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ABSTRACT
It is argued that renormalisation group flow can be interpreted as being a Hamiltonian
vector flow on a phase space which consists of the couplings of the theory and their conju
gate “momenta”, which are the vacuum expectation values of the corresponding composite
operators. The Haniiltonian is linear in the conjugate variables and can be identified with
the vacuum expectation value of the trace of the energy-momentum operator. For theories
with massive couplings the identity operator plays a central role and its associated cou
pling gives rise to a potential in the flow equations. The evolution of any quantity, such
as N-point Green functions, under renormalisation group flow can be obtained from its
Poisson bracket with the Haniiltonian. Ward identities can be represented as constants of
the motion which act as symmetry generators on the phase space via the Poisson bracket
structure.
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§1 Introduction

The history of relativistic quantum field theory is plagued with divergences. The

canonical cure for this is to replace the (infinite) bare co-ordinates g by (finite) renor

malised co-ordintates g(ii) at some renormalisation point ic. This requires regulating the

divergences and choosing a subtraction prescription by introducing counter terms. Even for

theories with no divergences it is sometimes useful to introduce counter terms and define

renormalised couplings - an example of this is the e-expansion around the Wilson-Fisher

non-trivial fixed point in 3-dimensional massive theory [1]

However knowledge of the renormalised couplings alone is not sufficient, one must also

know what the counter terms are. This is (almost) equivalent to knowing the j3-functions

of the theory, since the counter terms are specified by the difference zga(,c) = — g(ii).

Demanding that the bare couplings are independent of the renormalisation point gives

— dg d(Lga)
1

— dt dt ‘ ()

where t = in tt.

The traditional approach has been first to choose the counter terms and then calculate

the /3-functions. However the counter terms contain a certain ambiguity, they can be

modified by adding a finite function of the couplings to Lga. Thus, as is well known, the

/3-functions are not unique, they depend on the subtraction procedure. In practice though

they are constrained by the requirement that a renormalisation prescription be chosen

which leads to a perturbation theory that makes sense i.e. converges reasonably quickly,

at least asymptotically. Of course, the /3-functions are not completely arbitrary - they

have zeros which cannot be removed by changing prescription. Viewing them as vector

fields (“velocities”) on the space of couplings, a zero of the vector field in one prescription

remains a zero in any other prescription (of course individual components of the vector /3
may vanish in one prescription and not in another, but a zero of the vector field requires

the entire vector to vanish). Thus, in one sense at least, a change in renormalisation

prescription can be thought of as a co-ordinate transformation (diffeomorphism) on the

space of couplings since this also leaves the zeros of a vector field unchanged (although it

may, and in general would, change the numerical values of the co-ordinates of the point at

which the zero occurs).
One can imagine turning the logic round and first choosing the /3-functions and then

using equation (1) to determine the counter terms (up to an arbitrary constant i.e. a

renormalisation group invariant). Of course the choice must be judicious - it would be

crazy to choose a positive /3-function for massless QCD, the resulting theory would be

completely unstable and probably would not even exist. In theories with more than one

coupling, however, there is more freedom. If one were unlucky enough to choose a /3-
function which pointed away from a nearby attractive fixed point the RG evolution would

presumably force it to turn round and point in towards the fixed point - behaviour which

cannot happen if there is only one coupling. Choosing a /3-function with the “wrong sign”

in a theory with more than one coupling is not pathological, it is merely an indication

of a “bad” choice of co-ordinates. Transforming to “good” co-ordinates (i.e. co-ordinates
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which have a sensible physical interpretation and are not just abstract parameters) would

require performing a diffeomorphism which “unwinds” the RG trajectory so that it flows

into the fixed point in a straight line. In actual fact, from a topological point of view, the

notion of “pointing away” does not make sense unless a metric is defined on the space of

couplings. To have a concept of “pointing away” requires having a definition of angles,

and this needs a metric. Without a metric any direction is much the same as any other, it
is difficult to navigate in a space without a metric!

Another quantity which should not change under a co-ordinate transformation is the

signature of the matrix of anomalous dimensions, 83b, at a fixed point. The number of

positive and negative eigenvalues of this matrix determines in how many directions the RG

flow is attracted to the fixed point and in how many it is repelled from it. For massless

QCD this matrix is one dimensional and this is another way to see that the sign of the

/3-function cannot be changed by a co-ordinate transformation in a theory with only one

coupling.
There is an analogy here with classical mechanics. Consider a theory with n — 1

couplings, ga, a = 1,.. . ,n—i (from now on the subscript Ron couplings will be dropped in

this section - all couplings are renormalised unless otherewise indicated). Denote the space

of couplings by M. The /3-functions/3°(g) constitute a vector field on the n—i-dimensional

differentiable manifold M (for the moment the topology and global properties of M will not

be relevant and it may as well be taken to be R’ - consideration of the global topology

will be restricted to a few comments in the final section). The 2m—2 dimensional space with

co-ordinates (ga, /3a) (the tangent bundle T(M)) is thus analogous to the configuration

space of co-ordinates and velocities in classical mechanics. Choose a point in T(M) and

the evolution of the system is determined by the dynamics. All the necessary information

for computing the RG evolution is contained in the generating functional (or free energy

in statistical mechanics) W(g, t) = f w(g, t)d”x = — ln Z where w(g, t) is the free energy

density. * Just as in classical mechanics one can imagine transforming to a phase space,

with co-ordinates (ga, ) (the cotangent bundle T*(M)) where q are “momenta” dual

to the “velocities” Following O’Connor and Stephens a natural choice for the q

is the vacuum expectation value of the (in general composite) operator associated with
a 8’w(gt) .

the coupling g , = 5g
{2j. In order to streamline some of the formula it will

be convenient to re-scale all the couplings by their canonical dimensions so that they

are dimensionless. When this is done the variables ç/ are densities with canonical mass

dimension B.
It is compelling to ask if there might be some notion of a Hamiltonian function on

phase space H(g, q, t) which could govern the RG evolution of the couplings and the

expectation values together so that the RG flow can be regarded as a Harniltonian vector

flow on phase space. The answer is yes and the construction turns out to be remarkably

simple. A Haniiltonian will be presented in section three which is linear in the momenta,

rather than quadratic as in non-relativistic particle mechanics. It is in fact minus the

expectation value of the trace of the energy-momentum operator, H = — <T>. Despite

* For simplicity we shall work on flat B-dimensional Euclidean space, so that transla

tional invariance ensures that w(g, 1) is independent of position, but the concepts presented

here are more general than this.
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the linearity of the Hamiltonian in the momenta, the dynamical evolution is not trivial

and some examples will be examined to show this in detail.
The construction requires a careful consideration of the role of the identity operator

in theories which involve massive couplings. This can be done by introducing a coupling

associated with the identity operator, A (a cosmological constant). Its conjugate momen

tum, çb, is just the expectation value of the identity operator. The /3-function associated

with A turns out to be linear in A [3] , 13A(g, A) = —DA + U(g) where U(g) is an analytic

function of the other couplings and is independent of A. The conventions adopted in this

paper are such that the cosmological constant is scaled by its canonical dimensions and

A is dimensionless. This explains the term —DA here which not otherwise be present. A

consequence of this is that the qp = icD is also a density. For massless theories, U(g) = 0.

