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Abstract

We establish logarithmic asymptotics of moderate deviations for the processes of queue length
and waiting times in single server queues and open queueing networks in critical loading. Our
results complement earlier heavy-traffic approximation results.
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1. Introduction

This paper complements the classical results on heavy-traffic approximation for queues in King-
man [7], Prohorov [12], Iglehart and Whitt [5], Borovkov [1], and Reiman [19] by studying some
related large-deviation asymptotics. In a standard set-up, one considers a sequence of GI/GI/1

queues indexed by n with associated loads p, — 1 as n — co so that
Vn(l = pn) = ¢ where |¢| < oo, (1.1)

and establishes convergence in distribution of suitably time-scaled and normalized queue-related
processes to processes of diffusion type; say, the processes (n‘l/ W, (nt),t > 0), where W,(t)
denotes the unfinished work (or virtual waiting time) in the nth system at time t, converge in
distribution in the Skorohod J; topology to a reflected Brownian motion with drift [5]. The
limits when |/7n(1 — pp)| — co are different: in the context of the unfinished work again, if
V(1 = pp) — o0, then the n~Y2W,(nt) converge to 0 in probability, and if \/n(1 — pn) — —oc0,
a proper limit have the processes (n‘l/ 2(Wy(nt) — (pn — 1)nt), t > 0) . Our focus here is on large
deviation asymptotics for the latter case: |\/n(l — p,)| — co. More specifically, we assume that,
for some b, — oo with b, = o(y/n), we have that

1
—é——\/ﬁ(l — pn) = ¢ where |¢| < o0, (1.2)

n
and study the logarithmic asymptotics of the large deviations of processes like (b, Ln=12W, (nt),t >
0) as n — oco. In Wentzell’s classification of large deviations, Wentzell [23], this is the case of
“moderate deviations” since the choice b, = 1 specifies “normal deviations”, and b, = /n, “very
large deviations”. ;From an application viewpoint, we are concerned with the queue behaviour at
times much greater than (1 —p)~2 for p close to 1 while the standard heavy-traffic results refer
to time intervals of order (1 — p)~2. Accordingly, to distinguish from standard heavy traffic, we
refer to the regime specified by condition (1.2) as near-heavy traffic.

We now give an outline of the paper and a summary of the results. Section 2 contains technical
preliminaries. In Section 3 we consider FIFO single server queues in near-heavy traffic. Sec-
tion 4 extends the results to the case of FIFO open queueing networks with homogeneous customer
population. The results mostly have the form of large deviation principles (LDPs) in the spaces
of right-continuous functions with left limits equipped with one of Skorohod’s topologies, Skoro-

hod [21], for such processes as the processes of queue length, unfinished work, completed work,



waiting times, the number of departures, and departure times. Occasionally, we give LDPs for one-
dimensional projections. The rate functions that we obtain are quadratic in form and reminiscent
of the distributions of the diffusion processes arising in the corresponding heavy-traffic limit theo-
rems. Moreover, the ideas of the proofs are either borrowed from the proofs of the corresponding
weak convergence results or could be used to give them alternative proofs. So, in a sense, the paper
is another evidence of the analogy between large deviation theory and weak convergence theory,

Puhalskii [13]-[16].
2. Technical Preliminaries

We shall work in the function space D(R?) = D([0,00), R of right-continuous R<-valued
functions on [0,00) with left limits, endowed with the Skorohod [21] J; or M) topologies, or a
modification of the M; topology denoted by Mj, we refer to [8], [11], [24], [9], [17] for details.
These spaces are metrizable as separable metric spaces and have Borel o-fields coinciding with
the o-field generated by the coordinate projections. For z = (z(t),t > 0) € D(R%), we denote by
z(t—) the left limit at ¢ and by Az(t), the jump at ¢: Az(t) = z(t)—z(t—),t > 0; Az(0) = =z(0).

