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Abstract

We analyse the queue Q’ at a multiplexer with L inputs. We obtain a large

deviation result, namely that under very general conditions

lim L’ logP[Q’ > Lbj = —1(b)
L—*c’o

provided the offered load is held constant, where the shape function I is expressed in

terms of the cumulant generating functions of the input traffic. This provides an

improvement on the usual effective bandwidth approximation P[Q’’ > b] e_Sb,

replacing it with F[QL > b] e_T&/L). The difference 1(b) — öb determines the

economies of scale which are to be obtained in large multiplexers. If the limit v =

— limt_+ tA(5) exists (here A is the finite time cumulant of the workload process)

then limb (1(b) — bb) = ij’. We apply this idea to a number of examples of arrivals

processes: heterogeneous superpositions, Gaussian processes, Markovian additive pro

cesses and Poisson processes. We obtain expressions for v in these cases. ii is zero for

independent arrivals, but positive for arrivals with positive correlations. Thus econom

ies of scale are obtainable for highly bursty traffic expected in ATM multiplexing.
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1 Introduction.

The problem of determining loss probabilities in queueing systems is crucial in the devel

opment of emergent technology of telecommunications networks using the Asynchronous

Transfer Mode (ATM). Much recent work has focused on the analysis of the single server

queue with general arrivals. This enables one to analyse queues with correlated arrivals, such

as those which occur in the buffer of an ATM multiplexer whose input is a superposition of

highly bursty sources.

Consider a general single server queue. For t E T (here T = R+ or Z+) denote by A the

amount of work which arrives to be processed in the interval [—t, 0) and by St the amount

which can be processed in the same interval. If more work arrived than can be processed,

the surplus waits in the queue. The workload process W is defined by W0 = 0 and

(1.1)

and the queue of unprocessed work at time zero is

Q=supWt. (1.2)
t>o

The relation between the tail of the queue length distribution and the large deviation prop

erties of the workload processes has been established in progressive degrees of generality.

Following a heuristic proposal by Kesidis et a] [20] (see a1o [29, 5] for further bibliographical

details), Glynn and Whitt [14] showed for T = Z that if the pair (W/t,t) satisfy a large

deviation principle then
urn b’ log P[Q > b] = —8, (1.3)

where
6 = sup{8 )(O) 0}, (1.4)

and \ is the cumulant generating function of the workload process defined by

= llrntlogE[e&Wt]. (1.5)

Alternatively, 6 can be expressed through

6 = jnftA*(t_l) (1.6)

where ,\*, the Legendre-Fenchel transform of \, is defined through

:= sup (xO
—

(8)). (1.7)
6

(We refer the reader to the book Dembo and Zeitouni [8] as a comprehensive reference for

large deviations, that of Bucklew [3] for a more heuristic approach, and the article of Lewis

and Pfister [24] for a general introduction).
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Recently, Duffield and O’Connell have extended this result in two directions [10]. Firstly,

the same result is shown to hold when T = R+, subject to a local growth condition on W.

Secondly an analogous result holds with large deviation scalings more general than b’, t in

(1.3) and (1.5). These are appropriate for treating, for example, the case where the workload

is fractional Brownian motion: this has been proposed as a model for the workload by Leland

et a] [23], based on observations of Ethernet traffic.

The relation (1.3) is the basis of the effective bandwidth approximation to the queue length

distribution:
P[Q > b] e_Sb.

(1.8)

(See for example, [5, 16, 17, 13, 19, 30] for development, applications and further references).

Themotivation here is that for ATM multiplexers one wants to estimate exponentially small

loss probabilities, which in practice are to be as small as iO. However, there is already

theoretical and numerical work indicating that (1.8) is insufficient for this purpose. For a

queue where the input is an L-fold superposition of markovian sources served at constant

rate s, Duffield [9] proves the upper bound

P[Q > b] e_e_sb (1.9)

6 is as before and and 6 depend only the the traffic due to a single source, and on the

offered load through the ratio s/L. In the example of on-off markov sources with positive

autocorrelation, i is strictly positive (see Buffet and Duffield [4]). Thus in a large super

position, the loss probabilities may be exponentially small even for small b: the effective

bandwidth approximation (1.8) can be extremely conservative through over-estimating the

loss probabilities. On the other hand, if u were negative, then (1.9) suggests that (1.8) will

under-estimate the loss probabilities at large L, even for large b. Moreover, both types of

error become more severe as L increases at constant load. Both these types of behaviour

have been observed though numerical studies of queueing models by Choudhury et a] [7],

the effective bandwidth approximation, when compared with these results, is shown to over

estimate the loss probabilities in examples of bursty sources, and under-estimate them in

examples of sub-bursty sources.

