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The model of dense lattice polymers is studied as an example of non-unitary Conformal Field
Theory (CFT) with c = —2. “Antisymmetric” correlation functions of the model are proved to be
given by the generalized Kirchhoff theorem. Continuous limit of the model is described by the free
complex Grassmann field with null vacuum vector. The fundamental property of the Grassmann
field and its twist field (both having non-positive conformal weights) is that they themselves suppress
zero mode so that their correlation functions become non-trivial. The correlation functions of the
fields with positive conformal weights are non-zero only in the presence of the Dirichlet operator
that suppresses zero mode and imposes proper boundary conditions.
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Liitroductiorm.—In spite of the remarkable success of
untar CFT’s in predicting the critical properties of dif

I event lattice spin models [1], the non-unitary theories,
although of no less importance for statistical physics, so
far were not fully understood. It already becomes obvi
ous that some of the axioms of unitary CFT have to be
sacrificed in this case [2]. Still, it remains unclear where
uie has to modify the foundations and not to destroy the
whole building of CFT.

The general idea of the Letter is not to study the non
untary CFT’s on their own but, instead, to analyze one
particular model of dense polymers on the lattice whose
ontmuous limit corresponds to the non-unitary c = —2

(FT. We believe that at leastsome of the results oh
iuned on this way should be universal and applicable to

other non—unitary CFT’s.
The model of dense polymers actually has a long his

tor. dating back more then a century, when Kirchhoff
proved a beautiful theorem that the number of one
oinponents spanning trees (polymers) on the lattice of

N sites is given by the principal minors of the N x N ma
trix of discrete Laplacian [3,4]. Another fundamental re
suIt was due to Fortuin and Kasteleyn [5.6] who observed
fiat the partition function ZN of the q-component Potts

model can be represented as a dichromatic polynomial
hat continuously depend on q. Although the partition

buictioii of the model vanishes in the formal limit q — 0
owing to zero mode of the discrete Laplacian, its deriva
tive with respect to q does not and gives the partition
function of one-component spanning trees.

[lie purpose of the Letter is to show that:

:l) The q — 0 limit of the Potts model can be car
lied on in two steps. The first. A — 0, leads to
the model of lattice polymers with arbitrary num
ber of components ; the second, ic — 0, to their
dense phase. Although the partition function of the
model again vanishes in the limit, some “antisym
metric” 27-point correlation functions survive.

ii) These correlation functions are given exactly by the
mnniors of rank (N

— ) of the Laplacian matrix.

These can be rewritten in terms of integrals over
anti-commuting variables and in continuous limit
coincide with the correlation functions of the free
complex Grassmann field,

(iii) The vacuum vector of the field theory have to be de
fined as having zero norm. The fundamental prop
erty of the Grassmann field and its twist field (both
are primary with non-positive conformal weights)
is that their operator products define the Dirichlet
operator that suppresses zero mode and imposes
proper boundary conditions for the primary fields
with positive conformal weights. This does not
change other basic principles of CFT and leads to
the logical and self-consistent theory.

Dense Phase of Lattice Polyrners.—Let lattice L has N
sites labeled 1, 2, ..., N. With each site i we associate a
spin variable op which can take q values, say 1, 2, ..., q.

Then the average of any operator A(u) in the q
component Potts model we define as (without normal
ization factor!)

(A(u)) = A(u)exp 13.JJ(ui,uj)
0 I (ii)

Here the u-summation is over all the spins o, ..., N; the
second summation is over all edges of the lattice. It has
been shown that ZN can be expressed as a dichromatic
polynomial [5,6]. To fix notations we briefly repeat the
derivation of the result. Set v = exp(/3J) — 1, then the
partition function can be rewritten as

ZN (1) =Zfl[1+vd(uj,uj)]. (2)

Let F be the number of edges of the lattice . Then
the summand in Eq.(2) is a product of F factors. Each
factor is the sum of two terms: 1 and vö(u, u1), so the
product can be expanded as the sum of 2E terms.

Each of these 2E terms can be associated with a bond-
graph on the lattice L To do this, note that the term is

(1)

cY (ij)
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lie product of E factors, one for each edge. The factor
(Ii: edge (il) is either 1 or v(u1,): if it [5 tile former.