As in Varadhan [22], we say that a function I(z) defined on a metric space S and taking values
in [0,00] is a rate function if the sets {z € S : I(z) < a} are compact for all @ > 0, and a sequence
{P,,n > 1} of probability measures on the Borel o-field of S (or a sequence of random elements
{X,,n > 1} with values in S and distributions P,) obeys a large deviation principle (LDP) for a

normalizing sequence a, — oo with the rate function I if

=— 1. :

nlgxgoa; log P, (F) < —;g}é[(m) (2.1)
for all closed F C S, and

lim —~ log P,(G) > — inf I(z) (2.2)

n—00 Qg Te

for all open G C S.

The standard choice of the normalizing sequence is a, = n. We mention that an LDP can
always be reduced to this standard form by reparametrizing the family {P,,n > 1}, Varadhan
[22], however allowing a general normalizing sequence seems more convenient in applications. We
refer to [20], [22] and [17] for additional background.

We say that a sequence {X,,n > 1} of random elements of a metric space (5, p) converges

super-ezponentially in probability at rate an to an element zo € S if, for all € > 0,

lim PY% (p(X,,z0) > €) =0 (2.3)

n—o0
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and we write X,,  — 1zg. This mode of convergence plays a role in large deviations similar to

the role convergence in probability plays in weak convergence. Properties of super-exponential
convergence in probability which we invoke below can be found in Puhalskii and Whitt [17]. Here
we just mention that if (2.3) holds for S = D(R?) with one of the topologies Ji, M; or Mj]
and zg is a continuous function starting at 0, then it also holds for the locally uniform metric on
D(R%), [17, Lemma 4.2(a)].

The following easy consequence of the contraction principle [22] comes in handy below.

Lemma 2.1. Let X, Yy, and Z, be random variables with values in metric spaces Sx , Sy
and Sy, respectively, and let S = Sx x Sy x Sz be endowed with product topology. Assume that
the sequence {(Xn,Yn,Zn),n > 1} obeys an LDP in S for a normalizing sequence ap with rate
function Ixy z(z,y,z) which is finite only if y = f(z), where f: X =Y isa bijection. Then the
sequences {(Xn,Zn),n > 1} and {(Yn,Zn),n > 1} obey LDPs with the respective rate functions

Ix z and Iyz given by the equalities

Ix z(z,2) = Iy z(f (), 2) = xyv,z(z, f(z),2),
Ivz(y,2) = Ixz(f YY), 2) = Ixyv,z(F (1), 2)-

When dealing with an LDP for stationary waiting times, we will use the following version of
Lemma 4.1 in Puhalskii [15].

Lemma 2.2. Let {P,,n > 1} be a sequence of probability measures on R and I be a rate
function on R. If the bounds (2.1) and (2.2) hold for the sets F = [a,D],[a,00),(—00,b] and
G = (a,b), where a,b € R, then {P,,n > 1} obeys an LDP with the rate function I.

The proof follows by Lemma 4.1 in [15].

The next easy lemma is a consequence of the extended contraction principle [17] and continuity
of the supremum map, Whitt [24, Theorems 6.2 aﬁd 6.3], the latter theorems carrying over to the
M topology (see the argument of the proof of Theorem 5.1 in [17] for more detail).

Lemma 2.3. Let X, = (Xa(t),t > 0) be random processes with paths from D(R%). If the
sequence {Xp,n > 1} obeys an LDP in D(R%) for one of the topologies Ji, Mi or M and
normalizing sequence an with rate function Ix(z) which equals infinity at elements of D(R%) that

are either discontinuous or not equal to 0 at 0, then, for every € >0 and t >0,

lim PY% ( sup |AX,(s)| >¢) = 0.

n—o0Q OSSSt

Rate functions in the limit theorems below are generally defined in terms of solutions to Skoro-

hod problems with skew reflection [4, 19, 3]. We now recall the relevant definitions. Let P = (pri)



be a K x K matrix with nonnegative entries and spectral radius less than unity. Denote by PT
the transpose of P and let Rp denote the map from D(RX) into D(RX) associating to each
z = (z(t),t > 0) € D(R¥) with 2;(0) > 0,1 < k < K, the function z = (2(t),t > 0) € D(RX) such

that
1. z=x+ (I — PT)y,
2. y is componentwise nondecreasing with y;(0) =0,1 <k < K,
3. 25(t) > 0 and [5° zk(t) dyx(t) =0, 1 <k < K.