Thus we are led to investigate the large deviation properties of the queue length distribution

in the size L. Apart from the above considerations, we are motivated by the observation in

examples that the broad features of the queue length distribution remain roughly invariant

when both the size L and the queue length b are jointly scaled. (See simulation results in

the thesis of Corcoran [6] and heuristic .arguments by Rasmussen et a] [26]). For example,

let Q’ be the queue due to a superposition of L identical sources, served at constant rate

sL (s fixed), and denote by ) the finite time cumulant due to a single source with arrival

process A served at rate s:
= t’ log E[eStth}. (1.10)
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The workload 1/V/i of the superposition is the sum of L independent copies of Wt = — st

and Q = SUPt>o W. As a consequence of Theorem 1 of the next section it follows (under

suitable local regularity conditions on the workload) that for b> 0

2irnL_hlogP[QL> Lb] = —1(b) (1.11)

where I is the shape function defined by

1(b) = inft,\(b/t). (1.12)

Such a result is shown to hold for heterogeneous superpositions also. The heuristic interpret

ation of (1.11) is that for each t, the family (W/L, L) of superposed workloads satisfies a

large deviation principle with rate function (t)t)*(.) = t,\(./t). The large deviation heuristic

is that rare events occur in the most likely way: the most likely way for a (rescaled) queue

length b to be exceeded corresponds to the infimum of t —* t)(b/t).

The shape function can be seen to give the large scale corrections to the effective bandwidth

approximation: (1.8) is replaced by

p[QL > b] (1.13)

(Observe that if one replaces by ) in (1.12), where A = 1im. then 1(b) reverts to

bS). 1(b) — 5b determines the error incurred by using the effective bandwidth at large L, or

to make a more positive statement, it determines the economies of scale to be obtained in

multiplexers of a large number of sources.

We examine the initial value 1(0) and asymptotics as b —* cc of the shape function I in

Theorems 2 and 3. For T = Z, a workload with stationary increments, 1(0) = )(0). This

is just the large deviation result for the loss probability in a bufferless resource as found by

Hui [16, 17]. The asymptotics of I are

lim(I(b) — 5b) = z (1.14)

where
v = — lim t.A(6) (1.15)

t—co

provided this limit exists, and subject to some regularity conditions in the case T = Z. One

sees immediately that ii = 0 for uncorrelated arrivals, since then \(5) = A(s) = 0. Thus

there are no economies of scale to be gained at large (rescaled) buffer sizes for uncorrelated

arrivals, since then —6b is asymptotic to 1(b) for large b. On the other hand, a sufficient

condition for ii to be positive is that the workloads on disjoint time intervals are positively

correlated (Theorem 4). This is typically the case for highly bursty sources. A generic

configuration with v> 1(0) > 0 is illustrated in Figure 1.
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It is interesting to note that v depends on finer details of the workload process than those

which determine the asymptotic slope 6: it depends not only on the limiting cumulant A but

rather on the manner in which the A approach A as t —* oo. To borrow from the terminology

of physics, u is not a thermodynamic quantity.

The paper is organised in the following way. The foregoing results are fully stated in section

2 and proved in section 3. In section 4 we apply them to a number of examples. The case of

heterogeneous superpositions is worked out in 4.1. Gaussian workload process are covered in

4 and the specific example of Ornstein-Uhlenbeck processes in 4.3, including a calculation of

the shape function for a heterogeneous superposition. Markov Additive Processes are treated

in 4.4. In this case we can express v in terms of the the maximal eigenfunction of the (Laplace

transform) of the markov transition kernel (Corollary 5). Comparisons of the approximation

(1.13) with simulation are made for superpositions of markovian on-off sources. Finally, in

4.5 we apply the results to a very simple class of examples: independent Poissonian arrivals

with general service distribution. In light of the explicit distribution for M(i’c)/M(L,u)/1

it is not surprising that in this case 1(0) = v = 0: there are no economies of scale to be

obtained for Poissonian arrivals at any buffer size.

2 Large deviations.

We begin by stating our hypotheses concerning the workload processes, then give some

examples which satisfy the hypotheses. For each L E N, (W)teT (where T = Z or R) is

0
Figure 1: Economies of Scale with v > 1(0) > 0

log P[QL>

0 20 40 60 80
b

100
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a stochastic process, and lVj = 0. The queue length at time zero is

QLsupwL (2.1)

(Note that if the increments of WL are stationary, then the distribution of QL is also sta

tionary). For & R define the cumulant generating function

= (Lt)’ log E[e0j. (2.2)

Hypothesis 1

(i) For each E R, the limits

urn )() and )(8) = urn )(O) (2.3)
L—+.co t—ec.

exist as extended real numbers. Moreover, the first limit exists uniformly for all t

sufficiently large.

(ii) -\ and,\ are essentially smooth. (Both are automatically convex by Holder’s inequality).

(iii) There exists & > 0 for which )‘(8) < 0 for all t E T.

