
Dtj-i-p -n

Moderate Deviations for Queues
in Critical Loading

Anatolii A. Puhalskii
Institute for Problems

in Information Transmission
19 Bolshoi Karetnii

101447 Moscow Russia

July 29, 1997

Abstract

We establish logarithmic asymptotics of moderate deviations for the processes of queue length
and waiting times in single server queues and open queueing networks in critical loading. Our
results complement earlier heavy-traffic approximation results.

Keywords and phrases: large deviation principle, queues, heavy traffic

AMS subject classification:

primary: 60F10, 60K25

1



1. Introduction

This paper complements the classical results on heavy-traffic approximation for queues in King-

man [7], Prohorov [12], Iglehart and Whitt [5], Borovkov [1], and Reiman [19] by studying some

related large-deviation asymptotics. In a standard set-up, one considers a sequence of GI/GI/1

queues indexed by ri with associated loads p —* 1 as n —f cc so that

— p) —+ c where cl <cc, (1.1)

and establishes convergence in distribution of suitably time-scaled and normalized queue-related

processes to processes of diffusion type; say, the processes (n’/2W(nt), t 0), where W(t)

denotes the unfinished work (or virtual waiting time) in the n th system at time t, converge in

distribution in the Skorohod J1 topology to a reflected Brownian motion with drift [5]. The

limits when /(1 — p) —* cc are different: in the context of the unfinished work again, if

— p) — cc, then the n’/2W(nt) converge to 0 in probability, and if ,/(1 — p) —+ —cc,

a proper limit have the processes (n_1/2(w(nt) — (p — 1)nt), t o). Our focus here is on large

deviation asymptotics for the latter case: \/(1 — p)j —* cc. More specifically, we assume that,

for some b —f cc with b = o(/7), we have that

1
—(1 — p) c where cl <cc, (1.2)

and study the logarithmic asymptotics of the large deviations of processes like (b1n1/2W(nt), t

0) as n —+ cc. In Wentzell’s classification of large deviations, Wentzell [23], this is the case of

“moderate deviations” since the choice b = 1 specifies “normal deviations”, and b = \/, “very

large deviations”. LFrom an application viewpoint, we are concerned with the queue behaviour at

times much greater than (1 — p)2 for p close to 1 while the standard heavy-traffic results refer

to time intervals of order (1 — p)—2. Accordingly, to distinguish from standard heavy traffic, we

refer to the regime specified by condition (1.2) as near-heavy traffic.

We now give an outline of the paper and a summary of the results. Section 2 contains technical

preliminaries. In Section 3 we consider FIFO single server queues in near-heavy traffic. Sec

tion 4 extends the results to the case of FIFO open queueing networks with homogeneous customer

population. The results mostly have the form of large deviation principles (LDPs) in the spaces

of right-continuous functions with left limits equipped with one of Skorohod’s topologies, Skoro

hod [21], for such processes as the processes of queue length, unfinished work, completed work,
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waiting times, the number of departures, and departure times. Occasionally, we give LDPs for one-

dimensional projections. The rate functions that we obtain are quadratic in form and reminiscent

of the distributions of the diffusion processes arising in the corresponding heavy-traffic limit theo

rems. Moreover, the ideas of the proofs are either borrowed from the proofs of the corresponding

weak convergence results or could be used to give them alternative proofs. So, in a sense, the paper

is another evidence of the analogy between large deviation theory and weak convergence theory,

Puhalskii [13]—[16].

2. Technical Preliminaries

We shall work in the function space D(Rd) D([O, oo), Rd) of right-continuous Rci -valued

functions on [0, ) with left limits, endowed with the Skorohod [21] Ji or M1 topologies, or a

modification of the M1 topology denoted by M{, we refer to [8], [11], [24], [9], [17] for details.

These spaces are metrizable as separable metric spaces and have Borel u-fields coinciding with

the u-field generated by the coordinate projections. For x = (x(t), t 0) E D(Rd), we denote by

x(t—) the left limit at t and by x(t) , the jump at t: x(t) x(t) —x(t—), t > 0; x(0) x(0)

As in Varadhan [22], we say that a function 1(x) defined on a metric space S and taking values

in [0, ] is a rate function if the sets {x e S : 1(x) < a} are compact for all a 0, and a sequence

{P7, n > 1} of probability measures on the Borel u-field of S (or a sequence of random elements

{X, n > 1} with values in S and distributions P) obeys a large deviation principle (LDP) for a

normalizing sequence a — oo with the rate function I if

iTi —logP(F) <— inf 1(x) (2.1)
— xEF

for all closed F C 5, and

urn1logP(G) — inf 1(x) (2.2)
xEG

for all open G C S.

The standard choice of the normalizing sequence is a = n. We mention that an LDP can

always be reduced to this standard form by reparametrizing the family {P, n 1}, Varadhan

[22], however allowing a general normalizing sequence seems more convenient in applications. We

refer to [20], [22] and [17] for additional background.

We say that a sequence {X, n 1} of random elements of a metric space (5, p) converges

super-exponentially in probability at rate a to an element x0 e S if, for all e > 0,

jpl/an(p(x0)
> e) = 0 (2.3)
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p I/an

and we write X, x0. This mode of convergence plays a role in large deviations similar to

the role convergence in probability plays in weak convergence. Properties of super-exponential

convergence in probability which we invoke below can be found in Puhalskii and Whitt [17]. Here

we just mention that if (2.3) holds for S = D(R’) with one of the topologies J1 , 1’v11 or

and x0 is a continuous function starting at 0, then it also holds for the locally uniform metric on

D(Rd), [17. Lemma 4.2(a)].

The following easy consequence of the contraction principle [22] comes in handy below.

Lemma 2.1. Let X, Y and Z be random variables with values in metric spaces S, Sy

and Sz, respectively, and let S Sx x Sy x Sz be endowed with product topology. Assume that

the sequence {(X, Y, Zn), n > 1} obeys an LDP in S for a normalizing sequence a with rate

function Ix,y(x, y, z) which is finite only if y = f(x), where f : X — Y is a bijection. Then the

sequences {(X, Zfl), n 1} and {(Y, Zn), n > 1} obey LDPs with the respective rate functions

‘x,z and Iy,z given by the equalities

L,z(x, z) = Iz(f(x), z) = Ix,z(x, f(x), z),

Iz(y,z) = Ix,z(f(y),z) = I,z(f’(y),y,z).

When dealing with an LDP for stationary waiting times, we will use the following version of

Lemma 4.1 in Puhalskii [15].

Lemma 2.2. Let {P, n > 1} be a sequence of probability measures on R and I be a rate

function on R. If the bounds (2.1) and (P2.2) hold for the sets F = [a, bj, [a, cc), (—cc, b] and

G = (a, b), where a, b e R, then {P, n> 1} obeys an LDP with the rate function I.