The map Rp is well defined and Lipshitz continuous for the locally uniform metric on D(RK),
Harrison and Reiman [4], Reiman [19], Mandelbaum [10], Chen and Mandelbaum [2]. In the one-
dimensional case K =1 and P = (0) the reflection map which we denote R has the explicit
form

R(z)(t) = x(t) — inf{a(s) : 0 < s St} AD, £20. (2.4)

The following characterization of skew reflection is in the spirit of Lemma 3.1 in [18] and Lemma 4.6
in [15], and proved by the same argument.

Lemma 2.4. Let z € D(RX) be componentwise nonnegative and z € D(RX) be componentwise
absolutely continuous. Then z = Rp(z) if and only if z is absolutely continuous and there ezists

an absolutely continuous function y € D(RX) with the properties
#(t) = &(t) + (I = PT)y(t) a.e.

and

ye(0) =0, gx(t) > 0 a.e., zx(t)y(t) =0 ae, L <k < K.

Thus 2(t) a.e. solves a linear complementarity problem [10, 2].
3. Moderate Deviations for Single Server Queues in Near-Heavy Traffic

We consider a sequence of FIFO single server queues indexed by n. We assume that the queues
are initially empty. Let A,(t) denote the number of arrivals"by t. Sp(t), the number of customers
served for the first ¢ units of the server’s busy time, D,(t), the number of departures by ¢, Qn(t),
the queue length at ¢, W,(t), the unfinished work at ¢, Cy(t), the completed work at ¢, Hyn(k),

the waiting time of the & th customer, and Ly(k), the departure time of the kth customer.



Let also

Vn(k) = min{t : Sp(t) > k}, Vo(0) =0, | (3.1)

be the cumulative service time of the first & customers.

Denoting by o the composition map, we have the following obvious equalities

Wi(t) = Vi 0 An(t) — Ca(b), (3.2)
/1 ) > 0) ds—/lQn s) > 0)ds, (3.3)
Qn(t) = An(t) — Dal), (3.4)

Da(t) = Su o Calt), (3.5)

Let b, — oo and b,/+/n — 0 as n — oo, and A, and p, be positive numbers. We define the

associated normalized and time-scaled processes by

A, = (Aalt),t 2 0 Al = = (Anlnt) = domt) (3.6)

B = (B(8) £ 2 0), Bult) = 5= (Sant) = ) (5.7

Vo = (Talt) £ 2 0), Valt) = 7 =(Valnt)) - sz 'n), (3.5
Dy = (Da(t) ¢ 2 0), Dialt) = —=(Dalnt) = pan), (:9)

W = (Walt) £ > 0), Walt) = bni/HWn(nt), (3.10)

Qn = (Qn(t),t 2 0), Qult) = ann (nt), (3.11)

T = (Calt),t 2 0), Talt) = bni/ﬁ (Calt) =) (312

Hy = (Hn(t),t 2 0), Hal(t) = 5 \/— n(lnt] +1), (3.13)

T = (Ta(0)£ 2 0), Tult) = 5 =(Eallnt] + 1) = s 'n). (314

We assume that A\, = A >0 and g, — p >0 as n — oo, and the near-heavy traffic condition
holds:

1

g—\/ﬁ(x\n —lp) =T, —00 <F < 0. - (3.15)

n

Note that (3.15) implies that A = p.
The next theorem parallels the results of Iglehart and Whitt [5], on the one hand, and Theo-
rems 3.1 and 4.1 in Puhalskii and Whitt [18], on the other hand. Let us denote e = (¢, > 0).
Theorem 3.1.