(iv) (T = R) For all t r 0 define TilT = sup0<,.,< — WLI Then for all R

urn sup lim sup L’ sup log E[efj = 0. (2.4)
r—+O L—*c tO

Remark: if Hypotheses 1(i),(ii) are satisfied, then by the Gartner-Ellis theorem, for each

t the pair (Wj”/L, L) satisfies a large deviation principle with good rate function given by

the Legendre-Fenchel transform of , which we denote by ). In other words, for any Borel

set F,
limsupL’logP(Wt/LE F) —inf)(x), (2.5)

xEF

and
liminfL’ logP(W/L e F) — inf .A(x), (2.6)

t—co xET

where
(x) := sup{8x — j(8)}. (2.7)

8eR

For x > 4 where )(x) = 0, it follows that

limsupL’1ogP(W/L > x) —(x), (2.8)
t-+c’D

and
liininfL’ log P(TiVL/L > x) lim—)(y). (2.9)

y\x
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Hypothesis 1(iii) is a stability condition: then there exists a strictly positive solution 5 of

the equation \(6) = 0, which is the asymptotic decay rate of the queue length distribution.

Hypothesis l(iv) is a local regularity condition on the sample paths of the workload.

Examples

• Homogeneous superpositions. There are L identical sources whose backward ar

rival processes are independent copies of (At)teT. The superposition is served at a

constant rate sL: the offered load is independent of L. Then

= = t’ log E[eOAtj — 58, (2.10)

independent of L. Thus is the cumulant corresponding to the workload T’V = — st

of a single source served at rate s.

• Heterogeneous superpositions. Sources are classified by type j in some finite index

set J. There are sources of type j, with L =
L3 sources in total. The backward

arrival process for a source of type j is (A,t)teT. All sources are independent. Then

8) = pc,t(8) —5,
(2.11)

jeJ

where
c,t(O) = t’ log E[e°4.t] and p = L3/L. (2.12)

The limits c(8) = lim_+ c,(8) are assumed to exist with c3(.) essentially smooth.

Then for any 8 R, L —* \f’(O) is convergent provided the limits p = limL+ p exist,

and the convergence is uniform in t since J is finite. Heterogeneous superpositions

have been previously analysed through the effective bandwidth approximation (see

references above) and through eigenfunction expansions for classes of Markovian fluid

models by Kosten [21] (building on the early work of Anick et al[1] on homogeneous

superpositions) and finite state models by Elwalid et a] [12].

• Time rescalings. The single source arrival process is AL,t where and the process

(AL,Lt) is convergent in distribution to some process (At) as L —÷ co. The superposition

is served at a fixed rate s. Thus with ZL denoting an L-fold superposition:

Q = sup ((AL,t) — st) (2.13)

t>o

= sup ((AL,Lt) — Lst). (2.14)

t>o

We shall take the limit L —* cc and so assume ‘(8) = (Lt) log E[exp 8>’(AL,Lt—st)]

satisfies Hypothesis 1. This class of models is motivated by examples of rescaled

Markovian sources simulated by Corcoran [6], and of rescaled renewal processes ex

amined by Sriram and Whitt [28] and Rasmussen et a] [26}.
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When T R+, if the arrival process has stationary increments, then for homogeneous

superpoSitions a sufficient condition for Hypothesis 1(iv) to be satisfied is that

urn sup log E[eOAj = 0 (2.15)
r—O

for all 0 E R, where Ar = sup0<<,. Ar’; for heterogeneous superpositions each arrival
process can be taken to satisfy such a condition.

Theorem 1 Under Hypothesis 1, for each b> 0

urn L’1ogP[supW > LbJ = —1(b) (2.16)
t>o

where 1(b) := inf t.A(b/t) (2.17)

For t> 0,0 E R define A(O) = t)(0/t).

Hypothesis 2

(i) j,j7L has stationary increments.

(ii) (T = R) The limit A(8) = limo A(6) exists as an extended real number for all
0 R.

Theorem 2 Under Hypotheses 1 and 2

(T = Z) 1(0) =

(T = R+) 1(0) =

Remark: Theorem 2 says that a stable workload with stationary increments is (asymp
totically) most likely to exceed 0 at the smallest times. But this need not be the case for
non-stationary workloads. The identification of the asymptotics of I requires some technical

conditions, as follows.

Hypothesis 3

(i) (T = Z or T = R) The following limit exists:

:= —lirnLA(6). (2.18)

(ii) (T = Z) and ) are strictly convex and t —* (t + 1)A1(6) — t(6) is bounded above.
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(ii’) (T = Z) A and A are strictly convex; (Ar)’ and (A*)I are uniformly Lipschitz continu

ous on some neighbourhood of A’(6); and

(t + 1)A1(6) - tA(6) = o(). (2.19)

Remark: Hypothesis 3(i) can be understood as follows. Let A(6) = 0. Then A()

— 6k). So the existence of a finite limit v means that t —
t1.

Theorem 3 Under Hypothesis 3(i), and with the addition of Hypotheses 3(u) or 3(u1) for

T = Z, then
— 6b) = v. (2.20)

We shall say more concerning the existence of i’ in the context of Markov Additive Processes

in section 4.4. However, we can make a general statement concerning the sign of i.