(ave the edge empty, if the later, place a bond Ofl tile
dge. Do this for all edges (ii). We then have a one-to-
ne rorrespondence between bond-graphs on and terms

ii the expansion of the product in Eq.(2).
onsider a typical bond-graph , containing N sites,

L hoiids. connected components and w internal cycles.

These are not independent, but must satisfy Euler’s re

[at ion

L +7= N + w.

hen the corresponding term in the expansion contains
factor a. and the effect of delta functions is tilat all

hates withii a component must have the same spin u.
iimmiiig over all independent spins and over all bond

aaphs (,i that can be drawn on we obtain [5,6]

ZN = qvL.

c

a that here q need not be an integer. We can allow
o o’ ilnv real number and. in particular. to consider

i:uial hunt q —* 0. Since we are going to deal with not
ulv one— but arbitrar -y—component spanning trees, we

S (Vi o treat the limit in a way different from [5].
At first we consider the limit A, q, v —* 0 while it = q/A

and a = a/A remain finite. As a result we obtain the

partition function of lattice polymers

= inn AZN = lim Z,Aw.xL =
>,i7.L (5)

c

here the last summation is over all bond-graphs ‘T that
has no internal cycles, i.e. w = 0. Such graphs are usu
illv called spanning trees (polymers). The number of
Ponds L of the spanning tree is related to the number of
its (omponents as L = N — . Hence, the partition
I oust ion can be rewritten as

= = A:it —-‘, (6)

aiere symbol 7, denotes tile set of different ‘i—component
Spanning trees and V is their total number. To simplify
I inther ilotatioris we take x 1 without loss of generality.

F lie second limit it — 0 leads to the so-called dense
phase of the polymer model. Since > 1 the partition
inor ion (6) obviously tends to zero in tins limit. Never—

I a less. the correlation functions do not necessarily van—

Ph. Indeed, repeating all the steps leading to Eq. (6) one
au sairulate tile following correlation functions

him (1) = 0, (7a)
K

lim (6k1) = Jv(kl) = const, (7b)

Ott

6 1 = A(k1)(pq) — .\pq)(pI),
pq /

Here Ott = (v/q)6(o., u,); A(k/) is the number of one-
component spanning trees with both the sites k and 1 be
longing to the same cOmpOneilt (this number, obviously,
does not depend on the position of the sites); .A1(k(pq) IS

the number of two-component spanning trees with sites
k, 1 belonging to one component and sites p, q to the
other; etc. The antisymmetric combination of 6’s in each
2’-point correlation fhnction is designed to guard against
any contribution of spanning trees with the number of
components less then (otherwise this would be diver-

(3)
gent). So, only 7-component spanning trees contribute
to the 27-point correlation function in the limit it —+ 0.

The importance of these correlation functions is justi
fied by the following result.

Generalized Kirchhoff Theorem—Given a lattice £
with N sites labeled 1, 2, .... N. the N x N matrix of

discrete Laplacian /.jj has the elements: jj =number

(4) of edges incident to i, i.jj = —number of edges with end
points i and j. The minor 1) of rank (N — 1) is ob
tained from the matrix z by deleting k-th column and

l-th row; similarly, the nlinor /1q) of rank (N — 2)

is obtained by deleting columns A’, p and rows 1, q; etc.

Then

det z = 0. (8a)

det = JV(k,) = const, (8b)

det tp)
= (k1)(pq) — kq)(pi), (8c)

Here one immediately recognizes the “antisymmetric”
correlation functions (7). The standard proof of the origi
ilal version of tile theorem (first two lines of the sequence)
can be found in Ref. [3]. Priezzhev [4] proposed an al
ternative proof of the original version in the spirit of the

combinatorial solution of Ising model. His method is sim
pler and can also be generalized to prove all other lines

of the sequence (8).
Free Complex Grass7nann Field.—Using the matrix

representation we can reinterpret the partition function

of lattice polymers as being the partition function of some

artificial statistical system. To tllis end we define at each

site i of the lattice tile pair of anti-commuting variables

9 and 9 (its complex conjugate). Then, using Berezin’s

definition of the integral over anti-commuting variables

[7] we can rewrite tile determinant of the matrix as

det=Jd...d91vexpZO’9i (9)

= Jd6 ...d6Nexp(9 —)(9i—&j).