(a) Assume that {(A4,,Sn),n > 1} obeys an LDP in D(R?) for one of the topologies Jv, My or Mj
and normalizing sequence b2 with rate function I s(a,s). Then {(Qn; D, Cr)yn > 1} obeys an
LDP in D(R?) for the same topology and normalizing sequence b2 with rate function

Ig,p,c(g:d,c) = inf Ias(a,s) .
a,s€ D(R?):
g=R(a—s+re),d=a—q+re,
e=p~(a—s—q+re)

(b) Assume that {(An,Vy),n > 1} obeys an LDP in D(R?) for one of the topologies Jy, My or
M! and normalizing sequence b2 with rate function I4v(a,v). Then {(W,,Cr),n > 1} obeys an
LDP in D(R?) for the same topology and normalizing sequence b2 with rate function

IW,c'(’w, C) = inf IAA/((,I,'U) .
a,weD(R?):
w=R(vo(pe)+u~tatu re),
c=vo(ue)+p~tatu"tre—w

(c) Assume that {(An,Sn),n > 1} obeys an LDP in D(R?) for one of the topologies Jy or Mj
and normalizing sequence b2 with rate function IA,S(a, s), which, in the case of the Jy topology, is
infinite when s is either discontinuous or not equal to 0 at 0. Then {(Qn, Dy Wy, Cr),n > 1}
obeys an LDP in D(R") for the same topology and normalizing sequence b2 with rate function

Ig.pwelg, dyw,c) = inf Ias(a,s) .
a,0ED(R?):
g=R(a—s+re),d=a—q+re,

w=p"1R(a—s+re),
c=p~(a—s+re)—w

(d) Assume that {(A,,S,),n > 1} obeys an LDP in D(R?) for one of the topologies Ji, My or M
and normalizing sequence b2 with rate function I4 g(a,s), which is infinite when either a or s is
either discontinuous or not equal to 0 at 0. Then the sequence {(@n,fn,Wn,—én,ﬁn,fn),n >
1} obeys an LDP in D(R®) for the Ji topology and normalizing sequence b2 with rate function
Io.pwennlgdwchl) =1Igpclgdc) when = pw, h=wo (p~te) and d = —plo(ue), and

IQ,D,W’C,H,L(q,d,w,c,h,l) = oo otherwise.

Proof. We begin with a proof of (a). By (3.4), (3.5), (3.3), (3.11), (3.6) and (3.7),

“

Talt) = n(t) = 5 0 T8 + L0 = i+ Lo [ 1Qls) = 01, (3.16)
En(ﬂ =S50 6’71(“‘) + .“n‘c—n(t)v (3.17)
Talt) =2 [1@, () = 0)ds (3.18)

bn 0



where
- (nt) /lQn ) > 0)ds. (3.19)

l
n
Since @, () is nonnegative and [y 1(Q,(s) = 0)ds increases only when Q,(t) = 0, we conclude
from (3.16) that the process (Q,(t),t >

Cnlt) + L2 (O = )ty 2 0):

(s
0) is the Skorohod reflection of the process (An(t) —

Gn=R<A ~5,0C, +\b/_(x —un)>, (3.20)

and, by (3.18),

T = Ay =T 0 T, + -\;—%n — in)e—T,. (3.21)

By the Lipshitz property of the reflection in the locally uniform metric, we have, for some K (t) >0,

To(s) = S 0 Th(s) + L2 (0n = pan)s

1in|Cr(t)] < K(t) sup ,

s<t

 t>0. (3.22)

>a>=0

with a, = b2. Hence, by (3.22) and (3.18), since /n/b, — co and pn = >0,

The LDP for (A,,S,), the inequality Cy,(t) < ¢ and (3.15) imply that

To(5) = 5 0 Ta(s) + L2 0hn — pn)s

lim Lm PYen (sup 2

@—00 n—rco s<t

¢ on
/ 1(Q,(s) =0)ds P 0 asn— 0o, t >0, (3.23)
0

so by (3.19) and Lemma 3.1 in [14], (for the locally uniform metric on D(R)) C, Pen e, and
an obvious extension of Lemma 4.3 in [17] implies by the LDP for {(4n, Sp),n > 1} with Ias
that the sequence {(Ay, Sy o 5;),n > 1} obeys an LDP with I4 5. The required now follows by
(3.20), (3.17), (3.21), continuity of the reflection, the near-heavy traffic condition (3.15), and the
contraction principle.