Theorem 4 Let l’V/ have stationary increments, and suppose for each L and for each 0

t1 < t2 < t3 t4 that W4 — l/13 and W2 —
W1 are non-negatively correlated. Then if “

exists, it is non-negative.

3 Proofs of the Theorems.

Proof of Theorem 1 : Lower Bound

liminfL’ logP[sup W’> Lb] liminfL’ sup1ogp[WL > Lbj (3.1)

t>o t>o
supIimjnfLIogp[WL> Lbj (3.2)

t>o L—

= sup —tA(b/t), (3.3)

t>o

since by Hypothesis 1(i),(ii) and the Gartner-Ellis Theorem, the pair (W//L, L) satisfies a

large deviation principle with good rate function (tA)*(b) = tA(b/t), and by Hypothesis

1(iii), x (as defined above (2.8)) can be chosen uniformly negative.

Upper Bound: T = Z. For any t, 8> 0 and 8t’ > 0,0 <t’ < t,

P[sup Wfr > Lb] t max P[W > Lb} + P[Wfr> Lb] (3.4)

t’>o o<t <t t’t

< t max e_0t1+t’ (°‘) + eLt”j() (3.5)

o<t’<t
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by Chebychev’s inequality. Since 8) — )(8) uniformly in t, —* (O) and A(O) <0

on (0, 6), we can find 0> 0 and < 0 such that )(0) <e for all L, t sufficiently large. This

means that for such L and t the geometric series in (3.5) is summable, yielding

P[sup W > Lb] t max + e_eLt/(l — eLi) (3.6)
tI>o

o<t <t

Taking logarithms, dividing by L, taking the lim sup as L —* oo and finally taking the

infimum over the Oi we obtain

Jim sup L1 log P{sup Wfr > Lb] max ( max (—t’,(b/t’)), —Ob + te) (3.7)
L—+oo t’>O O<t <t

Recall e < 0 so that taking the limit t —p oo we obtain (in conjunction with the lower bound)

the stated result.

• Upper Bound: T = R. For any > 0 and n e N define

sup W and = (nL)_1 log E[e8]. (3.8)
(n—1)e<tn

By Holder’s inequality then for any p in (0, 1):

n(8) nep)(0/p) + (1 — p)L1 log E[eS,(1J, (3.9)

with WL as in Hypothesis 1(iv). According to Hypothesis 1, for any p E (0, 1) we can make

the second term of the right hand side of (3.9) as small as we like by choosing € sufficiently

small then L sufficiently large. Thus we can repeat the steps (3.4), (3.5) and (3.6) with e

and p fixed, take the limits t — oo then € —* 0 to obtain

lim sup L’ log P[sup W> Lbj < lim sup L’ log P[sup W,> Lbj (3.10)
L—co t>O n>O

psup—t,\(b/t), (3.11)
t>o

since (p.At(./p))* = p\(.), and finally let p / 1 to get the stated result.

Recall for t > 0, 0 R the definition A(0) = t\(8/t).

Lemma 1 For n N, r T
A(0) Anr(0). (3.12)

Proof: This follows from HOlder’s inequality and the stationarity of the increments of J47

For with ,uj > 0 and ,uj = 1

E[e9wt/t] <fT E[eSitt)ji (3.13)
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and hence
A(O)

(3.14)

from which (3.12) follows by taking [L = n1 and t = nr.
S

Pro of of Theorem 2:

tA’(O) = sup —tA(8) = sup —tA(8/t) = A(O), (3.15)

8

so that 1(0) = inft A(0).

For T = Z observe from Lemma 1 that A1(O) A(O) and hence A(0) < A(0). Hence

1(0) = A(0) = A(O).

ForT=R
infA , (sup At)* = A*, (3.16)

the second equality following from Hypothesis 2 and Lemma 1. To obtain the reverse inequal

ity we specialize to a monotonic sequence. We bound above by inft A A := inf A12.

By Lemma 1, n —* A112 is increasing: so n —
is decreasing to its limit, namely A.

Noting the equality

(A)* = (infA12)* = sup A2 = sup A112 = A, (3.17)

we see that as a limit of convex functions A is convex and so A = (A)** = A*, and so we

are done.
-

According to Hypothesis 1(u), A and A are differentiable, so the convergence of A to A

implies the pointwise convergence of A to A’. (See, for example, Lemma IV.6.3 of [11]).