The proof follows by Lemma 4.1 in [15].

The next easy lemma is a consequence of the extended contraction principle [17] and continuity

of the supremum map, Whitt [24, Theorems 6.2 and 6.3], the latter theorems carrying over to the

M topology (see the argument of the proof of Theorem 5.1 in [17] for more detail).

Lemma 2.3. Let X, = (X(t), t > 0) be random processes with paths from D(R’’). If the

sequence {X, n 1} obeys an LDP in D(R’) for one of the topologies J1, M1 or M and

normalizing sequence a with rate function I() which equals infinity at elements of D(Rd) that

are either discontinuous or not equal to 0 at 0, then, for every e > 0 and t > 0,

lim pl/am( sup ILX(s)I > ) = 0.
n—co O<s<t

Rate functions in the limit theorems below are generally defined in terms of solutions to Skoro

hod problems with skew reflection [4, 19, 3]. We now recall the relevant definitions. Let P = (Pkl)
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be a K x K matrix with nonnegative entries and spectral radius less than unity. Denote by pT

the transpose of P and let 7?p denote the map from D(R’) into D(R’<) associating to each

= (x(t), t> 0) E D(RK) with xk(O) 0, 1 <k <K, the function z = (z(t), t > 0) E D(RK) such

that

1. z=x+(I_PT)y,

2. y is componentwise nondecreasing with yk(O) = 0, 1 k K,

3. Zk(t) 0 and f0 zk(t)dyk(t) 0,1 <k <K.

The map Rp is well defined and Lipshitz continuous for the locally uniform metric on

Harrison and Reiman [4], Reiman [19], Mandelbaum [10], Chen and Mandelbaum [2]. In the one-

dimensional case K = 1 and P = (0) the reflection map which we denote 7?. has the explicit

form

7?(x)(t) = x(t) — inf{x(s) : 0 < s t} A 0, t 0 . (2.4)

The following characterization of skew reflection is in the spirit of Lemma 3.1 in [18] and Lemma 4.6

in [15], and proved by the same argument.

Lemma 2.4. Let z e D(R’) be componentwise nonnegative and x e D(R’) be componentwise

absolutely continuous. Then z = 7?.p(x) if and only if z is absolutely continuous and there exists

an absolutely continuous function y e D(R”) with the properties

(t) = ±(t) + (I -PT)(t) a.e.

and

yk(O) = 0, k(t) 0 a.e., Zk(t)k(t) = 0 a.e., 1 k K.

Thus (t) a.e. solves a linear complementarity problem [10, 2].

3. Moderate Deviations for Single Server Queues in Near-Heavy Traffic

We consider a sequence of FIFO single server queues indexed by n. We assume that the queues

are initially empty. Let A (t) denote the number of arrivalby t, S(t), the number of customers

served for the first t units of the server’s busy time, D(t) , the number of departures by t, Q(t)

the queue length at t, W (t), the unfinished work at t, C(t), the completed work at t, H (k),

the waiting time of the k th customer, and L(k), the departure time of the k th customer.
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Let also

V(k) min{t: S(t) k}, V(0) = 0, (3.1)

be the cumulative service time of the first k customers.

Denoting by o the composition map, we have the following obvious equalities

= V o A,Qt) — GQt), (3.2)
pt rt

C(t)
= j 1(W(s) > 0) ds

= J 1(Q(s) > 0) ds, (3.3)
0 0

Q(t) = A(t) — D(t), (3.4)

= o CQt), (3.5)

Let b — and b/\/ —* 0 as n —+ , and A7 and j be positive numbers. We define the

associated normalized and time-scaled processes by

= (A(t),t > 0), (t)
= b

1
(A(nt) — Aunt), (3.6)

((t), t > 0), (t)
= b

(S(nt) — nt), (3.7)

= (V(t),t 0), V(t)
= b

1
(V([ntj) — ‘nt), (3.8)

= ((t),t > 0), (t) = (D(nt) - nt), (3.9)

= (W(t),t 0), W(t) = 1
W(nt), (3.10)

= ((t),t 0), (t)
=

(3.11)

= ((t),t 0), (t)
=

(G(nt) —nt), (3.12)

= ((t),t 0), (t)
= b

1
H([ntJ + 1), (3.13)

= (L(t), t 0), (t)
=

1) — ‘nt). (3.14)

We assume tl1at A, —* A > 0 and p —+ u > 0 as n —f oc, and the near-heavy traffic condition

holds:

— ) r, —oo < < oc. (3.15)

Note that (3.15) implies that A =

The next theorem parallels the results of Iglehart and Whitt [5], on the one hand, and Theo

rems 3.1 and 4.1 in Puhalskii and Whitt [18], on the other hand. Let us denote e = (t, t 0).

Theorem 3.1.
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(a) Assume that {(A,),n 1} obeys an LDP in D(R2) for one of the topologies J1, M1 or

and normalizing sequence b with rate function IA,S(a, s). Then > 1} obeys an

LDP in D(R3) for the same topology and normalizing sequence b with rate function

IQ,D,c(q, d, c) = inf L4,s(a, s)
a,seD(R2):

q=7(a—s+re), d=a—q+re,

c=i1(a—s—q+re)

(b) Assume that {(A,V),n > 1} obeys an LDP in D(R2) for one of the topologies Ji, M1 or

M and normalizing sequence b with rate function L4,v(a,v). Then {(W,C).n 1} obeys an

LDP in D(R2) for the same topology and normalizing sequence b with rate function

Içc(w,c) = inf IA,v(a,v)
a,vED(R2):

w=7(vo(e)+’ a+i1re)

c=vo(ie)+’a+’ re—w

(c) Assume that {(A,31),n > 1} obeys an LDP in D(R2) for one of the topologies J1 or

and normalizing sequence b with rate function IA,8(a, s), which, in the case of the J1 topology, is

infinite when s is either discontinuous or not equal to 0 at 0. Then n 1}

obeys an LDP in D(R4) for the same topology and normalizing sequence b with rate function

IQ,D,vc(q,d,w,c) = inf Iks(a,s)
a,vED(R2):

q=7Z(a—s+re), d=a—q+re,
w= 7?(a—s+re),
c=c’ (a—s+re)—w

(d) Assume that {(A,, n 1} obeys an LDP in D(R2) for one of the topologies Ji, Mi or M

and normalizing sequence b with rate function IA,3(a, s), which is infinite when either a or s is

either discontinuous or not equal to 0 at 0. Then the sequence

1} obeys an LDP in D(R6) for the J1 topology and normalizing sequence b with rate function

IQ,D,wc,H,L(q, d, w, c, h, 1) = IQ,D,c(q, d, c) when q = iw, Ii = w o (ji’e) and d = —tl o (ne), and

IQ,D,wc,H,L(q, d, w, c, h, 1) = zo otherwise.

