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ON QUANTUM SYSTEMS OF PARTICLES WITH PAIR
LONG-RANGE

MAGNETIC INTERACTION IN ONE DIMENSION. EQUILIBRIUM.

W.LSKRYPNIK
Institute of Mathematics, Tereschenko str.3, Kyiv, UKRAINE, 252601

A b s t r a c t.
Quantum one-dimensional systems of particles interacting via a (singular) “collective” (depending

on all the position vectors of particles) vector electromagnetic potential is considered in the ther
modynamic limit .The Gibbs(grand-canonical) reduced density matrices for the Maxwell-Boltzmann
statistics are computed in the limit for a pair interaction, generated by a pair magnetic scalar po
tential q, which is a sum of a short-range, increasing and long-range decreasing potentials. The
considered n-particle systems are integrable and have a trivial thermodynamics.
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1 INTRODUCTION

One-dimensional(1-d) systems of spinless non-relativistic n-particles with a singular magnetic interac

tion are characterized by the “collective” vector electromagnetic potential a(X), X = (x1, ..., x,) é

which depends on the differences x — Xk of the position vectors of particles and has a mild sin

gularity(in the neighborhood of hyperplane x3 = Xk it behaves as x3 —
s 0), and the

Hamiltonian LI defined on C°°(i), ll = R’\U<k(xj =

= (p — a(X))2,X = (x1, ...x) é R, (1.1)

(V ‘\ — — -—1p3 — —

‘-lxi

We assume that the magnetic interaction is mediated through the pair magnetic (vector) potential

a(X) = a(x — xk). (1.2)
kj,k=1

There exists a function(scalar magnetic potential) b(x) E C°°(ii) such that

a(x) = 8q(x). (1.3)

As a result
a(X)=6U(X), XiXk, U(X)= q5(x—xk). (1.4)

1<k<jy<n

We call the magnetic interaction long-range if (x) L’(ll0).

From the simple equality
— = exp{iU}pexp{—iU}

it follows that
= exp{iU}I[,.exp{—iU}, (1.5)

where U, à are operators of multiplication by functions U(X), a(X), respectively, and H7 is the

minus one-half n-dimensional Laplacian restricted to G(ii). In order to define evolution in the

system one needs to consider a selfadjoint extention of the operator H. From (1.5) it follows that

the most simple extension f1 is given by

= exp{—tH} = exp{iCT}exp{—tH,}exp{—iU}.

Let’s consider the system in the interval [-L,L] with the Dirichiet boundary condition on its

boundary, i.e.with the Hamiltonian 11n,L

= exp{—!3H,L} = exp{iUT}P(fl,L)exp{—iUfl}, (1.6)

where the semigroup (n,L) is generated by the n-dimensional Laplacian with the Dirichlet boundary

condition onthe boundary of [-L,L].
The Gibbs or equilibrium grand canonical (the number of particles is not fixed) reduced density

matrices(RDMs) for our system with the MB statistics are given by

pL(XmIYm) = f (1.7)
nO [_L,L]m
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where L coincides with the numerator in (1.7) for the case rn = 0, z is the activity of particles, j3
is the inverse temperature, P)(XflYfl) is the kernel of the operator

In this paper we calculate the RDMs in the limit L —÷ cc (thermodynamic limit) for the following
choice of the scalar magnetic potential (o e L’)

(x) = O(X) + 0(x) + iX’ + = O(X) + ‘(x), 0(x) = (1.8)
n<oo

In our previous paper [SI] we calculated the limit for the case when all o, except c, are equal to
zero.

For all systems with the pair magnetic interaction, generated by the vector magnetic potential
satisfying (1.3), the following representation is valid

pL(XmYm) = exp{i[U(Xm) — U(ym)]}zmllpL)(xkyk)exp{zGL(Xmm)}, (1.9)

L m
GL(XmYm) =f{exp{i[xi - x)

- yj x)]}
- 1}PL)(xx)dx, (1.10)

where PL)(xy) is the kernel of the operator of the semigroup generated by the one-dimensional
Laplacian on [-L,L] with the Dirichlet boundary condition.

The problem of the thermodynamic limit is solved by us by computing the asymptotic behavior
in L of the function GL. For long-range potentials it is not so evident, as for the case of short-range
magnetic potential q0 (o is an integrable function) how to calculate it,

It turns out that for the case of increasing potentials the RDMs have unusual properties in the
thermodynamic limit established earlier only for the 1-d Coulomb potential for MB statistics [1,3]
and other statistics [2].

The proposed method does not permit to calculate RDMs in the thermodynamic limit for all the
values of variables in the case the magnetic potential contains the logarithmic potential.

We formulate our general result in the end of the paper (Theorem 4.1). In the preceding para
graphs partial results are formulated in propositions.