In continuous hmnit tilis partition function defines field

(7c) theory with the action

8[9]
= 17r / 09O& d2r.

/I 1diIiiii
I. .A() 0p1

(10)
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10 i ‘rage of an operator A[6] we define as

(1[O])
= / [d9*dO] A[9] exp —S[9]. (11)

iheii. although the average of tile identit operator is
({iial to zero (lUe t:o the presence of zero mode, all other
irv[:itiou functions of tile field 0 are non-trivial and can

iurmahzed so that

(1) = 0,

(902) = 1.

(9f304)= hi (ii:),

K0:949506)
= in ()

- ill (ni)

I 1w held 9 is scalar ant its correlation functions depend
ulv oh the projectivelv invariant cross—ratios

12 — (11319/tN
1/34 —

\ 14i’23

lie ( E d(r1); — . These correlation func
ions are nothi ig but asymptotics of tile “antisynunetric”

oi:t’vlation functions (7) in the continuous limit.
The surprising thing is that the Grassrnann field itself

suppresses zero mode of tile Lapiacian operator. In spite
of tins unusual property it stil. can be considered as a
ii:iinarv (‘onformal field with the weight ho = 0.

I lie stress-energy tensor,

= urn O9*H39() ±
1

(z — ni)

.ohLsfies standard operator product expansion.

—1 2T(w) UT(w)
/ ç :)T(w) = + •) +

(z in)4 (z — in)- ‘— in

)iw (‘U1 assure himself by direct calculation that the
SI tess-energy tensor is indeed the generator of confor

I ilal truisforrnations in the sense tllat for any correlation

iiution (X) = (9 . . . 9r) from tile sequence (12) its

r:uisfonination law is given by

i. pV =/dz e(z) (T(z)X) +/d /) (T()X). (16)

[he (‘orrelation functions of the field 0 satisfy the third
r [or ([ifIc’rential equation coining from tile condition of

(l(gollorhlt ion of tile operator (1, 3) with the weight /11,3 =
U ii the third level. Tins equation actually becomes of

I tie sei’oiid order for the field 09 and, ill its turn, coincides
with the i:ondition of degeneration of tile operator (2, 1)

Ii I he weight /12,1 = 1 on the second level.

The twist field o’(z. t) can be defined with the use of
the standard operator product expansion

00(z)(mt’. i) (17)

Alternatively, on the lattice it can be defined by means of
tile construction similar to that for the disorder operator
in Ising model [8].

Conformal properties of the twist field o’ are similar
(12a) to those of the Grassmann field 9. Namely, its correla
(12b) tion functions are non-trivial even in the presence of zero

(12c) mode. Its correlation functions can be found from the
condition of degeneration of the operator (1, 2) with the

(12d) weight 111,2 = —1/8 on the second level [8]

(u1o’2) = (18a)

(1u23u4)= n1’i2i:34
—

x {F(ii)(1
- ) + F()F(1 — i)}, (18b)

where F(i1) = 9F1(4. 4; 1:); arid i =(z13z24)/(zi2z34).
Mixed four-point correlation function of the fields 0 and
a’ can also be found using standard techniques of CFT

(992a’3u4) = 2/ {H(i) ± H(0)}. (19)

Here H(m1)=ln(+). -

This nieans that both the Grassmann field 9 and its
twist field a’ can be considered as primary conformal fields
with the weights /10 = 0 and h = —1/8 provided that
the vacuum state has been defined as having zero norm.
These fields are unique in having both the property and
non-positive conformal weights.

