v(x) A a—8a
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for all n E N. The second equality in (7) yields (for p < 1)

— a..\
5 = = (1 — p)/a and hence r = p_I. (8)

.sa

Theorem 1 W7z.em p < 1 and b> 0,

P{Q bJ ps/ae(1_P)(3/_Lb/a) (9)

Proof: For any b > 0 define the F-stopping time r inf{t 0 I W > b}. Note

{Q > b} = {r < }. By a mostly familiar argument involving Doob’s Optional Sampling

Theorem (see e.g. [13}).
E[11/Ioj = E[MTAkI E[Mr;7 < k] (10)

and so by bounded convergence as k — c,

E[Mo}E[M7lr<cjF{r<ooJ. (11)

But if r < cc, then M e infr:>g v(x), because e5” = eSb and aXr s. (Since X is

right-continuous, W is continuous and hence W,. = b. Similarly, if aX.,. <s, then W < b Ofl

some interval (‘r, r + ), a contradiction). Hence

_SbErW 1 ‘—SbEf —Xo1

P[Q > bJ
e 1 01 = e 1P i p3/ae(1_P)(s/a_o/a) (12)

lflfz:z>s/a v(x) inf:z>s1. p
C

3 Comparisons with finite superpositions.

The M/M/oo process is itself a limit of a superposition of (rescaled) two state Markov fluid

arrivals. This latter model was introduced in into queueing theory by Anick, Mitra and

Sondhi [1]. Specifically, consider the continuous time Markov chain with state space {0, 1}

with transitions 0 —* 1 occurring at rate Ai and the reverse transition occurring at rate ,u.

The Markov chain represents a fluid source: in state I fluid arrives at rate a, in state 0 no

fluid arrives. In an L-fold superposition, let X denote the number of sources active at time

—t. X is the stationary Markov chain with generator corresponding to the rate matrix G”

where for 0 <x,y < L

(y=x—1),

GL — —((L—x)AL+xL) (x=y), 13
(L—x) (y=x+1),

0 (otherwise).
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Theorem 2 When PL < 1 and b> 0,

1aL — 3PL
and TLPL aL—s

XL converges to X in distribution. (See e.g. {10}). Furthermore, under (16)

(14)

The stationary distribution of XL is binomial with mean LAL/(AL + au. The superposition

is served at constant rate s, and so the offered load is PL = aE[XJ/s = aLAL/(s(AL + ALL)).

Let Q” denote the corresponding queue length at time 0. By repeating the steps of Theorem

1 making the appropriate changes one proves:

—Sb X0
/

L

p[QL bJ
e E{rL I

=

(\LTL + IL

inf>31 \ L + /.LL

where (1—pL)(AL+L)

_
_
_
_
_
_

(a — s/L)

> 1. (15)

By standard methods it is proved that under the scaling limit

L — , L.AL \, —-f
(16)

6L8,
rr

(17)

so that the bound in Theorem 2 converges to that of Theorem 1.

Daley and Ott [6] have performed exact numerical calculations of the mean buffer occupations

in both cases. In Table 1 we present a comparison of the bounds for heavy traffic where we

choose L = \/L, f-’L = 1u take ,u/a = 1 and vary c s/a. Here we use the fact that since

Q 0, P[Q > b e_Sb for b> 0 implies that E[Q] q/8. In Table 2 we investigate the

accuracy of the prefactor to the exponential bound, using the fact that P{Q > b] be

implies P[Q = 0] 1
—

q5. In both tables, L = co corresponds to M/M/CO arrivals.

Table 1

Stationary mean buffer content: bounds and exact evaluations

L
PL

t=6 ,=12 c=24

.96 .98 .99 .96 .98 .99 .96 .98 .99

50 Exact 16.34 35.62 74.30 11.33 25.65 54.47 4.60 11.23 24.68

Bound 19.36 38.77 77.52 14.44 28.97 57.90 6.75 13.64 27.23

100 Exact 18.66 40.65 84.79 15.28 34.48 73.12 10.20 24.39 53.14

Bound 22.03 44.18 88.39 19.25 38.72 77.49 14.25 28.88 57.85

250 Exact 20.12 43.83 91.41 17.94 40.42 85.64 14.67 34.77 75.47

Bound 23.72 47.59 95.25 22.47 45.25 90.62 20.08 40.73 81.70

CO Exact 21.12 46.02 95.97 19.84 44.64 94.54 18.11 42.73 92.54

Bound 24.88 49.94 99.97 24.75 49.88 99.94 24.51 49.76 99.88
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Table 2
P{QL. 0]: bounds and exact evaluations

ic=6 c=12 c=24

PL .96 .98 .99 .96 .98 .99 .96 .98 .99

L
50 Exact .8876 .9432 .9714 .8415 .9194 .9593 .7498 .8706 .9343

Bound .9944 .9986 .9997 .9872 .9968 .9992 .9637 .9908 .9977

100 Exact .8905 .9447 .9722 .8508 .9243 .9618 .7865 .8905 .9446

Bound .9948 .9987 .9997 .9889 .9972 .9993 .9746 .9936 .9984

00 Exact .8931 .9460 .9729 .8584 .9282 .9639 .8097 .9029 .9510

Bound .9951 .9988 .9997 .9902 .9976 .9994 .9805 .9951 .9988

4 Comparison with Ornstein—Uhlenbeck arrivals.

Finally, we investigate the relation of the bound of Theorem 1 to those found for the

Ornstein—Uhlenbeck arrival process in [11]. The Ornstein—Uhlenbeck arrival process can

be seen as the last step in a chain of approximations: finite superpositions are approximated

by M/M/00 processes; the latter in turn by the Ornstein—Uhlenbeck process. To be precise

we take the limit

, with a = = B’ and = (_1/2
— (18)

for positive constants s, j3 and v. This has the consequence that the load is p = 1— vi_h/2: we

are dealing with a heavy traffic limit. For a particular value of i we denote the corresponding

activity process X of section 2 by X. Set Z =“2a(Xi2—/1u). Then under the limits

(18) Z’ converges to Z, the stationary diffusion which is the solution of the stochastic

differential equation

dZ = —Z±sdB. (19)

where B is standard Brownian motion. (See [9] and [111). In other words, Z is a stationary

Ornstein—Uhlenbeck velocity process with mean 0 and variance The queue length for the

process X’ is
çt

Q’ = sup J dt’(aX — s) = sup J dt’(Z — 3sz’). (20)
t0 0 to 0

In [11] the bound for the queue Q = supto f(Zt’ — sv)dt’ driven by Z and served at rate

/35z) is found though martingale methods to be

P[Q> bJ <e2/2e3. (21)
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We remark now that the bound of Theorem 1 converges to the RHS of (21) under the limit

(18). To see this note that under (18), 8 r43/s independent of ic, while the prefactor of

Theorem 1 has the limit

1im(pe’) lim((l _1/2)e_vKhI2)F=e2/2. (22)

5 Conclusions.

The bounds of Theorem 2 for finite superpositions contain a prefactor which is exponential

in L, the number of sources in the superposition. These determine the economies of scale

which are to be found by multiplexing larger number of sources together at constant load,

in the sense that they demonstrate how the usual effective bandwidth approximation F[Q >

bl e_Sb overestimate the probability of loss. (See for example, [12] for discussion of the

effective bandwidth approximation, and [3] for a further discussion on economies of scale).

The bounds obtain by successive approximations in Theorem 1 and equation (21) and their

convergence in these approximations shows how the remnant of this economy survives in the

heavy traffic limit.
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