For the purposes of the introductory discussion presented here it will be assumed that the

/3-functions have no explicit ic dependence and only depend on tc implicitly through g&(jj).

A full generalisation to the situation where a subtraction procedure is chosen in which the

/3-functions have explicit ic dependence is given later.
It will be shown in section three that the Hamiltonian defined by

H(g,q5) =/3a(g) /3A(g,A), (2)

governs the renormalisation group flow of the couplings g°’ and the expectation values çb.

Of course, once the theory has been solved, all of the vacuum expectation values (VEV’s)

can be expressed as functions of ga and t, g = qa(g, t) and then the Hamiltonian can

indeed then be written as a function of gU, A and t alone (for example qS = ic). However

the philosophy here is that at the outset g and are to be considered as independent

variables and H(g, q) depends on each separately.
The main result of this paper is that the RG evolution of g and is given by

“Hamilton’s equations”,
dga

— 811
dt 8qg 3

dçb 8H
dt — 8gac

The first equation follows simply from the definition of H(g, ) in (2) while the second

contains non-trivial dynamics, despite the simple form of 11. Indeed one can interpret

U(g) as a potential and re-write the second of equations (3) as

= _iDdU(g) (4)

where q = qdg° is a one-form and dU = dg0 is the exterior derivative of the poten

tial. The analogy between (4) and Newton’s second law, = —dU for a particle with

momentum p moving in a potential U, is obvious.
The idea that RG flow might be related to a potential was first suggested, to the au

thor’s knowledge, by Wallace and Zia [4] but so far the investigations in this direction seem

to have been attempts to find a potential for the /3-functions which requires introducing
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a metric on the space of couplings, rather than for the VEV’s as suggested here. In the
construction presented here a metric on T(\4) is not necessary.

The reformulation of the RG evolution in terms of Hamiltonian flow allows the intro
duction of Poisson brackets and their associated symplectic structure. (That a symplectic
structure should be relevant to RG flow was first suggested, to the authors knowledge, in
[2].) Extending the set {g} to include the cosmological constant, {g, A} = {g&} where

= 1,.. . , m, the Poisson bracket of any two quantities A and B is, of course, given by
expressing them as functions of ga and a, possibly also with an explicit t dependence,
and taking the combination

8A8B OAOB
{A,B} = - (5)

Obviously
{gag}

= Sab. (6)

The RG evolution for any function on phase space is then given by

= + {A, H}. (7)

Note in particular that, when there is no explicit ,c dependence in the ,8-functions,

the Hamiltonian. (2) is a constant of the motion = 0. Once more we stress that, even

though it is trivial that q5p. = ,cP, it would be wrong to include this i dependence in H(g, c)
explicitly - q is to be considered as an independent variable in this formalism and H has

no explicit ic dependence. One could, however, omit A as an independent variable and

define a t-dependent Hamiltonian h(g, q, t) =
/3a(g)q + icPU(g) on T*(M). This leads to

the same equations of motion (3) with H replaced by h but h(g, 4, t) is not a constant if

there are massive couplings in the theory, instead = = Dic)U(g).
The classical analogy can be taken even further. It is also argued in section three that

the RG equation for the generating function w(g, t) can be written as

8w / 8w”
(8)

which is clearly a field theoretic version of the Hamilton-Jacobi equation.
The layout of the paper will be as follows. In §2 the RG equation for w(g, t) is

derived, taking particular care over the role of the identity operator and the way that

the cosmological constant is related to masses. In §3 a Hamiltonian formalism of RG

evolution is developed. A symplectic structure on the phase space (g&, q) is introduced

and Hamilton’s equations (3) are derived together with the Hamilton-Jacobi equation (8).

The renormalisation group equation for N-point Green functions is presented as a special

case of equation (7). §4 (which is the only part of this paper which uses perturbation

theory) exemplifies the ideas with the use of massive ) in four dimensions as a model.

The implementation of symmetries is discussed in §5, where some examples are used to

argue that Ward identities can be represented by symmetries on phase space and can

be used to construct RG invariants (“constants of motion”) which commute with the

Hamiltonian and generate the symmetry through the Poisson bracket structure. Finally
the results are summarised in §6.
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§2 The Renormalisation Group Equation For The Partition Function

Consider a renormalisable field theory, parameterised by a set of renormalised cou

plings g, a = 1,... ,m — 1 where n is finite (the superscript n will be reserved for a

cosmological constant). In this section all renormalised quantities will be denoted by the

letter R so as to try to keep the argument as clear as possible. The bare couplings g can

be thought of as functions g(gR, e) of the renormalised couplings plus a regularisation pa

rameter, e (strictly speaking these functions should also contain an explicit ,c dependence

since their total derivative with respect to ic must vanish, but this is not shown here). The

bare couplings are analytic functions of the g provided e 0, but are singular in the limit

e —* 0. The transformation g —* can be viewed as a co-ordinate transformation on the

ii — 1-dimensional space of theories, M. This co-ordinate transformation is singular in the

limit E —* 0 but, as long as the theory is renormalisable, this is not a disaster and can be

treated consistently. For the moment the method of regularisation is left open, one could

for example use a cut-off A and set e = or dimensional continuation with e = D —4.

The action can be written as a linear combination of “basic” operators , which will

include composite operators,

= fLo(go0(x))dD where Lo =g(x). (9)

Strictly speaking, since space is taken to be Euclidean, this is the energy rather than the

action - but a Hamiltonian will appear in the next section in a totally different context.

By abuse of language therefore So will be called the action.

In massive Ày4 theory, for example, one would have

La = ko8ya8yo + joyo + + (10)

with cJ
=8iSDo81SDo, P’ = cpa, rn2 = and = and four independent couplings

k0, jo, m and A0. Without loss of generality the fields can be re-scaled to set k0 = 1. If

necessary the couplings can be made functions of position. Thus the notation can be

extended to allow source terms, jo(x)yo(x), with j0(x) a function of position which may

be set to zero after all (functional) differentiations have been carried out. More generally

all of the couplings can be made to depend on position so as to introduce sources for the

composite operators as well [5] . After all differentiations have been carried out these

sources can be set to constant values if so desired.