Proof. We begin with a proof of (a). By (3.4), (3.5), (3.3), (3.11), (3.6) and (3.7),

= A(t)
—

o (t) + - )t + f 1((s) =0) ds, (3.16)

= o (t) + (3.17)

=

_ f 1((s) =0) ds, (3.18)
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where

(t) = O(nt)
= f 1((s) >0) ds. (3.19)

Since is nonnegative and f la(s) = 0) ds increases oniy when (t) = 0, we conclude

from (3.16) that the process (Q(t), t > 0) is the Skorohod reflection of the process (A(t)
—

o

(t) + — )t,t 0):

(3.20)

and, by (3.18),

= —

o + —
— .

(3.21)

By the Lipshitz property of the reflection in the locally uniform metric, we have, for some K(t) > 0,

I(t)I <K(t) sup (s)
-

o (s) + (An - 0. (3.22)

The LDP for (A, 37), the inequality (t) t and (3.15) imply that

lim pl/an (sun A(s) — o (s) + — )s
>

= 0
c°° fl+OO s<t

with a = b. Hence, by (3.22) and (3.18), since //b —+ cc and Ji —+ > 0,

Ct — pl/an

I 1(Q(s) =0)ds — 0 as n—* cc, t>0, (3.23)
Jo

—! p1/an

so by (3.19) and Lemma 3.1 in [14], (for the locally uniform metric on D(R)) G — e, and

an obvious extension of Lemma 4.3 in [17] implies by the LDP for {(A,),n 1} with Is

that the sequence o 3, n > 1} obeys an LDP with ‘A,S• The required now follows by

(3.20), (3.17), (3.21), continuity of the reflection, the near-heavy traffic condition (3.15), and the

contraction principle.

The argument for parts (b) and (c) is similar. For (b), write by (3.2), (3.3), (3.6), (3.8), (3.10),

and (3.12),

W(t) = 0 A(t) + ‘(t) + (p - 1)t ± f 1(W(s) =0) ds,

=

_

Lt 1(W(s) =0) ds,

where A(t) = n’A(nt), andnote that the LDP for {,n> 1} implies by [17, Lemma 4.2(b)]

that
—, pl/an

—÷ ,iie. (3.24)
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Part (c) follows by combining the preceding arguments if one notes that by (3.1) and Theorem 5.4

in [17] the assumptions imply that the sequence 1} obeys an LDP in D(R3) for

one of the topologies J1 or M and normalizing sequence b with rate function I4,S,v(a, s, v) =

IA,s(a,s), when s = o (gte), and IA,S,V(a,s,v) = cc otherwise.

We now prove (d). Since the rate function IA,s(a, s) equals infinity at elements of D(R2) that

are either discontinuous or not equal to 0 at 0, the extended contraction principle [17] implies

that under the assumptions {(A,),n 1} obeys an LDP in D(R2) for the J1 topology with

the rate function IA,s(a,s).

Let

U(k) = inf{t 0 : A(t) > k} (3.25)

and U(t) = U([ntj + 1)/n. By (3.24) and Lemma 4.2(c) in [17],

1e. (3.26)

Noting also that L(k) = inf{t 0 : D(t) k}, we conclude by Lemma 4.3 and Theorem 5.4

in [17], and part (c) of the theorem we are proving that {(, D, W,,W7 o tT, L1), n 1}

obeys an LDP in D(R6) for the J1 topology with rate function I’(q, d, w, c, h, 7) = IQ,D,c(q, d, c)

when q = w, h = w o (‘e) and d = —l o (gte), and I’(q, d, w, c, h, 7) = cc otherwise.

We now prove that
—

— —!
pl/an

H—WoU —÷ 0 (3.27)

which will conclude the proof by Lemma 4.1(c) in [17]. Since W(U(t)—) i-J(t) E

we have that

sup L(s) —
o < sup W(s)I. (3.28)

S<t O<s<U(t)

Since IA,s(a, s) equals infinity when either one of the arguments is either a discontinuous function

or not equal to 0 at 0, part (c) of the theorem implies that {W, n 1} obeys an LDP in D(R)

for the J1 topology with rate function which equals infinity both at discontinuous functions from

D(R) and functions not equal to 0 at 0 so that by Lemma 2.3, for t> 0,

— pl/an

sup W(s)I —
0’ (3.29)

O<s<t

as n —÷ cc. Putting together (3.26), (3.28) and (3.29) proves (3.27). The theorem is proved.

Remark 3.1. Let I(t) denote the cumulative server’s idle time at t, i.e., I(t) = J 1(Q(.s) =

0)ds, and i(t) = I(nt)/(b,/). Since obviously 7(t) = —(t) (see (3.18)), the theorem

provides LDPs for {I, n 1} as well.
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Remark 3.2. Parts (c) and (d) show that under the hypotheses “Little’s law” holds: if the rate

function is finite, then w = q. So, (Q, D, C) is “a sufficient statistic” in the sense of Lemma 2.1.

We now consider the case of quadratic rate functions typical of the LDP for partial sums of

triangular arrays of i.i.d. sequences (see Lemma 6.1 of [17] or [14, Example 7.2]) or partial sums of

interarrival times in superpositions of renewal processes (see Theorem 7.2 of [17]). We adopt the

convention 0/0 = 0 so that, e.g., the rate function IA(a) below, in the case if erA = 0, equals 0

when a(t) = 0 for all t 0 and equals co otherwise.

Theorem 3.2. Let condition (3.15) hold. Assume that {(A,S),n 1} obeys an LDP in D(R2)

for the J1 topology and normalizing sequence b with rate function

IA,s(a, s) = IA(a) + Is(s),

where
1 r

IA(a) =
—- / à(t)2dt (3.30)
2u jo

for a absolutely continuous with a(0) = 0 and IA(a) = cc otherwise, and

1 °

Is(s) =
—- J â(t)dt (3.31)
2o j

for s absolutely continuous with s(0) = 0 and Is(s) = cc otherwise. Then the following holds.

(a) The sequence 1} obeys an LDP in D(R3) for the J1 topology and normal

izing sequence b with rate function

IQ,D,c(q, d, c)
= f 1(q(t) >0) [((t) + (t) - r)2 + (t)2] dt

+ f 1(q(t) =0) ((t) - r)2 + (a(t) - e(t))2] dt,
o 2o 2o

when q, d and c are absolutely continuous with q(0) = d(0) = c(0) = 0, q is nonnegative, c

is nonpositive and nonincreasing, â(t) = 0 a.e. on the set q(t) > 0, and IQ,D,c(q, d, c) = cc

otherwise.