2 Quadratic potential.

From (1.6-7) it follows that the RDMs are given by

pL(XmYm) = f dXexp{i[U(Xm,X)
— U(Ym,X)]}PL)(Xm,XYm,X),

nO [-L,L]

where L is the grand partition function, PL)(XmYm) is the kernel of the semigroup, whose in
finitesimal generator concides with HA, —2H,L is the Laplacian in [—L, L]Th with the Dirichiet
boundary condition on the boundary 8[—L, L],

PL)(XflYfl) = flPL)(xjyj), O(L)(Y) = fPy(dw)xL(w)

P,(dw) is the conditional Wiener measure and XL(w) is the characteristic function of the paths that
are inside [—L, L]. From the equality

m n
U(Xm, X) = U(Xm) + (x - x) + U(X)

j=1 k=1

3



we obtain
pL(XmIYm) = exp{i[U(Xm) — U(Ym)]}PL)(Xm}n)X

x f dX II exp{i{(xj - x)
- (yj - x)j}PL)(xIx),

nO
• {—L,Lj k=1 j=1

where L = f dxPL)(xx). Since the function under the sign of the integral factorizes we immedi

atly obtain (1.9-10).
Let’s assume that q5(x) = a2x2. Then

L m
GL(XmYm)

= f exp{i2[(xj —

—
(yj — x)2]}PL)(xx)dx — Lp. (2.1)

—L

As a result

m L m
GL(XmIYm) = exp{i2(x

— 4)}f exp{i2c2(x
— yj)x}PL)(xIx)dx — L.

It is clear that if
m m

—

y) = 0, (x y) = 2irl, é (2.2)
j=1 j=1

then GL(XmYm) = 0. If one of the conditions is not satisfied then GOL(XmIYm)I < Lp. It follows

from the fact that PL)(xx) —÷ (2ir3) when L — oo and the equality

L m m m

f exp{i22(x— y)x}dx = (22(x — y))’sin(L22(x— yj)),Xj

So we proved the following proposition
Proposition(2.1)
The thermodynamic limit of the RD]Ms for pair quadratic potential is zero if one of the equalities

(2.2) is not satisfied. If both are true then

p(XmYm) = 1impL(Xym) =zmexp{i[U(X)
— U(Ym)j}llP(Xk — yk), (2.3)

where Pó3(x) = (2?r8) exp{—}.

3 Logarithmic and Coulomb potentials.

For the function GL the following representation is valid

GL(XmYm)G(Xm,Ym)+G(Xm,Ym), (3.1)

G(XmYm) =

L m m

=f{exp{i[ o(x-xj) ‘((x-x) -‘(Jyj-xD]}PL)(xjx)dx, (3.2)
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L m

G(XmIYm) = f {exp{i[’(xjx) -‘(yj-xD]}-1}PL)(*)dx. (3.3)
—L j1

Let l = max(x, y), j = 1, ..., m. Then decomposing the interval [—L, L] into union of two
intervals {—l, lj, [—L, L]\[—i, lJ we obtain

1+
m rn

G(XmYm) f {exp{i°[’xj — — x]} 1}PL)(xx)dx + G(XmYm) =

= G(XmYm) + G(XmYm), (3.4)

G(XmYm)
= f {exp{i°[ xj-x -‘y-xj}- I}PL)(xx)dx.

The function G converges to the function G+

1m m

G(XmYm) = (3.5)

Let’s assume that q5(x) = qY(x) = °lrix, utilize the expansion

I ‘nv—a,, x y3
ln(1—a)= ,a<1, a=—,—

n>O 2J X

and substitute it into G, using 1 I = 1 —

m m
G(XrnIYm)

= f exp{i°[ J{ezp{i° [()S ()S]}
- 1}PoL)(xIx)dx+

l<jxI<L
j=1 j=ls>1

+(XmIYm) = (XmIYm) + G(XmIYm),

O(XmIYm)
= f exp{i0E( )} 1}PL)(xIx)dx.

1<IxI<L
31

Here we added +1 — 1 to the first exponent.The function G tends to G in the limit of increasing
L

m m

O(XmIYm) = (2) f exp{i°[
X

- - (-]} - 1}dx,
j=1 j=ls>1 x

(3.6)
since expanding the exponent, containing the sum over s under the sign of the integral, it can be
seen that all the integrals are finite and the sum is convergent uniformly in x, Yj taking values in a
compact set. Function G9, = 0 if the first equality in (2.2) is satisfied. It diverges otherwise. So we
proved the following proposition.
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Proposition(3.1)
The thermodynamic limit of the RDMs for pair logarithmic potential exists if the first equality

(2.2) is satisfied and is given by

p(XmYm) =zmexp{i[U(Xm)
— U(Ym)1}llP(Xk — Yk)eXP{G(Xmm) + ã(XmYm)}.