Returning to the general case, consider a renormaiisable theory written in terms of the

bare couplings. Representing all of the bare fields generically by cpa, the partition function

(generating functional) is,

Zo(go) = fvyoe00Y0). (11)

The generating functional for connected Green functions (the free energy) is Wo(go) =

—ln Zo(go). As usual the free energy density is defined via Wo(go)
= f wo(go, x)dDx. The
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introduction of wo avoids trivial volume divergences in the case of infinite space. It has
canonical mass dimension D.

For future convenience a coupling for the identity operator will be included,

Z(go,Ao) = f Voe_SO o°)_fdDZAo = ePZo(go) (12)

(there is no bare subscript on Z(go, A0) because, as will be explained later, it is finite). In

analogy with general relativity A0 might be called a cosmological constant, but in different

physical situations it would have different physical interpretations.
It is important to realise that Ao is independent of g and plays the role of a new

coupling for the identity operator. Thus the set {g’} can be extended to {g’} = {g, A0}

where a = 1,. . . , n are co-ordinates on a n-dimensional manifold M. A0 can be included

in the bare Lagrangian as = + A01. In terms of densities

W(go,Ao) = —lnZ(go,Ao) = fw(go,Ao)dDx, (13)

with w(go,Ao) = wo(g) + A0 linear in A0.
When all couplings are independent of position and the theory is translationally in

variant w(go, A0) is independent of a and this will be assumed from now on. In situations

in which translational invariance is not a symmetry of D-dimensional space, one will need

to introduce extra terms involving the Riemann tensor into the action [3].
Expectation values of bare quantities can be obtained by differentiating w(go, A0) with

respect to the couplings,

i8Lo\ Ow Ow
and 1=<1>=—. (14)

ug0 8g0 oAo

The bare operators ‘I = are co-vectors on the space of couplings, i.e. := dg

is an operator valued one-form. This notion of the basic operators being co-vectors on

the space of couplings is implicit in the work of Zamolodchikov [6]. For a conformal field

theory in two dimensions would be the primary fields of the theory. Expectation values,

dw =< > dg, are (exact) real valued one-forms on M.
The bare operators can be written as linear combinations of renormalised operators

= (15)

where Zab is a matrix of renormaiisation constants (see for example [7]). In general there

will be operator mixing and Za]’ will not be diagonal. If the bare action has no massive

couplings it is not necessary to include the identity operator in the list and a cosmological

constant can be omitted, since Z = 0 (a < n — 1) when all couplings are massless. But if

there are massive couplings in the bare action then some or all of the Z will be non-zero

and A0 plays a crucial role.
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Following up the idea that the transition from. bare to renormalised couplings can be

implemented as a co-ordinate transformation on M, we consider g(gR, e) to be analytic

functions of 4 (keeping e 0 for the moment). Consider

(16)
84 — 84 0g — 84 b

Clearly these should be related to the renormalised operators . In fact

= (Z)ab (17)

is the inverse of the operator mixing matrix Zab = [8]. Thus

= (Z)a = . (18)

The operator valued one-form can now be expressed in either co-ordinate system,

= dg = (19)

and similarly the real valued one-form dw is

(20)

Thus

= -- < > (Z)ab < >< >. (21)

Partial derivatives here mean, of course, that all quantities are considered to be functions

of the renormaiised couplings, and each 4 is varied independently of the others. When

massive couplings are present A0 must be considered to be a function of the renormalised

couplings. This is necessary because the then mix with the identity operator under

renormaiisation.
Note that, since both 4 and < > in equation (21) are finite as the regularisation

parameter e —* 0, w(gR, t) considered as a function of the renormalised couplings and the

renormaiisation point ic must also be finite as e — 0. This is why there is no bare subscript

on the definition of Z(go, A0) in equation (12), [3], and is one of the reasons for introducing

a coupling for the identity operator - both Zo(g’) and Ac, seperately diverge as —* 0

but the combination Z(4) = Z(g) = e f dDzAoZo(g) is finite. A finite, renormalised

generating function, WR(g, t) = J’ wR(g, t)d = — in ZR(g), can now be defined by

Z(g) = efd °Zo(g) = Z(4,t) =
e fZR(g,t) (22)
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(the factor ç) in the exponential is in accord with the convention that AR is dimensionless).

Thus in = wo(g) ± A0 = wR(g, t) + XRIcP can now be interpreted as a finite function of
the renormalised couplings with the crucial property that

R

____

R D D
=< and

A =< >=< i 1 >= . . (23)
ug

Note that A0 is linear in AR, a fact which follows from the observation that the identity
operator 1 = does not get renormalised. Thus

(Z_1)ab = ((z_1) (Z1))
since

8g = = (24)

Indeed even the a-function for AR only depends on AR linearly through canonical dimen
sions, since writing

A0 = ,D(A + F(g, e)), (25)

we have
=

= —DAn + U(g) (26)

where U(g) := — depends only on the g for a m — 1, not on AR, and is finite as

e — 0. The fact that U(gR) is independent of A can be seen from the following argument.

U(gR) is a quantum correction to the canonical dimensions of the cosmological constant

and as such can be determined (in principle) using perturbation theory and Feynman

diagrams, but A cancels out of all Feynamn diagrams due to the normaiisation factor .

Hence U(gR) is independent of A. Another way of seeing this is to note that the matrix

of anomalous dimensions is given by

= (Z’)a (27),

and the form of Zab given in (24) immediately implies that = 0 and 8AR/3A = —D.

To make contact with the familiar notions of a perturbative analysis one can write

the bare couplings in terms of the renormalised couplings as

g(gR, e) = +
/g&(g

6) (28)

where gâ is a correction (which diverges as e — 0), so that

= = (g +
ga)Zb

(29)
= + counter terms (C.T.’s).

This gives

= Z(go,Ao) = efo
f_fdg()+c.T.’s (30)
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where the identity operator has been included among the counter terms. Absorbing a

further term proportional to the identity into the counter terms we have

= e
JdDZAR fve_f(x)+T’5 (31)

If desired, one can perform the functional integral over renormalised fields rather than

bare fields by setting Vcpo —* ThPR, where coo = z’/2 with z being the wave function

renorma]isation factor, and then adding a further term - in z f d’x1 to the counter terms.

Leaving perturbation theory behind and returning to the general analysis, we are now

in a position to write the renormalisation group equation for the free energy, w(4, t).