Proof of Theorem 3: Define
3(t) := tA)

(3.18)

Since A(6) —* A’(S) > 0 as t —* 00, t -÷ /3(t) is increasing for t sufficiently large and

limt /3(t) = +00. Set
r(b) := sup{t T I /3(t) b}. (3.19)

Ran(/3) 3 b r(b) is increasing and limb r(b) = +oo. By definition of the Legendre

Fenchel transform of A and (3.18)

tA(b/t) — Sb tA(/3(t)/t) — 6/3(t) = —tAt(S). (3.20)

We obtain upper bounds for limsupb(I(b) — Sb), first for T = R, then for T = Z. We

then show these are equal to a lower bound for lim infb 0(I(b) — Sb).
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Upper Bound: (T = R+) Ran(r) = R, and so for any b e R,

1(b)—Sb = inftA(b/t)—Sb (3.21)

< T(b)(b)(b/T(b)) — Sb (3.22)

= —T(b)A(b)(S), (3.23)

the last equality following from (3.20) because ,i3(r(b)) = b for T = R. Since T(b) —* oc as

b —k oo, then by Hypothesis 3,

limsup(I(b) — Sb) v. (3.24)
b—co

(T = Z) In this case Ran(j3) is a discrete set, but the conclusion (3.24) holds provided we

take the limit along Ran(/3), since /3 o r acts as the identity there. But for any b E R we

have

r(b)(b)(b/r(b)) - Sb = r(b)(b)(/3(T(b))/T(b)) - S/3(r(b)) + Eb (3.25)

where

= r(b) (;(b)(b/r(b)) - T(b)(/3(T(b))/T(b))) -6 (b - /3(r(b))) (3.26)

(b — /3(r(b))) (Sb — 5) (3.27)

where

Sb = (A(b))’(b/T(b)).. (3.28)

Here we have used the fact that since is strictly convex, ) is differentiable (see Theorem

26.3 in [27]);

The proof is complete if we can show that urn sUPb.. Eb 0, since then lim supb, (1(b) — Sb)

<limsupb. —r(b)\(b)(S) = v. Note

/3(r(b)) b < /3(r(b) +1) (3.29)

(for sufficiently large b) and the relations

T(b))(b)(Sb) = b; r(b)(b)(S) = /3(r(b)); (r(b) + 1)A(b)+l(S) = /3(r(b) + 1) (3.30)

from which it follows that 5b S since ) is increasing. (This means Eb is non-negative).

Combining these gives

/3(r(b) /3(r(b)) b -/3(r(b))
= (b)Sb - (b)(5) 0. (3.31)

We now proceed under Hypothesis 3(u) Since, from (3.30),

urn /3(r(b))/r(/3) = lim b)(S) = A’(S), (3.32)
b—*co
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then by (3.31)

b
((b)b) — A(b)(6)) =0.

(3.33)

Hence urn 8b =

(3.34)

b-co

for if not then 5b, > for some > 0 and subsequence b — oo. so lirnsupjco‘\7(b)(b)

AT(b)() 1imsupico Ar(bj)(6+E)r(bj)(6)
= A’(+E)—A’(6) > 0, since A is strictly convex,

in contradiction with (3.33). Finally,

0 b - (T(b)) <(r(b) +1) - (T(b)) = (r(b) + 1)A(b)+l() - r(b)A(b)() (3.35)

which is bounded according to Hypothesis 3(u). Combining with (3.34), then

lim Eb = 0 as required.

Alternatively, under Hypothesis 3(u1), 0 5,, — k(b—/3(r(b)) for some k > 0 independent

of b and so

0 <Eb k (b - /3(r(b)))2/r(b)
(3.36)

< ((r(b) +1) - (T(b)))2/r(b) (3.37)

= ((r(b) + l)A(b)+l(6)— T(b)A(b)(6))2/r(b) (3.38)

which goes to 0 as b —* oc by (2.19).

Lower Bound: (T = or Z) Suppose first that inft tA(b/t) is attained at (b).

inf tA(b/t) — 6b = i(b)A(b)(b/(b)) —
(3.39)

—(b)A(b)(6)
(3.40)

by (3.20) and so
liminf(I(b) — b) ii

(3.41)

b-+co

provided f(b) — oc as t —* oo. But if this is not the case, (b) is bounded. Thus we obtain

a contradiction with the upper hound (3.24) if we can show that

urn (tA(b/t) — 6b) = +oo
(3.42)

b-co

for any fixed t. But
(tA(b/t) - 6b) = (A)’(b/t) -6. (3.43)

By (3.20) this is zero for b = 3(t) and strictly increasing on (13(t), oc) because A is strictly

convex due to the smoothness of A. Thus (3.42) holds, as required.

If inft tA(b/t) is not attained, then we can repeat the above arguments replacing ‘(b) with

(b) for which the infirnum is approximated to within E, uniformly in b, then take —* 0 at

the end.
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Proof of Theorem 4: Since Wt and l’V+’ — are non-negatively correlated and w —*

is non-decreasing for 8 0,

E[e7t+t’] = E[e9WteWt+t1 —Wt)1 E[eO Wt]E[e W+i_Wt)] = E[eO’t]E[e6”t’], (344)

the last equality being due to the stationarity of the increments of W. Thus t —* tA(8) is

superadditive. Applying the sub-additivity theorem (see Lemma 6.1.11 of [8]) to —tA() we

obtain:
urn A() = sup \(6) = A(5) = 0. (3.45)
t—D

Thus .\(S) is non-positive for all t and so 1im_ tA(8), if it exists, is also non-positive. S

4 Applications and Examples.

4.1 Heterogeneous Superpositions

We examine 1(0) and v for the class of heterogeneous superpositions described in the section

2. Recall there are L
= Zj L3 sources in total in the superposition, L of type j, each having

backward arrival process We set c,t(8) = t’ log E[eOAit] and assume the existence of

the limits c(8) = limt.-, c,(O) and p = limj,L3/L. The service rate is .sL so ).(O) =

p3c(8) — s8.