The argument for parts (b) and (c) is similar. For (b), write by (3.2), (3.3), (3.6), (3.8), (3.10),
and (3.12),

Walt) = Vo Zolt) + 157/ F0(8)+ L2(on = e+ X2 [ 1(Wos) = 0)ds,
Talt) =~ X2 [ 1 ale) = 0) s,

where A, (t) = n~'An(nt), and note that the LDP for {A,,n > 1} implies by [17, Lemma 4.2(b)]

that

LT e (3.24)

T



Part (c) follows by combining the preceding arguments if one notes that by (3.1) and Theorem 5.4
in [17] the assumptions imply that the sequence {(A,,8,,V5),n > 1} obeys an LDP in D(R3) for
one of the topologies J; or M| and normalizing sequence b2 with rate function I4 s v (a,s,v) =
I4s(a,s), when s = —pvo (ue), and 4 s v(a,s,v) = oo otherwise.

We now prove (d). Since the rate function I4 s(a,s) equals infinity at elements of D(R?) that
are either discontinuous or not equal to 0 at 0, the extended contraction principle [17] implies
that under the assumptions {(4,,S,),n > 1} obeys an LDP in D(R?) for the J; topology with
the rate function 74 s(a,s).

Let

Un(k) =1inf{t > 0: Ap(t) > &k} (3.25)

and U, (t) = Up(|nt] +1)/n. By (3.24) and Lemma 4.2(c) in [17],

—_ Jan
TP e (3.26)

n

Noting also that L,(k) = inf{t > 0 : D,(t) > k}, we conclude by Lemma 4.3 and Theorem 5.4
in [17], and part (c) of the theorem we are proving that {(@n, D, Wn,Cp, Wy o U:l,fn),n > 1}
obeys an LDP in D(R®) for the J; topology with rate function I'(g,d,w,¢, h,l) = Ig,p,c(q,d,c)
when ¢ = pw, h =wo (p~le) and d = —pul o (ue), and I'(g,d,w,c, h,l) = co otherwise.

We now prove that

H,—WaolT, P50 (3.27)

which will conclude the proof by Lemma 4.1(c) in [17]. Since W, (T, (t)-) < Hn(t) < Wa(T, (1),
we have that

sup [Hu(s) = WnoUn(s)| < sup  |AW,(s)]. (3.28)
st 0<s<T L (1)

Since I4 s(a,s) equals infinity when either one of the arguments is either a discontinuous function
or not equal to 0 at 0, part (c) of the theorem implies that {Wy,n > 1} obeys an LDP in D(R)
for the J; topology with rate function which equals infinity both at discontinuous functions from
D(R) and functions not equal to 0 at 0 so that by Lemma 2.3, for ¢ >0,

RS

sup [AW(s)
0<s<t

17 (3.29)

as n — oo . Putting together (3.26), (3.28) and (3.29) proves (3.27). The theorem is proved.

Remark 3.1. Let I,(t) denote the cumulative server’s idle time at ¢, i.e., I(t) = fot HQn(s) =
0)ds, and T,(t) = In(nt)/(bay/n). Since obviously In(t) = —Cr(t) (see (3.18)), the theorem
provides LDPs for {I,,n > 1} as well.



Remark 3.2. Parts (c) and (d) show that under the hypotheses “Little’s law” holds: if the rate
function is finite, then pw = q. So, (Q,D,C) is “a sufficient statistic” in the sense of Lemma 2.1.