Since w = wo (g) ± A0 and all bare couplings are independent of the renormaiisation point

t = in ,c, we have

dw(g,AR,t) =
+ = 0. (32)

dt 8Th? 8AR 8t gR,AR

If we now denote the VEV’s by :=< >, this reads (since = = and

8g — 9)
8w(g,

+ (g) + (g) =0. (33)
&t gR,AR

This is the equation that will be used in the next section to argue for Hamiltonian flow on

(g,) space.
Alternatively, since AR only ever appears in this equation linearly, it can be eliminated

using equation (26) and w = wR(g) + AR,cP, with wR independent of AR, to give

8WR(g,
+ (g) + DU(g) =0. (34)

Note that it is not true, in general, that = 0, since the presence of massive

couplings necessitates the introduction the function U(g) in a general renormalisation

prescription.
This analysis has been a somewhat lengthy treatment of concepts that are not new,

but it has been included in order to expose clearly the role of the cosmological constant in

theories with massive couplings as well as to set up the notation.
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§3 Symplectic Structure And Hamiltonian Flow Of The RG Equation

In this section it will be shown that the RG equation derived for the generating func
tion in the previous section naturally admits a symplectic structure with its concomitant

Poisson brackets, and the renormalisation group flow can be obtained from a Hamilto

nian function on phase space in a manner analogous to dynamical evolution in classical

mechanics (but with important differences).
The starting point is equation (33)

(35)

From now on the qualifier R on g and q will be omitted as all quantities will be renor

maiised, unless otherwise indicated. The generating function w appearing in this section

is always w = WR + Ic’3AR. It is stressed that w is linear in A.
To highlight the analogy with classical mechanics, we shall define a function H,

H = —,
(36)

so that (35) can be written

H(g, q) =/3(g) + (37)

(For the moment it will be assumed that the /3-functions have no explicit ic dependence so

that H(g, q) has no explicit 1 dependence - a generalisation including explicitly i dependent

/3-functions is given towards the end of this section.) The philosophy now is to forget where

the qa came from and treat them as independent variables. It is only after the theory has

been solved that we can use = 8aw.

Consider the left hand side of equation (35) as a differential

=
— Hdt, (38)

where 8(g, q, t) is a one-form on the 2n + 1 dimensional space parameterised by g& qa and

t. When the theory is solved, and q5a(g, t) is written as an explicit function of g& and t,

8 = dw is exact, but when the qa are treated as independent variables 8 is not exact. The

discussion now parallel’s the treatment of classical mechanics in [9] . Just as the couplings
9a(.) evolve along the RG trajectories, so do the expectation values qa(t). Thus the RG

trajectories can be pictured as flow lines in (ga, a, t) space. Treating q as independent

variables construct the two-form

= =dO= dAdg—dHAdt

811 - 811 (39)
=dçbaAdg——-- dgAdt———-- dqaAdt,

8ca g
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where {x} = {ga, qa, t} i = 1, . . . , 2m + 1 are co-ordinates on the 2n + 1 dimensional space.
Now 2 can be written as an anti-symmetric matrix,

-I -8g

= 0 (40)

8g 8ag

where I is the n x n identity matrix. Since is an odd dimensional anti-symmetric matrix

it must have at least one zero eigenvalue (it will be assumed that it has only one, otherwise

the restriction of 2 to surfaces of constant t would result in a degenerate symplectic form

on phase space). The corresponding eigenvector, , is easily seen to be

= (g’iq”)
(41)

It seems natural to identify the flow lines of the vector field with renormalisation group

trajectories, since e is exact when the theory is solved and a(g, t) are substituted into

equation (38). This requires

dga OH dba OH
and —=——--- . (42)

dt thi5ag dt 8gb

Obviously g
= 3a by definition, so the first equation is certainly consistent. For a =

the second equation reduces to the identity = Dij. The interpretation of the other

equation hinges on the crucial observation that the function U(g) = 13A +DA is an analytic

function of the ga (independent of A). Thus, from equation (37)

db 81D (83
U(Y))__)5b (43)

or
(44)

This is the renormalisation group equation for the RG evolution of the vacuum expectation

values of the basic operators of the theory. The parallel with Newton’s second law is

obvious. The matrix of anomalous dimensions Oa,Bb appears as a pseudo-force (Coriolis

force) and the function U(g) is a potential. For massless theories U vanishes, thus massless

theories are analogous to free particle motion. Just as in classical mechanics the Coriolis

force can be eliminated when the motion of the basis vectors is included in the equation.

Consider therefore the one-form 4 = qdga. One has

dq — (dcb
d a, d(dg’’)

g
+a, dt

(45)

— I .j , ci
dt 8g)

g,
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d(dg) dg a bwhere we have used = d(--) = 3b/3 dg . Thus equation (44) can be written in
co-ordinate free notation as,

dq5
= _tDdtf(g), (4)

where dU = 1dga is the exterior derivative. Of course, once the theory is solved, the çb

can be expressed as explicit functions of g° and t, q(g, t), so that

= (46)

and equation (44) then becomes

+ (8a/3jb = _D8aU, (47)

which is a version of the RG equation for the VEV’s, including the anomalous dimensions

and the inhomogeneous term icP8aU which arises due to masses.
Yet another way of expressing this is to observe that the left hand side of (47) involves

the Lie derivative, £Ø, of the one-form dga with respect to the vector field /3 =

{lOj. Since q is exact we have

Jq = d(i) = __{/3b(g)qb(gt)}dga (48)

where i1Ø denotes the contraction of 3 with the one-form qS, iq = Thus another

way of writing (44) is

= -d{U(g) ±/3b(g)(g)}, (49)

where again d = dg°-jjr.
The analogy with classical mechanics can be taken further still. The definition of II

in equation (36),

H(g, ) + =0, (50)

can be expressed as a partial differential equation in the n+ 1 variables (gã, t). Since, when

the theory is solved, q5a = we have

+H(g,)=0, (8)
8tg 8g

which is clearly an analogue of the Hamilton-Jacobi equation. (That the RG equation

ought to be expressable as a Hamilton-Jacobi type equation was first suggested to the

author by Denjoe O’Connor and Chris Stephens [11].) Thus the generating functional in

quantum field theory (or free energy density in statistical mechanics) is playing the role of

the action in classical mechanics (Hamilton’s principal function).
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This structure suggests a reformulation of the renormalisation group. Instead of ex

pressing the RG running in terms of /3-functions and couplings, which can be thought of

as co-ordinates on configuration space (the tangent bundle T(M)) it may be useful to use

instead phase space variables (the co-tangent bundle T*(M)). Any quantity, A., should

then be considered to be a function of the 2n co-ordinates (g&,
q) and possibly also the

renormalisation point = in ic. The RG evolution of A(g,
, ) is then given by,

dA OA OH DA OH 8A OA
(51)

where {A, H} is the usual Poisson bracket with {ga, } = 8a Since there is no explicit ic

dependence in the Hamiltonian (37) H(g, b) is a RG invariant (a constant of the motion)

(52)

but this is only true when there is no explicit ic dependence in the /3-functions.