Dirichiet Operator and Green Fu’nction.—There is a
simple relation between the four-point correlation func

14
tion (12c) and the Green function of the Laplacian oper
ator. The most straightforward way to understand this
is follows. Let us consider a conducting plane with a cur
rent I = 1 entering the plane at a point r1 and leaving it

(15)
at a point r2. Then the voltage (lifference between sites
r3 and r/1 on the plane is given b the four-point function
/13*12*11 11
Wi 2 3 4

The Green function of the Laplacian operator with the
Dirichlet boundary conditions at the point r0 can be de
fined quite similarly. Consider the same conducting plane
earthed at the point r0. Tllis means that the voltage at
this point is always maintained to be equal to zero. If a
current I = 1 enters the plane at a point r1 (and leaves
it at the earthed point ro) then the voltage at a site r2

is given by the Green function G0(r1 ,r2).
The operator Do that corresponds to the earthed point

r0 can, obviously, h)e considered as the product of the
field 9 with its complex conjugate 9 at the same point.
We will call it tile Dirichiet operator since it imposes the
Dirichlet boundary conditions on tile Grassmann field.
With the help of this operator the Green function can be
represented as

in (r4)
ln (m)
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Go(rir2)= (D08162)

lb Di ichiet operator can formally he defined through
lie following operator products

* Ioi
= hm f0Oi} = urn c

i—*o

10 two-point correlation function can he found froIn the
ru—point functions Eqs. (12c,18b.19). However, one
o to 1)0 iareful merging different points of the four—
ni hmctions because they diverge logarithmically in

e Iiriiit. These divergences have absolutely the sanie
oil nrc as those present in the Green function in the ther

ill (I [viiainic or continuous limit [7]. To treat them care
ii LIV let irs first consider the correlation functions on the
H Itne with spacing a. This scale dictates minimal possi—

hotance between different merging points. After ar—
ii r:o:v eonformal transformation the lattice is no longer

iniforin and the area of any given fundamental square of
lie lattice acquires an additional factor proportional to
0 metric on the plane: do2 = q(r)dr2. Finally, we have
he factor (1 is absorbed into the metric!)

(D) = 1. (D1V9)= in
111g2

\ te. hat. tire Dirichlet operator is scalar and its correla—
ion functions are projectively invariant. This is natural
one it has been defined as theproduct of scalar fields

il nd 11 Tins also suits its interpretation as being the

1 orator that determines boundary conditions.
1 lie (9 )erator product of the Dirichlet operator with it

If cud with the operators and a cannot fe completely
leternrined within the CFT. Indeed, merging different
molts of tire correlation functions (12) we can only say

I iit

= 90,

him {croT)i } = k O,

urn {J)0D1 = k D0, (23c)
—*0

cliei:e k is sonic constant. From the point of view of the
loll Heal” interpretation of the operator given above the

boot natural choice would be A; = 1
As an example of the field with positive conformal

ieei glit let us consider correlation functions of the local
rrergv operator

1 = :D,,9*009: = lim{31,90”9i — 4rn5(roi)}. (24)

lbs is prunary with conformal weight In = 1. Its cor—
H) lotion hrnctions can be found from Eqs. (12) and are

ii iivial. ( ..r1v) = 0. unless we insert the Dirichlet
ei;it 01
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(20) 8
(Von 62) =

— (r12)
(25a)

64 64 64
= + 1 (25b)

(i’12 r) (ci 324 ) (614693)

(21) Thus property is common to all primary operators with
positive conformal weights.

Let us summarize the results of the Letter, It has been
shown that the model of the free complex Grassmann
field properly describes the continuous limit of the lattice

model of dense polymers only provided its vacuum vector

has been defined as having zero norm, (00) = 0. Never

theless, it is this vacuum that bias to he considered when

one studies the correlation functions of the primary fields

with non-positive conformal weights (9 and a). These
correlation functions, (12), inrply the mode expansion

9(z, ) = + 29o in + (26)
n0

with the commutation relations

{X.Xo = H, = {J,, m} = n+m, (27)

(22) i\Tiiere (H) = 1 and (H2) = 0. Operator H is nothing but

the coordinate-independent part of the Dirichlet opera

tor. It defines yet another null vector, *) = H0). Tins
can be normalized so that (*0) = 1. Together these

two vectors, 0) and *), define physical vacuum state for

those primary fields that have positive conformal weights.

We conclude that the theory is non-trivial only due

to the presence of two different null vectors that are not

orthogonal to each other. Thus could be a general feature

of other non-unitary CFT’s.
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