First, we examine 1(0). Consider the case T = R+. We assume the existence of the limits

C(O) = 1imtotc,t(8/t). Then

A(O) = pC(&) — s6. (4.1)

Thus
1(0) = A*(0) = (4.2)

where = C(8), 8 being the unique solution of the equation pC(8) = s. For T =

the same formulae hold, but with the Cj replaced by c,1.

Second, we examine z. 6 is the unique solution of the equation X(6) = 0, i.e.

— = 0 (4.3)

and so

VzzZpjLJj (4.4)
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where
= +‘

(cjt(6) — sS),
(4.5)

and s = c(6)/6. Note s > s due to the convexity of c, since c(O) = o. (o) and

are the usual effective ban thvidths of sources of type j for zero and infinite buffers

respectively. (See, for example, [19] for further details).

4.2 Superpositions of Gaussian Arrival Processes.

In this section we take W = A — sLE where for each L, A is an L-fold superposition

of independent copies of At: a zero-mean Gaussian process with stationary increments and

variance o-. We make the following Hypotheses concerning A

Hypothesis 4

(i) limsupror’E[supo<T,<T Ar’I] < 00.

The following limits exist as extended real numbers:

(ii) 2 := limt_o2/t.

(iii) := limt_÷ocr/t2.

(iv) & := limt (o — to2).

Proposition 1 Under Hypothesis 4, Theorems 1, 2 and S hold with

922

6 = 2s/2; 1(0) = —-i- and ii =
—
.

(4.6)

2a0 a

Proof: Hypothesis 4(u) means that ) exists, and

=2a/(2t) — s8 and )(8) =62a2/2 — sO (4.7)

are clearly convex and differentiable. If (i) holds, then ar := E[supo<r,<r A] < ra for r

sufficiently small and some a > 0. So by Borell’s inequality (see [8], Exercise 5.2.14],

E{e0<T’<r Arll] < e + 2Ore(822
(4.8)

which goes to 1 as r —+ 0. Hence Hypothesis 1(iv) is satisfied and Theorem 1 holds.

From (4.7) the decay rate is 6 = 2s/a2. Under (iii) the limit

A(O) = Ltt0/t =
— Os = 82&2/2

— Os (4.9)
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exists. Thus Hypothesis 2 is satisfied and 1(0) = A*(0) =s2/(2ô2)

Finally, under (iv) the limit

= 1kt\t(6) = 1irn2(o — cr2t)s2/4= 2s20/4 (4.10)

exists, so Hypothesis 3(i) is satisfied.

The proof goes through for heterogeneous superpositions as described in sections 2 and

4.1, where AP is a superposition of sums of L3 copies of independent Gaussian processes

with mean zero and variance satisfying Hypothesis 4, provided the limits pj =

limL_+cx, L/( L3) exist. In this case =

We note that when A is Brownian motion, ô0 = +oo and ô = 0, so 1(0) = ii = 0. (Compare

with the discussion in section 4.5).

4.3 OrnsteinUhlenbeck Arrival Processes

An example where the workload is modelled by a Gaussian process with stationary incre

ments is the following. Consider a queue with constant service rate, for which the workload

W is the position component of a stationary Ornstein-Uhlenbeck process with added neg

ative drift. Such an arrival process has been proposed by Norros et al [25] as a model

of continuous correlated arrivals. It arises as the heavy traffic limit of superposed 2-state

markov fluid sources under suitable rescaling of time and mean activity (see [22]).

We consider the stationary Ornstein-Uhlen,beck velocity process (4, t E R+), defined to be

the solution of the stochastic differential equation

d4 = —dt + dB(t) (4.11)

where V0 is normally distributed with zero mean and variance (s/k)2. Here B is standard

Brownian motion, k > 0 is a load parameter (the case k = 0 corresponding to unit load),

and s > 0 can be viewed as a service rate. The corresponding position process (with zero

initial condition) is
=

V3ds, (4.12)

and the workload is
= A — st. (4.13)

W is Gaussian with mean —st and variance

= 2(s/k)2(t+ e_t
— 1) (4.14)
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Hence 02s2

=
-j- — s8 , and A(s) = —i— — sO. (4.15)

This gives u2 = 2s2/2, =
2/ ô = s2/k2 and = _2s2/,2. Thus items (ii), (iii) and

(iv) of Hypothesis 4 is satisfied and

1(0) = 2/9 and i’ =
(4.16)

Item (i) is satisfied if E[sup0<<114U < cc: this is shown in section 3.3 of [10].