In particular the RG evolution of N-point Green functions is of key importance in any

theory. These can be viewed as rank N tensors on the space of couplings,

(N) -

GcL1...aN(1,... ,XN) =<1(x1).. . aN(XN)>, (53)

where = — ç has zero vacuum expectation value (and is independent of

A). The RG equation for G?.N(xl,. .. , x) is obtained by the process described above,

d (N)

b 0 (O/3 8 D 8 (N)
g,+/3

g,t
8bU

g,t)
(54)

If the co-vector basis dga is also included, so as to write the tensor in co-ordinate free

notation G(N) = G?.N (x1,. . .

, )dga1 ..

. dg, one arrives at the equation

(dG(N))

q

= G?.aN +

—qc(Ob/3 )j_ Gl...aN OU--1-- 1”aN

Ub g,t U(/)b g,t

(55)

The RG equation for N-point Green functions in the Haniiltonian formalism is finally

obtained by observing that G(N) can equally well be written in bare co-ordinates and so

is independent of . The left hand side of (55) therefore vanishes, = 0, and the RG

equation is

G?.aN (g, & t) + /3b8bGaN (g, ) + Iba+laN (g, t)

i=1 (56)

= (&(ab/3c) + D8U)

14



Alternatively, using equation (47) and allowing for the ga and t dependence of q after the
theory has been solved, this equation can be re-expressed as

, t) + G?.aN (g, , t) + c(8(m t))
G?.aN (g, , )

N (57)

+ (8a)G?..1ba.%...a(g,&) +
(8(t))

G?.aN(g,t) = 0.

Were it not for the last term on the left hand side of this equation, it would just be the
definition of the Lie derivative of G(N) with respect to the vector field - the last term
is a correction to this interpretation. That the RG equation for N-point amplitudes could
be written as a Lie derivative was observed in [10], and corrections to this interpretation
were investigated in [12]

Returning now to the general formalism let us consider more general canonical trans
formations. A renormalisation group transformation is like time evolution in classical
mechanics and as such preserves the symplectic structure on the 2m-dimensional space
(ga,çb),

= t=const = dqa A dga. (58)

Of course, there will in general be other important canonical transformations which do
not necessarily correspond to RG transformations. In particular, the transformation from

bare to renormalised couplings preserves &,

(59)

but in a general renormalisation prescription this would not correspond to a RG trans

formation (except perhaps if the theory is regularised by putting it on a lattice, in which

case the bare couplings do have the interpretation of just being the renormalised cou

plings at some very high energy, As). Since the bare couplings are independent of the

renormalisation point, j- = = 0, this transformation is analogous to the canonical
transformation in classical mechanics which takes one from time dependent phase space
variables (qa(t), pa(t)) to the initial point (q’, p). Referring back to the Hamilton-Jacobi
equation (8) we see that the generating function for this canonical transformation, in the

familiar classical mechanical sense, is nothing other than the generating function(al) of the

quantum field theory, w.
The analogy with the Hamilton-Jacobi equation of classical mechanics can be further

highlighted by explicitly indicating that w(g, t) depends on the subtraction procedure and

writing it as w(g(), go, t). This emphasises its dependence on the counterterms zg =

ga(j), and does not affect the argument that = 0. For a lattice regularisation g
really can be thought as lying on the RG trajectory and the analogy between w(g(t), go,

and Hamilton’s principal function, the action S(q, qo, t) along a classical trajectory is even

stronger.
A crucial difference between the phase space approach to the RG presented here and

classical mechanics lies in the Legendre transform,

H(g, ) — = 0, (60)

15



with 13a
=

which vanishes and in particular is not invertible. However, as the

examples of the next two sections show, the flow is still far from trivial!

The Legendre transform presented here is also much simpler in form than quantum

field theory Legendre transform introduced by Jona-Lasinio [13] . The latter is imple

mented at the level of the generating functional w itself, rather than on its derivative L,

and this leads to the effective action, which most certainly does not vanish.

Note that the Hamiltonian (37),

(61)

actually has a simple physical interpretation. The right hand side of this equation is just

the negative of the usual definition of the vacuum expectation value of the trace of the

energy-momentum tensor of the theory, H = — < T >. It should not come as a surprise

that < T >= g since varying t with the couplings fixed is completely equivalent to a

conformal rescaling of the metric. The derivative g acting on w simply pulls down the

action from the exponent and then varies the metric leading to < T >. Thus the entire

RG evolution is governed solely by <T>.
At fixed points of the RG flow (conformal field theories) the Hamiltonian vanishes,

because the /3-functions do. However once the theory is solved and explicit expressions for

q in terms of ga(t) and t are substituted into the Harniltonian, the resulting function is not

analytic at fixed points. Derivatives higher than the first may be singular, as the example

of A treated in the next section shows. This is to be expected since the Hamiltonian is

defined in terms of the free energy density which is non-analytic at critical points.

The analysis so far has assumed that a subtraction procedure is chosen so that the

/3-functions only depend on ic implicitly through ga(,j) and have no explicit ‘ depen

dence. Sometimes, however, it may be convenient to use a subtraction procedure which

results in /3-functions which have an explicit i dependence, 13a(g, t). This can be incor

porated into the present framework by considering t to be like an extra coupling and

extending the n-dimensional manifold M to a n + 1-dimensional manifold ME with t

as the extra co-ordinate. The momentum conjugate to ± is (minus) the Hamiltonian,

= 8-’w = —H(g, , t). The 2n-dimensional phase space T*(M) is now extended to a

2n + 2-dimensional phase space T*(ME). By definition one has /3 = 1. This is clearly

analogous to the situation in classical mechanics where phase space is extended to include

the energy and time as extra co-ordinates. The Haniiltonian on the extended phase space

is
7(g, q, t) = /3(g t)qa + çbt, (62)

and a new evolution parameter r is introduced which is ultimately identified with t when

the theory is solved. When the theory is solved one has 7E = 0, which is just the

Hamilton-Jacobi equation for H(g, q5, t) =

=0. (63)

* The usual Legendre transform involves only one operator j(x)(x), composite opera

tors being obtained by multiple functional differentiation at the same point. But this can

be extended to include sources for composite operators [5].
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On the extended phase space Hamilton’s equations are supplemented by

87E
— a

— — a — —(0,8 )cba. (64)
uT u’ g ,v

In other words, with r = t, = = and the dependent Hamiltonian H(g, , t)

on T*(M) is not a RG invariant when such subtraction procedures are used. Apart from
this difference the analysis is the same as before and the evolution can be described on
T*(M) using equations (44) but with explicitly t dependent13-functions.