(b) The sequence 1} obeys an LDP in D(R) for the J1 topology and normalizing

sequence b with rate function

d) = f 1(q(t) >0) [((t) + (t) - r)2 + (t)2] dt

+ f 1(q(t) =0) [((t) - r)2 + 1(a(t) > 0)d(t)2] dt,
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when q and d are absolutely continuous with q(O) = d(O) = 0, q is nonnegative, and

IQ,D(q,d) = cc otherwise.

(c) The sequence {(Q,C), n 1} obeys an LDP in D(R2) for the J1 topology and normalizing

sequence b with rate function

I,c(q, c)
= 2(u ± L 1(q(t) > 0)((t) - r)2 dt

+ 9 f 1(q(t) = 0)(á(t) — 7.)2 dt,
2(o+u,) j

when q and c are absolutely continuous with q(O) = c(O) = 0, q is nonnegative, c is nonpos

itive and nonincreasing, á(t) = 0 a.e. on the set q(t) > 0, and I,c(q, c) = cc otherwise.

(d) The sequence n 1} obeys an LDP in D(R) for the J1 topology and normalizing sequence

b with rate function

oo 2

IQ(q) = 2
1

2 f 1(q(t) > 0)((t) — r)2 dt +
1(r>0)r J 1(q(t) = 0) dt,

2(JA+Js) o

when q is nonnegative and absolutely continuous with q(0) = 0, and IQ(q) = cc otherwise.

(e) The sequence {C, n 1} obeys an LDP in D(R) for the J1 topology and normalizing sequence

b with rate function 1c which is as follows. Let k(c) = ess sup {t > 0 : â(t) < O}.

Ifr <0, then
1 00

Ic(c) = 2 2 f (á(t) — r)2 dt,
2(A + c) o

when c is absolutely continuous, c(O) = 0, é(t) < 0 a.e. and k(c) = cc, and I(c) = cc

otherwise.

Ifr>0, then
1 ,rk(c)

Ic(c) = 2 9 / (á(t) — r)2 dt,
2(A + o) jo

when c is absolutely continuous, c(0) = 0, á(t) 0 a.e., and Ic(c) = cc otherwise.

Proof. An application of Theorem 3.1(a), Lemma 2.4 (or Lemma 3.1 in [18]) and Lemma 3.3 in

[15] yields the rate function of part (a). The rate function in (b)—(e) follow by the contraction

principle. In particular, in part (e) it can be proved in analogy with the proof of Theorem 5.1(b)

in [18] that infq Iq,c(q, c) is attained at q(t) = 0 for t < k(c).

Remark 3.3. Let
= U([ntJ) -1nt
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where U(lc) is defined by (3.25) and U(O) = 0. By (3.1) and an easy extension of Theorem 5.4 in

17] to the multidimensional case, the assumed LDP for (A,) holds if and only if the sequence

{(U, Va), n 1} obeys an LDP in D(R2) for the J1 topology and normalizing sequence b with

rate ftinctioii Iuv = 1u + Iv, where

Iu(u) = f°°(t)2dt
2oU o

for ‘u absolutely continuous with u(0) = 0 and lu(u) = cc otherwise, and

Iv(v) = f(t)2dt
o

for v absolutely continuous with v(0) = 0 and I(v) = cc otherwise, and u = u/)3 and

9 9 3

More specifically, for a GI/GI/1 queue, i.e., when A and S are renewal processes, let us

denote by n the generic interarrival time and by v the generic service time. Then the LDP for

(Un, V) holds if

= Eu, = Eva,

Var Un u, Var v 4,

and either one of the following conditions is met:

(i) sup E(u)2tE <cc, sup E(v)2 <co for some e > 0 and \/ij/b — cc;

(ii) sup E exp(u) <cc, sup E exp(av) <cc for some c > 0,0 </3 1 andn/2/b — cc.

This follows by Lemma 6.1 and Theorem 5.4 in [17].

Remark 3.4. It is interesting to compare I with the rate function for the arrived work.

Since under the conditions of the theorem {(A, Va), n 1} obeys an LDP with rate function

‘A,V = + Iv, it easily follows that the processes ((Va o A(nt) — nt)/(bfl\/), t 0) obey an

LDP in D(R) for the J1 topology and normalizing sequence b with rate function

1 co
1(x)

= 2( + ) f (±(t) r)2 dt,

when x is absolutely continuous, x(0) = 0, and 1(x) = cc otherwise. So the rate functions look

similarly.

Lemma 2.1 and part (d) of Theorem 3.1 allow us to obtain LDPs for the other processes. For

instance, we have the next result.

Corollary 3.1. Under the conditions of Theorem 3.2, the following holds.
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(a) The sequence {W, n 1} obeys an LDP in D(R) for the Jj. topology and normalizing

sequence b with rate function

cc cc

=

1

, J 1(w(t) > O)((t) — r)2 dt +
1(r> O)r f 1(w(t) = 0) dt,

2(o+u,) o 2(u+)

when w is nonnegative and absolutely continuous ‘wzth w(O) = 0 and IwQw) = oo otherwise.

(b) The sequence {H, ri. 1} obeys an LDP in D(R) for the J1 topology and normalizing

sequence b with rate function

cc 2 cc

Iff(h) =
2 2 / 1(h(t) > 0)(2(t) — r)2 dt ±

1(r > 0)r f 1(h(t) = 0) dt,
2(A + u) 2(JA + ) 0

when h is nonnegative and absolutely continuous with h(O) = 0 and IH(h) = otherwise.

Proof. For the proof it suffices to observe that by part (d) of Theorem 3.1 and Lemma 2.1,

Iw(w) = IQ(w) and IH(h) = I(h o (ne)).

We can also project even more to get LDPs for one-dimensional distributions. To illustrate, we

give two examples. Denote r’ = —r2.

Corollary 3.2. Let the conditions of Theorem 3.2 hold. Then

(a) the sequence {(t), ri 1} fort 0 obeys an LDP in R for normalizing sequence b with

rate function

(z + r’t)2 z
,,

, when r’ < 0 or r’ 0,
—

> t,
2(u--u,) t r

IH(t)(z)
= 2jrz z

9 , whenr’>O, —<t;

(b) the sequence {t(t), n 1} for t 0 obeys an LDP in R_ for normalizing sequence b with

rate function

9 —1 2t (z—r t) —z
whenr>Oorr<0 —>t

2(+o-.) t ‘ — ‘ r
Ic(t)(z) =

—2rz —z
9 ,, whenr<0,,u—<t.

7.

Remark 3.5. Note that in “the ergodic case” r < 0, the rate function for {(t), n 1} is

the same as for the arrived work {(V o A(t) — nt)/(b,/), ri> 1} which follows by Remark 3.4.