We now consider the case of quadratic rate functions typical of the LDP for partial sums of
triangular arrays of i.i.d. sequences (see Lemma 6.1 of [17] or [14, Example 7.2]) or partial sums of
interarrival times in superpositions of renewal processes (see Theorem 7.2 of [17]). We adopt the
convention 0/0 = 0 so that, e.g., the rate function I4(a) below, in the case if o4 =0, equals 0
when a(t) =0 for all ¢ > 0 and equals co otherwise.
Theorem 3.2. Let condition (8.15) hold. Assume that {(An,Sn),n > 1} obeys an LDP in D(R?)

for the Jy topology and normalizing sequence b2 with rate function
IA,S(OJ, s) =1I4(a) + Is(s),

where

I4(a) = % /O % at)2dt (3.30)

for a absolutely continuous with a(0) = 0 and I4(a) = co otherwise, and

1 o0
Is(s) = — / 5()2dt (3.31)
for s absolutely continuous with s(0) =0 and Is(s) = co otherwise. Then the following holds.

(a) The sequence {(@,,Dn,Cn),n > 1} obeys an LDP in D(R?) for the Jy topology and normal-

izing sequence b2 with rate function

() +d(t) —r)? + i——d'(t)Q] i

Ig.p,clg,d,c) = /OOO 1(q(t) > 0) { 1 20%

2021

o0 1, 1
1q(t) = 0) | —(d(t) — 1) + —=(d(t) — pé(t))?] dt,
RO o>[2031( (6 =177 + 5 () pc<>>}
when g, d and ¢ are absolutely continuous with ¢(0) = d(0) = ¢(0) =0, g s nonnegative, c
is nonpositive and nonincreasing, ¢(t) =0 a.e. on the set q(t) >0, and Ig,p,c(g,d,c) = o0

otherwise.

(b) The sequence {(Q,,Dn),n > 1} obeys an LDP in D(R?) for the Jy topology and normalizing
sequence b2 with rate function
1

() +d(t) —r)* + %gd(t)z] dt

IQ’D(q, d) = /Ooo 1(Q(t) > 0) lﬁ2ii

1 . 1 . )
%z(d(t) -2+ %fzs—l(d(t) > O)d(t)z} dt,

+ [ 1ta =0




when q and d are absolutely continuous with g(0) = d(0) = 0, q is nonnegative, and

Io plg,d) = co otherwise.

The sequence {(@,,Cn),n > 1} obeys an LDP in D(R?) for the Ji topology and normalizing

9 . . .
sequence b; with rate function

IQ,C(q, c) = m /000 1(q(t) > ())(q(t) _ T)g gt
1 o0 | ,)
+m /o 1(q(t) = 0)(uc(t) — )" dt,

when q and ¢ are absolutely continuous with q(0) = ¢(0) =0, g is nonnegative, ¢ is nonpos-

itive and nonincreasing, ¢(t) =0 a.e. on the set q(t) >0, and Ig c(g,c) = oo otherwise.

The sequence {Q,,,n > 1} obeys an LDP in D(R) for the Jy topology and normalizing sequence

b2 with rate function

7 0> 06 -+ s [T 1at) = 00

1
Iola) = 2( 2(c% + %) Jo

o4 + 0%
when q is nonnegative and absolutely continuous with q(0) =0, and Ig(g) = oo otherwise.
The sequence {Crn,n > 1} obeys an LDP in D(R) for the Jy topology and normalizing sequence

b2 with rate function Ic which is as follows. Let k(c) = esssup {t > 0: ¢&(t) < 0}.

If r <0, then

Toe) = gy ) () =
when ¢ is absolutely continuous, ¢(0) = 0, é(t) < 0 a.e. and k(c) = oo, and Ic(c) =
otherwise.
If r >0, then
Tole) = o [ (e(t) ~ s
2(c4 +0%) Jo ’

when ¢ is absolutely continuous, c¢(0) =0, ¢(t) <0 a.e., and Ic(c) = co otherwise.

Proof. An application of Theorem 3.1(a), Lemma 2.4 (or Lemma 3.1 in [18]) and Lemma 3.3 in

[15] yields the rate function of part (a). The rate functions in (b)-(e) follow by the contraction

principle. In particular, in part (e) it can be proved in analogy with the proof of Theorem 5.1(b)

in [18] that inf, I c(g,c) is attained at g(t) =0 for £ < k(c) .