Finally one might ask, what is the special ingredient of renormalisation group flow

which allows it to be written in Hamiltonian form? After all, one cannot expect any vector
flow to be expressible as a Hamiltonian flow. The crucial ingredient is the fact that = 0.
Thus the renormalisation group is, as the name implies, a symmetry. This leads to the

existence of the one-form e, which reflects this symmetry, as it is constant along the RG
flow, C€’ = 0 since i€ = 0. In particular, as stated at the beginning of this section,

0 and one cannot, in general, get Hamiltonian flow if A is ignored. Note that

restricting e to surfaces of constant t, 8 = etconst gives ie8 = H, as expected for a

Hamiltonian vector field.
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§4 An Example - Massive

The construction of the previous section will now be applied to the example of mas

sive ). We shall use dimensional regularisation and minimal subraction in D 4 —

dimensional Euclidean space. We start with the Lagrangian (10), with a coupling for the

identity operator included and k0 set to unity,

1 1 )3.0 4
= ô,o8SDo +jopo + +16ir2-- +A01 (65)

(the factor 167r2 is inserted to tidy up some later formulae - it is X0 which is really the

expansion parameter in s°4 theory). It will be assumed that m > 0 and that radiative

corrections do not change this. A cubic term has been omitted because it can always be

eliminated by shifting the field S0o — y + const. (independently of the scaling that sets

k0 = 1).
The scalar field o has canonical dimension 1 — and the couplings jo, m, .X0 and A0

have canonical (mass) dimensions 3 — -, 2, and — e respectively. For simplicitly we shall

restrict ourselves to the consideration of theories symmetric in cpa —f —cpa and set = 0.

The regularisation of the composite operators follows the analysis of [3], but note that

here A0 has the opposite sign to that reference. On dimensional grounds one expects

A0 =,4_E(A +m4F(, e)), (66)

for some function F\, e), analytic in the renormalised coupling ) when e 0 (as stated

earlier all the renormalised couplings are rescaled to be dimensionless by multiplying by

canonical powers of ,c - thus m2 = ic2ñi2 where ñi2 is the usual mass with canonical

dimension two).
In dimensional regularisation the renormalised couplings are given in terms of the bare

couplings by
m2 =i2z2(.\, e)m ). = tt_EzA(, e))0

A = ,cZ4A0—,c4mzX, 6)F(A, e), (67)

where z2 and z are the usual renormalisation co-efficients for the mass and cp’ coupling.

Had the linear source been retained, wave function renormalisation would also have entered

via j =

The /3-functions are immediate,

____

dzA
/3——e.\+/3(’\) with =z ,c,—

/3m2
= 2

(_2 + 8())m2 with S() = (68)

/311 =
= (—4 + e)A + m4C(A) with ) =

(e — 28())F —
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In particular the potential factorises in minimal subtraction, U(A,m2)= m4C(). These

/3-functions can be supplemented by wave function renormalisation which may be obtained

from the /3-function for j,

= = ± ± with 7(x) = z’,cL (69)

and j is set to zero after 7(;\) has been extracted. Of course e can be put to zero in

all of these /3-functions since everything is finite. As is well known, the functions can be

developed in a power series in \

/3(x)
= 3\2

+
(\3)

()
= 1

+ o()

5(x) = — +
(3)

(70)

()= 32(1+8+0))

(for the \2 term in () see [14] .) From equations (67) one has

- / E?Z’ E m26z1 2 m4{F(€—26)+ç} 4—c

a i —c+/3) —E\+J3) (—c+/3)

(Z )a I 0 z1i2 2m2F4_E (71)

0 0 ic4

Thus the renormalised operators are

(z,cc’\ 16ir2 (m2Sz’ic2N

_________________

4! —e+/3 —eA+/3
1

(72)
m2 =z1,c,2—- +2m2F,i4_E1

=

(strictly speaking the first of these equations should have a term on the right hand side

involving the equations of motion for the field [3], but since these operators will only be

used inside expectation values, this is omitted).

In order to evaluate expectation values of the renormaiised operators one has to in

terpret the meaning of the operators and y. In a functional integral approach, these

would be the objects appearing in the exponential. When brought down by differentiation

they should be considered as time ordered products in expectation values, but of course

there are divergences because they consist of products of the field at the same point. These

divergences can be treated in dimensional regularisation in the usual way, by using Wick’s

theorem for free fields and expanding expectation values perturbatively. For example for

the operator x) Wick’s theorem gives

(x) = (x):
+ D(o), (73)
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where denotes normal ordering (with respect to the renormalised mass) and

I dDp
D(x) =< oo(O)

> J (2)D (p2 +m2)
(74)

Performing the integral using dimensional continuation yields

2

D(O) =
1 (m 2(

-1
±

(75)

Thus the expectation value is

21< > 1 () 2r( -1+ + o(), (76)

and the higher order terms can be obtained by expanding the exponential in the functional

integral and performing the space integrals (note that <: (x) :>= o(\) is not zero at

higher orders because the normal ordering is only defined for free fields). Including the

identity term (72) in the expression for m2 one finds that a pole in F cancels the pole in

D(O) (as it must do) and, after setting e to zero

<m2 > (—1 + mm2)+ o(A), (77)

where the MS scheme has been used so as to avoid —‘y + ln47r terms.

Including the next order contribution gives (after some work)

ic4m4

128
(1 lnm2)2+ o(A)

m2 < m2 > 2
{_i + mm2 + ((lnm2)2 — lnm2)+ o(2)} (78)

=< A >= ic to all orders.

These can be derived from the generating functional

w(,m2,A,t)
= (— ±lnm2± (1 —mm2)2+o(A2)) +4A (79)

by qa = -. The calculation of the order A2 terms in w would require extracting the

finite part of the three loop diagram ©.
The Hamiltonian is thus

H(g, ) = 3a(g)
+ 80

= (A) + (-2 + 8(A))m2m2+ (m4(A) - 4A)A.
( )
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It is not difficult to prove, from equations (68), (70) and (78), that this is a renormalisation

group invariant, = 0, to order A. In fact one finds H = — = —4w when the explicit

solutions for the VEV’s (T8) are substituted into the Hamiltonian. This is a consequence

of the fact that all couplings have been scaled to be dimensionless so that the only explicit

ic dependence in (79) is the trivial volume factor.
The renormalisation group evolution of the vacuum expectation values is thus given

by
dm2

+ (8m2) = 1D82U

d
(81)

+ = _kDUU,

where the potential. is U(g) =2+o(A2). Using the explicit expressions for q in (78) and

the /3-functions, (68) and (70), it is a straightforward calculation to check these equations

explicitly to order A.
Three comments on the analysis presented here are in order.

(i) Using dimensionless couplings will always give g = 4w Thus H = —4w. However,

it must be stressed that in applying Hamilton’s equations ga and in H(g, q) must be

considered as imdepemderd variables. It is only after the theory has been solved and çi5a(g, t)

determined as a function of ga and t that H can be identified with —4w.