Remark 3.6. We do not know an explicit expression for ‘D and ‘L•

We end the section by showing, analogously to diffusion approximation results, that the LDPs

for the processes of waiting and departure times can be established directly without invoking LDPs

12



for continuous-time processes, and that for the ergodic GI/GI/1 queue an LDP holds for stationary

waiting times as well (cf. Prohorov [12]). Let us denote by i 1, the time between the i th and

(i + 1) th arrivals and by i 1, the service time of the i th customer in the n th system. The

associated partial-sum processes U7 = (U7ç(k), k = 0, 1,2,...) and V7. = (V(k), k = 0, 1,2,...) are

given by

k Ic

U7ç(k) = U7(0) = 0, V(k) = V(0) = 0, (3.32)

so that, as above, V(k) is the cumulative service time of the first k customers. The obvious

equations for waiting and departure times are

H(k + 1) = V(k) — U7ç(k) — min(V(i) — U(i)), (3.33)

L(k + 1) = U(k) + H(k + 1) + Vn,k+1. (3.34)

Let

U = (U(t),t> 0), Ut) = bti) - A’nt). (3.35)

Recall that if the n th queue is a GI/GI/1 queue with ) <j, then the waiting times H(k)

converge in distribution as k —+ cc to a proper random variable (see, e.g., Borovkov [1]). We

denote the latter by H and let =

Theorem 3.3. Let (3.15) hold.

(a) Assume that {(U, V,), n> 1} obeys an LDP in D(R2) for one of the topologies J1, Mi or Mf

and normalizing sequence b with rate function Iu,v(u,v).

Then n > 1} obeys an LDP in D(R) for the same topology and normalizing sequence b with

rate function

IH(h) = inf Iu,v(u,v)
u,vED(R2):

h=7Zv—u—r’e)

f, in addition. Iu,v(u, v) is infinite when v is either discontinuous or not equal to 0 at 0, then

n > 1} obeys an LDP in D(R2) for the same topc.iogy and normalizing sequence b with

rate function

IFf,L(h,l) = inf IJi,v(a,v)
u,vD(R2):

1=u-bh+r’e

13



(b) Consider a sequence of Cl/Cl/i queues for which the conditions of Remark 3.3 hold. Assume

that r < 0. Then the sequence {H,n i} obeys an LDP in R+ for the normalizing sequence

b, with rate function

IHo(z) = 9 9
-r

Proof. We begin with part (a). For the part related to H, we use that by (2.4), (3.33), (3.35),

(3.8), and (3.13)

For the second claim, we use that by (3.34), (3.35), (3.14), (3.13), and (3.8)

= U(t) + (‘ -‘)t±L(t)
+ Vnntj±1

the fact that by the hypotheses and Lemma 2.3 sup3< 0, and Lemma 4.2(b)

in [17].

We now prove part (b). The argument is borrowed from the corresponding proofs of diffusion

approximation results [12]. Since H7 is distributed as supko(Vfl(k) —
U,(k)) [1], we have, for a

Borel subset A of R÷,

P( e A) - P ( 1
sup (V(k) - U(k)) A P( sup (V(k) - U(k)) 0).

\bnJo<k<[ntj J k>[ntj

Since 511P0<k<Lntj (V(k) — U7ç(k)) coincides in distribution with H([ritj + 1), and {H([ntj +

> 1} by Corollary 3.2(a) obeys an LDP with the rate function IH(t)(Z) for which

limt÷cc illfzeA IH(t)(Z) = infEA IHo(z), when A = [a, b], [a, cc), (—cc, b], (a, b), Lemma 2.2 implies

that the required would follow by

lim iI pl/( sup (V(k) — U,ç(k)) 0) = 0, (3.36)
t—*co k>[ntj

where, as above, a = b.

Denoting = E(u, — v,i) and = — + , we have, since , > 0,

cc k

P(sup(V(k) — U(k)) 0) — k) o)

cc /21 cc / k

P 2’6) + R (\max,

1=1og2(nt)j i1 1=[Iog9(nt)J —

cc / k

P( max
1<k<21

1=1og2(rit)j —

Limit (3.36) now follows by Lemma A.i in the appendix and the near-heavy traffic condition

r’ > 0 as n cc. The theorem is proved.
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4. Moderate Deviations for Queueing Networks in Near-Heavy Traffic

We now extend some of the above results to the queueing-networks set-up. Our results here are

in the spirit of Reiman {19]. We consider a sequence of networks indexed by n. The nth network has

a homogeneous customer population and consists of K FIFO single server stations. The network

is open in that customers arrive from outside and eventually leave. Let Afl,k(t), 1 k K, be

the cumulative number of customers who arrived at station k from outside the network during the

interval [0, tj, and let S,k(t), 1 < k K, be the cumulative number of customers who are served at

station k for the first t units of busy time of that station. We call A = (A,k, 1 < k < K), where

= (A,k(t),t 0), and S = (Sfl,k,1 k < K), where 5n,k = (S,k(t),t > 0), the arrival

process and service process respectively (note that some of the entries in A may equal zero). We

associate with the stations of the network the processes n,k = (n,k1, 1 < 1 < K), 1 < k K,

where in,k1 = (n,kL(’m), rn = 1,2, .
. .), and ,kj(m) denotes the cumulative number of customers

among the first rn customers who depart station k that go directly to station 1. The process

= (n,k1, 1 < k, 1 < K) is referred to as the routing process. We consider the processes An,k,

5n,k and n,k as random elements of the respective Skorohod spaces D(R), D(R) and D(RK);

accordingly, A, Sn and are regarded to be random elements of D(RK), D(RK) and D(RK),

respectively.

We next introduce normalized and time-scaled versions of the arrival process, service process

and routing process. Let A,k 0, /n.k 0, and Pkl e [0, 1], 1 k K, 1 1 K. Define

— An,k(flt) ?,kflt — S,k(flt) — 1-tn,kflt — ,kt(flt) — pkl’nt
A k(t) = , Sn k(t) = , ,(t) = , (4.1)

where as above b —+ co and bn// —* 0, and let An = (An,k, 1 <k <K), n = (Sn,k, 1 <k K),

= (L,k1, 1 <1 <K), 1 <k < K, and = (n,k1, 1 <k, I <K). Again the latter processes

are considered as random elements of D(RK), D(R’), D(RK), and D(RK), respectively. Also

we denote An = (An,k,1 k K), ii = (In,k,1 k K) and P = (pkl,1 k K,1 <l K).

The first two vectors as well as other elements of RK are regarded to he column-vectors.

In analogy with the hypotheses of Section 3, we assuiie that A — A ,... , Aic) and

as ri. —f cc, where u is componentwise positive, and that the near-heavy

traffic condition holds: for some r e R<,

— (I — pT)) r as n cc, (4.2)
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iii particular,

A = (I — pT) (4.3)

(As above, T denotes taking the transpose of either a matrix or a vector.) We also assume that

the spectral radius of the matrix P is less than unity.