In fact we can easily calculate 1(b) numerically. Normalizing b by .s, a routine calculation

yields
t(sb/t)

=s2(b+t)2 =2(t+b)2 (4.17)

We can also perform the same calculations for heterogeneous superpositions. Arrivals of type

j are Ornstein-Uhlenbeck position processes with mean 0 and variance

= 2(s/t,)2(rit + e_T1t
— 1), (4.18)

and occur with limiting proportion Pj in the superposition. Here we have included a possible

time rescalings r on each process. Thus the superposition has variance o = Pj,t’ and

the analysis of the previous section gives:

=

(4.19)

6_i = S prii:2

(4.20)

1(0) = (2Pj:2) (4.21)

= jpjTiki
2

(4.22)

( r7)
b + t2

t\(sb/t) =
.

(4.23)

4jPj’ (rt + e_n,t 1)

In Figure 2 the curve of b —÷ —I(sb) is plotted for two types with r1 = = 1, r2 = = 2

and pi = P2 = 1/2. The curve lies between those obtained for homogeneous arrivals of each

type separately: these are also plotted.

4.4 Markov Additive Arrival Processes.

In this section we obtain an expression for z in the case that the increments of the workload

W occur at integer times and are distributed according to the state of an underlying Markov

17



process X describing the configuration of the source of the arrivals. (Specifically, one could

consider W to be the single source workload in a homogeneous superposition described in

section 2; the corresponding results for heterogeneous superpositions follow from section 4.1).

A convenient description for this is that of a Markov Additive Process.

To be precise, let X = (Xt)z+ be a stationary ergodic Markov process on a state space

E (with -fie1d E), and adjoin to it an additive component W = (W)€z+ with W0 = 0

such that (X, W) is a Markov process on the state space B x R+. Furthermore, for each

t E N the joint distribution of the increment Z1 := W1 — Wt and Xt1, conditioned on

l’V)0<’< depends only on X. This dependence can be expressed through the kernel

P(x, G x B) := P[X+1 E G, Zt+1 e B I Xt = x], (4.24)

for G E and B a Borel set of R.

For 6 e R define the transformed kernel P(8) by

P(x, G; 8) := f P(x, G x dz)e, (4.25)

and denote by t its t-fold convolution. A technical recurrence condition for the kernel

P (eq. (3.1) of [18]) is required for what follows, and we assume it to be satisfied. The

main technical result we require concerning the kernel P is an extension of the standard

Perron-Frobenious to non-discrete state spaces: (see Lemma 3.1. and Lemma 3.4 of [18] and

Theorem 111.10.1 of [15]). Let q denote the stationary distribution of X.

Proposition 2 ) is strictly convex and essentially smooth. For all 0 in the effective domain

of\, e’6 is the simple maximal eigenvalue of P(8). The corresponding (right) eigenfunc
tion r(.; 6) and .Radon-Nikodym derivative de(.; 8)/dq of the (left) eigenmeasure £(.; 8) are

uniformly bounded and positive. With the normalization f (dx; 0)r(x; 8) = 1

Pt(x G; 8) = r(x; 8)(G; 8)et6) (i + 0 (E(8)t)), (4.26)

where 0< e(0) < 1.

Corollary 5

v = — urn t\(6) = — log ((E; 8)1 q(dx)r(x; 6). (4.27)
t—.co J

Proof: This follows since tA(6) = log f q(dx)Pt(x,B; 8) and ).(6) = 0. I

r calculate 1(0) we note that

= log J q(dx)P(x,dy x dz)eOz. (4.28)
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In the special case, frequent in modelling, that the increment Z is a non-random function ç
of Xt when both are conditioned on we have

P(x,dy x dz) = R(x,dy)6()(dz) (4.29)

where R is the transition kernel for X, and so (4.28) reduces to

= fq(dy)e9 (4.30)

Note that the complexity of the calculation of v and 1(0) (and indeed the whole curve of
1(b)) is independent of the number of sources L in the superposition.

Appliéation: two-state markov chain. We consider arrivals to be generated by a discrete

time markov chain on two states: on and off. In the on state an arrival of unit length is

generated; in the off state no arrival is generated. Transitions from off to on occur with

probability a; the reverse transition with probability d. The arrivals are serviced at constant

rate .s < 1. Thus, within the general framework above we have E = {0, 1}, Z = C(Xt) with

C(0) = —s, (1) = 1 — .s, so that P(x, dy x dz) = R(x, dy)6()(dz) where R is the transition

matrix of X:

R=
(1_a

1_d)
. (4.31)

The stationary distribution of R is q = (, ): the stability condition is a/(a + d) < s.