(ii) The Hainiltonian, H = — < T >, is a constant of the motion (RG invariant). This

is consisted with the observation that conservation of momentum implies that the energy-

momentum tensor does not get renormalised (provided the subtraction procedure is com

patable with translational invariance [15], as MS is). Thus the bare energy-momentum

operator is equal to the renormalised one and < To >=< T >. (The energy-momentum

operator here is, of course, the “improved” operator of reference [15], obtained by coupling

the the scalar field o to the curvature scalar 7?. of D-dimensional space before varying

the metric and only setting 7?. = 0 afterwards.) How then can the statement that the bare

couplings are RG invariants be reconciled with the fact that —H =< T >=< T0 >L 0?

One answer is that H has canonical mass dimension D despite being a RG invariant. The

dimensionless Hatniltonian H = ,c1H vanishes at high energy. Perhaps a more rigorous

way of stating this is to observe that, as we are using dimensionless renormalised couplings

so we could also use dimensionless bare couplings

A0 = = ,c2m, A0 = kEAo (82)

where the quantities with the tildes are the dimensionful ones. One then obtains

dw(go,
= /3+ <T0 >= 0. (83)

Since /3 are now non-zero (they are simply the negative of the canonical dimensions of

the couplings) this equation is quite consistent. For a regularisation procedure which

does not preserve translational invariance one looses the Ward identity that protects the

energy-momentum operator from renormalisation and it is no longer necessary to have
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(iii) Setting Ic0 = 1 and then forgetting about it may at first sight seem a little dangerous.

After all it is clearly related to wave-function renormalisation and should run like all the

other couplings. The fact that the operator 8o8o can be ignored with impunity is

related to the equations of motion (the Schwinger-Dyson equation). There is always one

linear combination of the basic operators which does not get renormalised, namely that

corresponding to the “equations of motion” Eo(x) = y0(x) 6(z)’

E0 = —0D0± my + (162). (84)

There is a “Ward identity” (the Schwinger-Dyson equation) which ensures that this com

bination of linear operators does not get renormalised, so ER = E0. For this reason one

of the operators in the original Lagrangian is always redundant and can be ignored, and

here it is 8’cpo8,çoo that has been ignored. Strictly speaking though &o8o is not the

same operator as —poE o and they should be treated separately. A complete analysis is

given in [3], but these complications are omitted here in the interests of clarity.
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§5 Symmetries

The notion of a Poisson bracket structure for the renormalisation group evolution, as
introduced in section three, immediately raises the question of how symmetries might be
implemented on the phase space (ga,

a). As a first, almost trivial, example of a symmetry

consider a N-component scalar field p, i = 1,... , N with Lagrangian

= + (2 + (85)
ijkl

There are in general 1N(N + 1)(N + 2)(N + 3) different couplings and each of these

could renormalise differently. The different renormalisations of the various fields yZ would

result in N different renormalised masses m as well as the renormalised couplings

(the renormalised couplings are not all independent parameters, of course, being functions

of only N(N + 1)(N + 2)(N + 3) + 1 bare couplings). If however the bare theory enjoys

global SO(N) invariance all the couplings reduce to only two, which will be denoted by

)o and ). Furthermore, if there are no anomalies, this symmetry survives at the level of

the renormalised couplings to give only three renormalised parameters m2, ) and ‘!. There

is a Ward identity which demands that all the renormalised masses m must renormalise the

same way, i.e. m = zmm, with the same renormalisation constant Zm for all the masses

m. Similarly all of the renormalised ‘p4 couplings (a priori 1N(N + 1)(N + 2)(N + 3)

in number) reduce to only two, \ and V. Thus the phase space, which is in principle

N(N + 1)(N + 2)(N + 3) + 2N dimensional, is reduced to being only six dimensional by

the symmetry.
A less trivial example is supplied by massless QED coupled to a massless charged

scalar field, with Lagrangian

= +i07D0+ (ñ() + (86)

where the co-variant derivatives are defined by

= (8 + ieoAo,L)1Ibo (87)

= (8 +ioAo)’po, (88)

and
= (8A0 — 8A01)(&’A — 8vA). (89)

A coupling for the identity operator is not necessary since the theory is massless. Also

no gauge fixing term is included for the moment because a perturbative analysis will not

be used here. In order to avoid volume divergences the theory can be formulated with

periodic boundary conditions, i.e. on a four dimensional torus T4.
There are three independent couplings, e0, and A0, but Ward identities force eo

and o to renormalise in the same way so that their renormalised couplings are related to
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the bare counterparts with the same renormalisation constant (i.e. e = ze0 and = z0

where z is the photon wave function renormalisation constant A = zA’j. Thus

de 7’ 1dz’\ - d /‘ dzN
= =

ç\ -) e and i3e = = (90)

which implies that = e,8. The /3-functions are therefore not independent. In particular

d /\ (91)

which immediately suggests a change of co-ordinates from (e, e) to r = \/e2 + 2 and

= tan’(ë/e), with 0 t9 <ir/2, so that t9 is a RG invariant, = 0.

The conjugate variables to e, and X are

—
d z<iA7b>

= dDz <A> + Hertian conjugate (92)

d >,
4.V JT

where V is the volume of the torus. The integration over space is kept explicit here so as

to mantain gauge invariance which is easily proven by integrating by parts and using the

equations of motion. The two VEV’s still have canonical mass dimension D due to the

volume factors outside the integrals.
Since the theory is massless the potential U vanishes and the RG equations for the

VEV’s are

+ (8e/3e + (8e/3 + (8e/3j = 0

+ (8/3 + (8/3 + (8/3j = 0 (93)

+ (8/3C) +(8/3ë) + (8/3A)h = 0.

However these are more elegantly expressed in the (r, ‘z9) variables with

br = cost9 e + sint9
94

h=—rsint9e+rcost9
(

and
= cost9/3e + sint9 /3 =

cost9 (95)

= 0.

Note that since cos t9 0 a positive /3 always gives a positive /3, in agreement with the

statement that only a non-abelian theory can be asymptotically free.
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The RG evolution of the VEV’s in terms of these new variables is now given through

Hamilton’s equations as

+ (8/3V) + (8/3A) =

+ (3/3T) + (o/3) = o (96)

+ (8/3r + (8/3)h =0.