Our main concern here is the queue-length process Q7, = (Q,k, 1 < k < K), where Q,k

(Q,k(t), t > 0), with Q,k(t) denoting the number of customers at station k at time t. Other

related processes can be treated analogously to Section 3. The associated normalized and time-

scaled process Q, = (Q,k 1 k K) is defined by

Qfl,k(t)
= Qk(nt) (44)

We fix some notation. If x e D(R<) has componentwise noudecreasing nonnegative paths,

then for y E D(RK) we denote y o = ((Yk ° xk(t), 1 k < K),t 0), accordingly, if q5(t) =

(ckk1(t), 1 k, 1 K) RK)<K, then 1 o z(t) (i ° Xk(t), 1 k, 1 K). For a vector

a = (a1,. .. , a) e RK, we denote ae = ((ait,... , at), t 0). For a subset J of {1, 2,...

weset lj = {a = (al,...,aK) eR : ak =0,k E J,ak > 0,k J} and Fj ={a =

(ai,... , a) e : aj = 0, k e J}; lj is the K-vector with entries from J equal to 1 and

the rest of the entries equal to 0; JC denotes the complement of J. We also denote: R9.. is

the interior of R, 1 is the K -vector with all the components equal to 1, K2 is the set of all

the subsets of {1, 2,... , K} excluding the empty set. For vectors a = (a1,... , a) E RK and

a’ = (ai,. .. , a) e RK, we denote a® a’ = (aia,. .. , aa<) e RK.

Theorem 4.1. Let Q,k(O) = 0,1 < k < K,n > 1, and the near-heavy traffic condition (.2) hold.

(a) Assume that the sequence 1} obeys an LDP in D(RK x RK x RK) for one

of the J1, M1 or M topologies and normalizing sequence b with rate function IA,s,(a, s, q).

Then {Q7,n > 1} obeys an LDP in D(R’) for the same topology and normalizing sequence b

with rate function

IQ(q) = inf IA,s,(a,s,q)
a,s,çbED(R<xR<xRI<)<I):

q=p(a+(oe)T1—(I—PT)s±re)

(b) Assume, in addition, that ‘A,S, has the following form: for a = (a1,... , aK-)

= (si,.. ,SK) e D(RK) and = (1,. .. , K) e

K K K

IA,s,(a,s,b) =

16



wli crc
1 •co

IAk(ak) = 2 / ak(t)dt
“0

for ak absolutely continuous with ak(O) = 0 and IAk(ak) = cc otherwise,

1 ro°

ISk(5k) = —--- I Sk(t)2dt
2sk “°

for 8k absolutely continuous with sk(O) = 0 and Isk(sk) = cc otherwise, and

Ik (k)
= f sup (ATk(t) — T

,k dt,
0 AERk 2

for = (cbkl, 1 < I < K) absolutely continuous ‘with k1(O) = 0 and Ik(cbk) = cc otherwise, where

Zpk, 1 < k < K, are symmetric nonnegative-definite K x K matrices.

Assume that the symmetric nonnegative-definite K x K matrix F defined by

F = diag(u1,•. ‘a,K) + (I — pT) diag(u1,... ‘s,K) (I — P) +

is positive definite.

Then {Q, n > 1} obeys an LDP in D(RK) for the J1 topology and normalizing sequence b

with rate function

1

IQ(q) = f 1(q(t) e R)((t) -r)TF’((t) — r) dt

+ f 1(q(t) E Fj) inf ((t) 0 ljc — r — (I — PT)y)TF_1((t) ® ljc — r — (I — pT)) dt,

JeYC 0 gEFc

when q is absolutely continuous with q(0) = 0 and IQ(q) = cc otherwise.

(c) Assume that the processes An,k, I k K, 3n,k, 1 < k <K, and ‘n,k, 1 /c K, are mutually

independent for each n. Assume that the processes An,k and 3n,k are renewal processes and let

tlm,k denote the generic exogenous interarrival time and ‘D,k, the generic service time in station Ic.

Let the stations be indexed so that, for some K’, ?, > 0 when 1 i K’, and ), = 0 when

K’+l<i<K. Let

—1 - 9

Eufl,k-+Ak ,Varufl,k—+u;k, 1kK,

‘ Var Vm,k J, 1 Ic K,

and either one of the following conditions be met:

(i) sup E(i,k)2 < cc, 1 k K’, sup E(,k)2 < cc, 1 < Ic K, for some e > 0 and

— cc;
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(ii) < cc, 1 < k < K’, supEexp(a(’b,k)1)< cc,l k K, for some

i > 0,0 < /3 1 andn/2/bj — cc.

if, in addition, the routing mechanism does not depend on n and is i.i.d. at each station with Pkl

being the probability of going directly from station k to station 1, then the conditions of part (b)

hold with

a,k = uU,kAk, 1 k <K’, a,k = 0, K’ + 1 k K, s,k = v,k/k, 1 k K,

(k)
=[Pk1 pk1), m,

1<k<K,1<l<K,1<m<K,
1,m PklPkm, if m 1, — — — — —

and

Ik(k)=Zfdt 1<k<K,

for bk = (cbkl, 1 <1 <K) absolutely continuous with bk1(O) = 0 and k1(t) = 0, and Ik(k) =

cc otherwise.

Remark 4.1. If the matrix I’ is degenerate, then the LDP in part (b) holds with the same rate

function 1ç provided in its definition expressions of the form 4Tp_1x, x E Rk, are understood

as supAenk (A v — 1ATFA)

Proof of Theorem 4.1. The proof is a straightforward extension of the proof of Theorem 3.1

(cf., a similar argument in the proofs of corresponding weak convergence results in [19, 3]). In

analogy with (3.4), (3.5) and (3.3), we have that for 1 k K

K

Q,k(t) = Afl,k(t) + n,1k 0 D,1(t)
1=1

where

D,k(t) = S (f 1(Q,k(s) > 0) ds).

Introducing
=

f 1(,k(s) >0) ds, D,k(t)
= D,k(nt)

we then have by (4.1) and (4.4) that

K

Qn,k (t) = A,k (t) + n,1k 0 (t)

± ZplkSm,1 0 G,1() Sm,k 0 Cfl,k(t) + (An,k + P1kn,1 —

± (nk

f
1(,k(s) = 0) ds

— P1kn,1

ft
1((s) = 0) ds) (4.5)

18



which implies that

(4.6)

and hence

— pT) ® = A + (0)T 1 — (I — PT) o + (A + (PT
—

where (t) = (,k(t), 1 k K) and (t) = (,k(t), 1 k K). The Lipshitz property of

Rp, the LDP for {(A,S,L), n 1}, (4.2), and the fact that I — pT is nonsingular yield by

the argument of the proof of (3.23), since is componentwise positive,

It
—

pl/an

/ 1(Qflk(s)=O)ds —* Oasn—*cc, 1 <k<K, t>O,
Jo

where again a = b, implying that

0m,k e as n .
(4.7)

Then by Lemma 4.2(b) in [17]
—/ Fl/n

—* ,ue (4.8)

after which Lemma 4.3 in [17] enables us to conclude that the sequence {(A, 3o, o), ri

1} obeys an LDP in D(R’< x RK x RK) with rate function ‘A,S, given by the equality

IA,s,(a, s, b o [Le) = IA,s,(a, s, sb). The claim of part (a) follows by (4.6) and the contraction

principle.