The eigenvector/eigenvalue analysis of P yields the following. e”9 is the maximal eigenvalue

of the matrix

P(O) = R e
= ( ) eS8. (4.32)

Let y = e6 and set

= (2a)’ (y(i d) — (1 — a) ± ((i — a)
—

y(l — d))2 + 4adY). (4.33)

The eigenvalues of P(8) are v = y(ax + 1 — a). Hence 6 = log y for y such that

1 = y8(ax + 1 — a). The (unnormalised) eigenmeasures and eigenfunctions are

= e :=(d,ax) and r±(.;8)=r :=(y,x) (4.34)

respectively. Thus

ett(8) = q t(., E;
= q . r £ 1)v

+
q r L

r
1)v

(4.35)

and
v=—lo

(q.r £+.(1,1)
—lo

(ax++dy)(ax++d)
(436)g

r )
— g

(ax + dy)(a + d) ‘
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using the values for x+ obtained from (4.33) with y = e8. One sees that from the spectral

decomposition (4.35) that t —* tA(6) = A + tB where A is bounded and t(B+1 — B) —* 0

as t —* cc. Hence Hypothesis 3(u) is satisfied in this model, and indeed in any Markovian

model for which such a differentiable spectral decomposition exists.

At b = 0 we find

1(0) = A(0) = —infA1(6) = —loginf
(a+d)e6s

= —log
(:+d)

(4.37)

where = sd/(a(1 — s).). This agrees with the large deviation (upper) bound according to

Hui [16] for the probability of overflow at a bufferless resource (i.e. with b = 0).

The sign of v can be related to the sign of the correlations of the arrivals process. One

sees from (4.36) that sgn(v) = sgn ((x — 1)(x — y)). But it is shown from Proposition

3 of[4] that 1—a—d >0 x > y >1 while 1—a—d <0 == y > x >1

and 1 — a — d = 0 = x = y > 1. Furthermore the covariance of successive arrivals

Cov(Zt,Z+i) = ad(1 —a — d)/(a +d)2. Summarizing:

sgn(1 — a — d) = sgn(v) = sgn(Cov(Zt,Z+i)). (4.38)

Bursty sources will modelled with a + d < 1: successive arrivals are positively correlated. A

sub-bursty markov model (i.e. with negatively correlated arrivals) has been studied numeric

ally by Choudhury et a] [7]. It is found that the log-loss curves are concave, and asymptotic

to a straight line with positive intercept at b = 0: correspondingly our value for ii will be

negative.

Comparisons and estimates. Theorem 1 can be used as a basis for approximation of

superpositions of finitely many lines: we take

p[QL > b] (4.39)

The are using (4.35) with y = e0. The resulting approximation is compared with sim

ulations in three cases. Figure 3 takes a = 0.03, d = 0.045, L = 84 and s = 40/84, a

superposition of highly bursty sources. In Figure 4 the parameters a = 0.3 d = 0.5344,

L = 100 and .s = 40/100 are chosen to make v = 1(0): the curve is very close to linear.

In Figure 5 a sub-bursty case a = 0.55, d = 0.825, L = 84 and s = 40/84 is shown. In

these examples, the shape of the log-loss curve is closely reproduced by the approximation,

but with a shift which makes the approximation conservative (in these cases). This may

well be a limitation of the first-order large deviation method. In fact the discrepancy is

well within the O(log L) corrections to the large deviation estimate of P[WjL> 0] in (4.37),

so some improvement may be possible with further work involving these corrections to the

first-order large deviation result. As a final numerical example we take a large superposition

of extremely bursty sources: a = .0003, d = .0007, s = 400, L = 1000. For these paramet

ers —LI(0)/ log 10 = 9.8 and —Lv/ log 10 = 20.2: the desired loss probabilities of i0 are

already obtained at b = 0.
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4.5 Poissonian Arrivals.

We conclude with a discussion of Poissonian arrivals. For simplicity we consider homogeneous
superpositions. Each of L sources is a Poisson stream of intensity liD. The service requirement
of each arrival is independently distributed with distribution G. The superposition is served
at rate sL. Define

g(&) := f eOxG(dx). (4.40)

Then

= (6) = (6) = t’ loget
et(tf

(4.41)

= (g(6) — 1) — sO. (4.42)

Since X is independent of t then v = — t1\(6) = 0. Furthermore, 1(0) = 0 since for

8>0,t<1

= tA(O/t) (4.43)

= tiiD(g(6/t) — 1) — sO (4.44)

> tc(g(O)’/ — 1) — sO (4.45)

which goes to +00 as t —+ 0 since g(O) > 1. Similarly one has limto tg(O/t) = 0 for 0 0.

Thus

A(O) =
—sO if 6 0

(4.46)
1 +oo ifO>0

and so 1(0) = A*(0) = 0. From this we draw the conclusion that there are no economies

of scale to be obtained from a superposition of Poissonian arrivals. In contrast, Bernoulli
arrivals will generally give 1(0) > i-i = 0: take a = 1 — d in the on-off model as an example.
The difference in 1(0) between the two cases can be shown to go to zero if one constructs

the Poissonian arrivals process as a continuum limit of Bernoulli arrivals.
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Figure 2: Ornstein-Uhlenbeck superpositions
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Figure3: a+d< 1 witha=O.03,d=O.045,s=4OandL=84.
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Figure 5: a + d> 1 with a = 0.55, d = 0.825, s = 40 and L = 84.
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