Since /3 vanishes the Hamiltonian

H(r, , , rh)
= /3Vfr

, + /3A(r, 9A) (97)

is independent of and ‘z9 is a constant of the motion. In analogy with classical mechanics

t$ might be called an ignorable co-ordinate, but the roles of co-ordinate and momenta in
the RG are really reversed from those of classical mechanics. It is more correct to say

the is an ignorable expectation value because the Hamiltonian is still a non-trivial

function of t9. The situation is in fact more involved here than in classical mechanics

since the momentum dual to an ignorable co-ordinate in classical mechanics only appears

quadratically in the Hamiltonian, whereas the t dependence of H in equation (97) can be

much more complicated. The invariant t9 however still plays the same role as an invariant

in classical mechanics - since {t9, H} = 0 it generates a symmetry on phase space via

the Poisson bracket operation. This can be viewed as the implementation of the Ward

identities on phase space.
The fact that one of the expectation values can be eliminated from the phase space

can be understood from a physical point of view in the following manner. If the gauge

field A0. is rescaled by A0. —* -A0 then the gauge coupling completely drops out of the

matter field terms in the Lagrangian (86) and only appears in the kinetic energy term for

the gauge fields, 1--F, only the ratio t3 appears in the matter field Lagrangian and this

is a RG invariant. Defining a new variable qo = and forgetting about t9 there are now

only two expectation values to be considered, q5q = < F > and q. One may expect

0 at large energies, even in a massless theory, since the /3-function for e is positive

[16].
There are further interesting aspects of gauge theories when a gauge fixing term is

added. If a term is introduced into the Lagrangian (86) then there is another /3-

function, 377 =
. In minimal subtraction schemes, the /3-functions for the other couplings

are independent of the gauge fixing parameter , so 8,/3’(r, i9A) = 63(r, t9.A) = 0. There

fore the expectation value qS = J’,4 dDx < (3.A)2 > evolves under RG flow according

to
dq5 _ft(a j)dt

+(0/377)q = 0 q(t) = &‘(0)e tO (98)

If q is zero at some value of t, then it is zero at all values and 4 is another constant

constant of the motion. This reflects the fact that i plays no physical role in the theory.
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If a renorinalisation prescription other than minimal subtraction is used, however, it may

not be the case that the other couplings have 3-functions which are independent of the

gauge fixing parameter. However, holding to the philosophy that a change in regularisation

prescription is just a change in co-ordinates, there must be some quantity that is a RG

invariant, i.e. the co-ordinate transform of the dimensional regularisation co-ordinate 77 -

it may look messy in the new co-ordinates but it must exist.
In conclusion it would seem that, just as in classical mechanics, the Hamiltonian

framework is a very powerful one for the discussion of symmetries, which play such a

central role in all discussions of quantum field theory.
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§6 Conclusions

Before summarising the main results of this pa2er a few comments will be made
about the global topology of the space of couplings M, as promised in the introduction.
Consider for definiteness massless QED with the only coupling being the electron charge e

(the identity operator can be ignored). It is really a = (or 1/a) which is the important

parameter, and a must be positive since a negative value would mean that the theory
would be unstable, as pointed out by Dyson [17j. Thus a = 0 is not an analytic point

and one cannot continue, even infinitesimally, to a < 0. Similarly 1/a = 0 cannot be

an analytic point. The manifold M, the positive real line, has two boundary points both

of which are non-analytic points of the theory. For the higher dimensional case points of

non-analyticity are clearly also of central importance. Such points might be isolated or

might form sub-manifolds of M with dimension k < n. If the non-analytic points were

to form a sub-manifold of co-dimension one (a hypersurface Ic = n — 1), then this would

act as an effective boundary DM. In any event, it is clear that any understanding of the

global topology of M will be inextricably linked with an understanding of the points of

non-analyticity.
In summary it has been argued that the renormalisation group evolution of couplings

and vacuum expectation values can be described as a Haniiltonian flow on the 2n dimen

sional phase space T*(M) with the Hamiltonian given by

H(g,cb,t) /3a(g)q5± (U(g,t) —DA)qA, (99)

which can be identified with minus the vacuum expectation value of the trace of the

energy-momentum tensor.
The natural variables canonically conjugate to the couplings are the expectation val

ues, çb = Ociw(g, ), where ‘w(g, t) is the generating functional or free energy density. For

theories with massive couplings the cosmological constant plays a central role, since its

/3-function /3A = U(g, t) — DA gives rise to a potential which acts as an effective force in

the RO evolution of the VEV’s

= _iDdU(gt) (100)

where q =
q!dga and dU =

The RG evolution of any function A(g, , t) can be determined from the Hamiltonian

= {A, H} +
g,

(101)

In particular the RG evolution of the Hainiltonian itself is given by

dH OH
= -- =
8/3a(g) ±OtU(g,t)qA, (102)
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and H is a RG invariant if a subtraction procedure is chosen so that the/3-functions are
independent of ic. Alternatively the cosmological constant can be omitted and the RG
evolution of the Hamiltonian restricted to T*(M), h(g, , t) = + U,i, is given by

= = 8t(g,t) + D (DU(gt) + 8tU(g,t)), (103)

which can only be a RG invariant if both U = 0 and the ,B-functions have no explicit ic

dependence.
The RG equation for the N-point Green functions is

G?.aN (g, & t) + 8bG?.N (g, & t) + (8 b)G(g &
(56)

= (c(ab) + 8bU) G?.aN(g,,t).

The crucial ingredient that gives rise to Hamiltonian flow is the underlying symmetry of
the renormalisation group, reflected in the fact that = 0. Ward identities give rise to

further constants of the motion which generate symmetries on phase space via the Poisson

bracket structure.
The RG equation for the generating functional w(g(t), t) can be interpreted as a

Hamilton-Jacobi equation

+H(g,-,t) =0. (63)
8tg

Table 1 provides a summary of the correspondence between concepts in quantum field

theory or statistical mechanics and classical mechanics
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A Quantum Field Theory-Classical Mechanics Dictionary

Quantum Field Theory or Classical

Statistical Mechanics Mechanics

Couplings g(t) Co-ordinates q(t)

/3-functions /3 (t) Velocities (t)

Vacuum expectation values cb,(t) Momenta paQt)

Bare couplings (g,q) Initial point (q’,p)

Generating functional w(g(t), go, t) Action S(q(t), qo, t)

(Free energy density) (Hamilton’s principal function)

Hamiltonian Hamiltonian

H(g,q,t) = /3&(g,)çb H(q,p,t) = g(q)pc,,pb + U(q,t)

Hamilton’s equations Hamilton’s equations
— j — c3H 0. — — 8H

-‘ q
—

p——

Potential U(g,t)=/3A+DA Potential U(q,t)

RG flow of VEV’s = -dU Newton’s 2d law = -dU

RG equation for w Hamilton-Jacobi equation

=0 --H(q(t),-,t) =0

No massive couplings U = 0 Free particle U = 0

No explicit ic dependence in /3(g) Conservative system

Anomalous dimensions Pseudo-forces (Coriolis)

RG invariant {t9, H} = 0 Constant of motion {t, H} = 0

(Ward identity) (Symmetry generator)