Part (b) is a consequence of part (a) and Lemma 2.4. In more detail, we have by part (a),

Lemma 3.3 in [15] and Lemma 2.4

Iq(q) = inf ( IA(ak) + Is(s) + Ik(k))

(a,s,)eD(R’<xR’<xR1): k=1 k=1 k=1

q=p+(boje)T1_(I_PT)s+re)
K

=1 inf 9

JO (,,7)ERKxRKxR<KxR: k=1 2a,k k=1
(t)=+i,bT i_(J_FT)f3+r+(I_FT)7,

7kqk(t)=O,1kK

+ [k sup (ATk T dt.

k=1 AR

By mean squares, the infimum in the integral over a, 8 and /, for fixed, equals (éj(t) — r — (I —

pT)7)Tp_1 ((t) — r — (I — pT)7). This completes the proof of (b).

The conditions of (c) imply the conditions of (b) by Lemma 6.1 in [17]. The theorem is proved.
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Remark 4.2. Note that the matrix F in part (c) coincides with the covariaiice matrix in

Reiman’s result [19].

Remark 4.3. The rate function in part (b) is not as explicit as in Theorem 3.2 in that on the

faces we need to solve quadratic programming problems. It appears that generally this needs

to be done numerically.

Remark 4.4. The contraction principle allows us to deduce that under the conditions of the

theorem one-dimensional projections also obey LDPs. An open question is deriving explicitly the

rate functions as in Corollary 3.2. It is not difficult to see that the optimal paths q must be

piecewise linear. However, we can solve explicitly only the case K = 2 (cf., Ignatyuk, Malyshev

and Scherbakov [6]).

We now apply Theorem 4.1 to obtain LDPs for waiting and sojourn times (cf., Reiman [19]).

Let T/V,k(t), 1 k K, denote the virtual waiting time at station k at time t. Define

W,k(t) = W,k(nt)/(b’.J) and let Wn = ((Wn,ic(t), 1 k K), t 0). Next, for a vec

tor k = (k1,. . , k1) , where k1 e {l, 2,. .. , K}, let A,k(t) denote the number of customers

with the routing (k1,k2,. . . , k1) who have exogenously arrived by t and Y,k(rri) denote the so

journ time of the mth exogenous customer with the routing (Ic1, Ic2 ,...,k1), and let Yk(t) =

Y,k([ntj + 1)/(b), n,k = (,k(t),t 0), A,k = (Afl,k(nt)/n,t > 0).

Corollary 4.1. (a). Assume that the sequence {(A,3,L),n 1} obeys an LDP in D(R’ x

RK x Rl<) for one of the J1 or M topologies and normalizing sequence b with rate function

I4,3,p(a, s, q5), ‘which, in the case of the J1 topology, equals infinity unless s is continuous and

equal to 0 at 0. Then the sequence {(,W),n > 1} obeys an LDP in D(R’< x RK) for the

same topology and normalizing sequence b with rate function IQ,w(q, w) such that q = ,u ® w,

‘when Iq,w(q, ‘w) < co. In particular, the sequence {W, ri 1} obeys an LDP in D(R”) with

rate function I(w) = IQ(,u 0w).

(b). Assume, in addition, that the rate function IA,s,(a,s,b) equals infinity unless a,s and

are both continuous and equal to 0 at 0, and

Afl,k
pm

Ake (4.9)

as n — cc, for some ‘k >0.

Then the sequence {(W,Y,k),n l} obeys an LDP in D(RK x R) for the J1 topology and

normalizing sequence b with rate function Ivy(w, y) = Iw(w), when y o (ke) =

and Iw,y(w,y) = cc otherwise, where w = (w1,... ,wK) . In particular, the sequence {Y,k,n
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1} obey$ an LDP in D(R) for the J1 topology and normalizing sequence b with rate function

I
= w:11wk.o(k’e)

Iv(w).

Proof. The proof is much similar to that of Theorem 4.1. We only give a sketch. Let V,k(rn),

fbr k = 1. 2,... .K, and rn = 1, 2,... , denote the cumulative service time of the first rn customers

served at station k: V,k(m) = inf{t 0 : S,k(t) mn}, V,k(0) = 0, and let E,k(t), t 0,

denote the total number of arrivals to station k by time t: E,k(t) = An,k (t) + ::= ri,1k °

Introducing V,k(t) = V,k([ntJ)/(bfl/), V(t) = (V,l(t),...,V,K(t)), V = (V(t),t 0),

E,,k(t) = E,k(nt)/n, E,ç(t) = (E,ç1(t),... ,E7,(t)) and E = (E(t), t 0), we have, in analogy

with (4.5),

®W(t) = ®V oE(t) +A(t)
+ ( o(t)) 1

+PT ( (t)) + + pT
— ]t ± [I — pTj( ®

In analogy with (4.8) and in view of (4.3), Lemma 4.2(b) in [17] implies that

E e. (4.10)

Therefore, recalling (4.6), (4.8) and (4.7), we have that the sequence {(A, S, V, I, Q, Wa), fl

1} obeys an LDP in D(RKxRKxRKxR KxRKxRK) with rate function IA,s,v,Q,pv(a, s, v, q, q, w)

such that whenever it is finite the following equations hold

s=—®vo(e),

An application of Lemma 2.1 ends the proof of (a).

We now turn to (b). Note first that the argument of the proof of part (a) implies that the

sequences {W, n > 1} and {V, n 1} obey LDPs for the J1 topology with rate functions

which equal infinity both at discontinuous functions and functions not equal to 0 at 0.