Now let’s put (x) = ‘. Then using the expansion (1
—

> () and repeating the same
s>O

operation as for the case of the logarithmic potential we arrive at the following proposition

Proposition(3.2)
The thermodynamic limit of the RDMs for the potential q(x)

=
exists and is given by

p(XmlYm) =

=zmexp{i[U(X)
— U(Ym)]} fi P(x

— Yk) exp{G(XmY) + G(XmYm)},

where

G(XmYm) = (2) f {exp{i {( - (]} - 1}dx. (3.7)
+ xI jls>O X X

XI>lm

4 Polynomial potential.

Let’s consider the case q(x) =c2rx2r, 2 <r e z. Then the function GL is given by

GL(XmIYm) =

m L m 2r

= exp{i2r(x yr)} f exp{i22 (_1)SGr(X_8 — yr_s)Xs}pL)(XX)dX
— L.

—L j=ls=1

It’s evident that if the equalities are satisfied for 1 e
m m

(x —y) =0, s=1,...,2r—1, (x—y) =2’irl, (4.1)
j=1 j=1

then GL = 0 and the RDMs in the thermodynamic limit are given by (2.3). If oe of them is

not true the GL + L is either bounded(oscillating) in L or strictly less than L. So for the case

(x)
=

proposition (2.1) holds.

Now, let q(x) = q°(x) = c9x and l = min(x, y). Then
s<oo

L m

GL(XmIYm) = GL(XmPm) + (f +f)P{i[°(x
-

x)
- °(yj -

—L

1+ 1m m

+ —(Lp — f PL)(xx)dx + f PL)(xx)dx),

m m m m

GL(XmYm)
= f exp{i{°(xj

-

x)
-

°(yj - x)j}PL)(xIx)dx - f PL)(xx)dx + f PO(L)dx).

6



So if the conditions (4.1) are satisfied GL — GL = 0 and the following proposition is true.

Proposition(4.1)
The thermodynamic limit of the RDMs for the potential g(x) = > cxI exists and is zero if

s<00

one of the equalities (4.2) is not satisfied. If all are true then

p(XmYm) = lim pL(XYm) =zmexp{i[U(Xm) — U(Ym)j} fi P(X — (4.2)
k=1

where
1+
m m

O°(XmYm) = (2)[f exp{i[(xj - x)
- (yj

q(x) = >
8<00

Here we used the equality O = O0, decomposed into sum of q and q and added +1 — 1 to
the exponent containing .

In general case the function G has the following representation

2

G(XmYm) = GsL(XmYm),
s=O

L m

GlL(XmYm)
= f exp{i[ °(x - x)

- °(yj x)]}exp{i1[x -
-

—L j=1 3—J

x{exp{i°[ln(x — x) — ln(yj — x)]}
— 1}PL)(xx)dx,

G2L(XmYm) =

L m m

=f exp{i[ °(x - x)
- °(yj x)j}{{exp{i1[x

- yj -
- 1}PL)(xx)dx,

L m
GOL(Xm) f exp{i[°(xj - x)

- °(yj x)}}PL)(xx)dx.

The following representation is valid

GsL(XmYm) = G(XmYrn) + G(XmYm),

where, as in the third paragragh, + and - index correspond to the integration over {—l, l] and its
complement, respectively.

By analogy with G, G of the previous paragragh, the functions G, Gj are defined

G(XmYm) =

m m

= (2) f exp{i[ O(x
- x) O(

- x)]}{exp{i [(13)8 - ()S]}
- 1}dx,

j=1 j=ls>O

G(XmYm) =

m m

= (2) f exp{i[ °(x
-

x)
-

°(yj - x)]}exp{ij[ x -

-

-

lxI1
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m m
x exp{ic°{ - YJ]}{exp{ iO s1[(i)s - (J/)s]}

- 1}dx.
j=1 j=ls>1 X

The function G% tends to G°

G°(XmYm) =

m m
= (2) f {exp{i[ o(Ix -x) o(y -x)j} - l}exp{i[ ‘(x -xI) -‘(I -x)]}dx. (4.3)

— j=1 j=1

Combining all the above arguments we see that the following theorem is valid.

THEOREM 4.1
Let = 0. The thermodynamic limit of the RDMs exists and is zero if one of the equalities

(4.2) is not satisfied. If all are true then

p(XmIYm) =zmexp{i[U(Xm) U(Ym)1}HP(Xk Yk)x

x exp{O°(XmYm) + G°(XmYm) + G(XmIYm) + G(XmYm)}. (4.4)

If a’ 0 then the thermodynamic limit of the RDMs exists if all the equalities (4.2) are satisfied
and is given by

p(XmYm) =zmexp{i[U(X)
— U(Ym)]}flP(Xk yk)eXp{0°(XmYm) + G°(XmYm)}X

(4.5)

REMARK.
The behavior of the RDMs in the thermodynamic limit for the pair scalar magnetic potentials

growing at infinity (when there is no logarithmic term) is quite strange. They are almost everywhere

zero if an algebra of observables includonly smooth functions. But if one adds to the algebra point

measures then the average on the algebra, produced by the RDMs, is not zero.
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