Next, let us denote by U,k(m) the arrival time of the mn th exogenous customer with the

routing vector k, by T,k,(mn), 1 i < 1, the time it arrives at the i th queue of its itinerary, by

H,k,(mn) , the time it awaits service in the i th station and by v,k,(mn), the time it is served in

the i th station. We obviously have

T,k,1(m) = U,k(m), T,k,(mn) = T,k,_1(rn) ± H,k,_1(m) + V,k,1(7fl), (4.11)

and

(mn) —) (mj) (m)). (4.12)
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Inequalities (4.12) account for the fact that we make no assumptions about the mechanism of

resolving conflicts between simultaneous arrivals. Next, it is easily seen that

V,k,1(7fl) SUP Vfl.k(s)I. (4.13)
bnvn OsEk.(Tfl,k,(m)/n)

pl/an pl/an —, pi/a

Since Ek(t) —* ijt by (4.10), U,k([ntj + 1)/n — )‘t by the assumption A,k

and Lemma 4.2(c) in [17], W,k([ntj)/n
fl

0 by the LDP for {W, n 1} and Lemma 4.2(c)
— pl/an —

in [17], and sups<t Vn,k(s)I —* 0 by the fact that {V,n 1} obeys an LDP with rate

function that equals infinity both at discontinuous functions and functions not equal to 0 at 0

and Lemma 2.3, it follows from (4.11), (4.12) and (4.13) that, for i = 1, 2 1,

1 pl/an
—Tfl,k,([ntj + 1) — (4.14)

and
1 pl/an

sup ,._v,k,1([nsj + 1) — 0. (4.15)
O<s<t bmvn

Let = (Hfl,k,(LritJ + 1)/(bfl\/),t 0), 1 i <1. The LDP for {W,n 1}, (4.14) and

(4.12) imply, by Lemmas 4.1(c) and 4.3 in [17] and Lemma 2.3, that {(H,k,1,... ,Hflk,t,W),n

1} obeys an LDP in D(R1 x RK) with rate function ‘Hkl HkI,w(hk,1,... , h,w) =

when hk, = (A’e), and equal to infinity otherwise. The proof is completed by noting that

I I

Y,k(t) = H,k,(t) +
b

V,k,1([ntJ + 1)
i=1 1=1 V

and using (4.15), Lemma 4.1(c) in [17] and the contraction principle. The corollary is proved.

Remark 4.5. If the routing mechansim is as described in part (c) of Theorem 4.1, then

convergence (4.9) in part (b) holds with Ak = Pk1k Jc1 1k1Ak1. This follows by Theorem 6.3 in

[18] and Lemma 4.2(b) in [17].

Acknowledgement. I am grateful to Ward Whitt for fruitful discussions and suggesting

Theorem 3.3(a) and to Marty Reirnan for valuable comments on the contents of the paper.

A. Appendix

We state and prove the lemma used in the proof of Theorem 3.3(b).

Lemma A.1. Let i 1}, n 1, be a triangular array of row-wise i.i.d. r.v. with zero

mean. Let b — o as n —* oc, and c> 0.
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(i) If 0 as fl cc and, for some C > 0, we have sup EIn,iI2 < cc, then there exist

n0, to >0, C >0 and 02>0 such that, for all t > to and n

b2 1
p ( max n.j > at) exp(—Cib) + C9

—
7l/2 t/2\1<k<Lntj bn

.

(ii) If for some > 0 and (0, 1], we have sup E exp(7n,i ) <cc and n/2/b- cc as

n — cc, then there exist n, t > 0, G > 0 and G > 0 snch that, for all t > t and n >

P
1 k

)
<exp(-Cb) + exp(-C(b)).max li > at

(1<k<Lnti V

Proof. The argument uses the ideas of the proof of Example 7.2 in [14]. Let the conditions of (i)

hold. We first prove that there exist C > 0 and to such that for t to

k
p ( max

1

____

/ b
> at) exp ( — Ci b). (A.3)

\\1<k<[ritj V

Denote B = sup Ein,iI2 and let

b / /b
C=

— I i ( —k,ii — I
V \V

By Doob’s inequality (see, e.g., Liptser and Shiryaev [9, Theorem 1.9.1]), for A > 0,

1\
p( max

___

k / /b at

\1kLmti
— I <

> _)
(Ee2i)

(A.4)

Since = 0, ,ij 2v” and E1 E1b,/n, it follows that

Ee2,1 1 + 2A2e4E,i 1 + 2A2e4 B,
n

[ut]
so (Ee21) exp(2A2e4Btb). Choosing in (A.4) A = i/fi, t0 = (4e4B/a)2 and C

a/2, we get

k /b at
P max

_

1 ( —j — ( In,iI
> )

exp(—C1b).
1<k<[nt] bVn = (

(A.5)

Now note that, since = &, by the Chebyshev inequality,

/ b

______________

= E,11 ( b < b B
—ITh,iI>

— (l+E)/2 t(l+6)/2’
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hence
[ntj I b

JE,1l
I <_Bt(1)/2,

(
—

so. by the fact that //b — cc as n cc, for all n large enough and t> t0,

/ 1 k

p max ji _n,j > at)
1<k<Lntj i=1

max

____

k

E,1l
at

—f.,ja) -

1

(bfl— \1<k<[ntj j

which together with (A.5) proves (A.3).

Estimate (A.1) now follows by (A.3), the inequalities

/ b
p max

1
n,i > at P max

)
11 lfl,?1 > at

1k[ntj b_1 J 1kntj
z=1

(
+P max

1<k<[ntj /‘i

and

( max > [ntjP
b B

\1<k<LfltJ )
t) <[nt]1/91+/9.

Part (i) is proved.

For part (ii), we write

p ( max
1

,j > at p 1 max
1 k

1<k<[ntJ J 1<k<[ntj bmZ1 (—i2i
i=1

1
[ntj atz (A.?)

Noting that the conditions of part (ii) imply the conditions of part (i), we estimate the first term

on the right with the help of (A.3). For the second, we use the inequality

Intl at”

_____

(b >
<P(bThl

max
1 2) —

\fl =i

1

>

___

at

)
>

We first work with the second probability on the right. We have, for \ > 0, by the Chebyshev

inequality,

n )>)>
1

1 < at
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[nt!

<
(E

l b / b

> ) ‘(b1n,11 exp(-Abat)— exp (2A—j,i1 ( 1

/ 1
<exp (ritE exp (2A,l) ) — Abat). (A.9)1 11

Next,f& O<<1,c>O,Ac<7/2,

Eexp (2-
N / b

1) 1
\/ I \V

<Eexp ( N / b 1- > c) 1 (bm,11— 2A-,iI 11 (
vn I \/

/ b N / b ‘\ / ‘ ,
>

+Eexp (2A—I,il 11 (I,i! <c) 1

71 j Eexp (7In1I))exp (2Ab -

\\ nij

7
+Eexp ((2Ac +1)imi) exp (- (A.1O)

Taking A = 1/(2) and c = 7/2, it is not difficult to see by (A.9), (A.1O) and the condition— 0 as n — , that, for all n and t large enough,

cit
1

1
in,ii

>

exp (_c’b).
( [nt]

n. )z=1

By a similar argument, this bound is seen to hold for 3 = 1 as well.

Finally, the first term on the right of (A.8) is estimated as

Eet”
P max jn,i

>

exp(—C(b
fl 1i[mtj

Substituting the estimates into (A. 7) finishes the proof of (ii). The lemma is proved.
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