Remark 3.3. Let

_ Un(nt]) — pg''nt

b/t

10

Un(t)



where U, (k) is defined by (3.25) and U,(0) = 0. By (3.1) and an easy extension of Theorem 5.4 in
[17] to the multidimensional case, the assumed LDP for (A4, S,) holds if and only if the sequence
{(U,,Vy),n > 1} obeys an LDP in D(R?) for the J; topology and normalizing sequence b2 with

rate function Iy y = Iy + Iy, where

Iy (u) ! /OOO w(t)dt

=57
20‘U

for u absolutely continuous with u(0) = 0 and Iy (u) = co otherwise, and

Iy (v) = L/mro(t)?dt
vie = 20‘%/ 0
for v absolutely continuous with v(0) = 0 and Iy(v) = oo otherwise, and of = 04 /X* and
ot = 0% /n’.
More specifically, for a GI/GI/1 queue, ie., when A, and S, are renewal processes, let us

denote by wu, the generic interarrival time and by vy, the generic service time. Then the LDP for

(U, Vx) holds if

/\;1 = Fuy, ugl = Fuy,

Var u, — O’QU, Var v, — 0%/,
and either one of the following conditions is met:

(i) sup, E(un)**¢ < 0o, sup, E(v,)**¢ < oo for some ¢ > 0 and v/logn/b, — co;

(ii) sup, Eexp(au?) < oo, sup,, E exp(av?) < co for some a > 0,0 < 8 < 1 and nfl2/p2=8 - .

This follows by Lemma 6.1 and Theorem 5.4 in [17].

Remark 3.4. It is interesting to compare Ic with the rate function for the arrived work.
Since under the conditions of the theorem {(4n,Vn),n > 1} obeys an LDP with rate function
Iay = Ii+ Iy, it easily follows that the processes ((Vi o An(nt) —nt)/(bn v/n),t > 0) obey an

LDP in D(R) for the J; topology and normalizing sequence b2 with rate function

I(z) = = ; 7 ite) =2 e

2(0% +08)
when z is absolutely continuous, z(0) =0, and I(z) = oo<otherwise. So the rate functions look
similarly.

Lemma 2.1 and part (d) of Theorem 3.1 allow us to obtain LDPs for the other processes. For
instance, we have the next result.

Corollary 3.1. Under the conditions of Theorem 3.2, the following holds.

11



(a) The sequence {Wn,n > 1} obeys an LDP in D(R) for the .J, topology and normalizing
sequence b2 with rate function

1

T /Om Lw(t) > 0)(ui(t) — )2 det + 2> 07 /0°° L(w(t) = 0) dt,

Liy(w) =
w(w) 2(03& + 0%)

when w is nonnegative and absolutely continuous with w(0) =0 and Iw(w) = oo otherwise.

(b) The sequence {Hn,n > 1} obeys an LDP in D(R) for the Ji topology and normalizing
sequence b2 with rate function

1

ges) . 2 (%)
e /0 L(A(t) > 0)(u2h(t) — r)>dt + 21(7" >0) / 1(h(t) = 0) dt,

Ig(h) = It SRS A
i (h) p(ai-%a%) 0

when h is nonnegative and absolutely continuous with h(0) =0 and Ig(h) = co otherwise.

Proof. For the proof it suffices to observe that by part (d) of Theorem 3.1 and Lemma 2.1,

Iy (w) = Ig(pw) and Ig(h) = Iw(ho (ue)).
We can also project even more to get LDPs for one-dimensional distributions. To illustrate, we
give two examples. Denote r' = —rp~2.

Corollary 3.2. Let the conditions of Theorem 3.2 hold. Then

(a) the sequence {H,(t),n > 1} fort >0 obeys an LDP in Ry for normalizing sequence b2 with
rate function

p ()’
2(c% +0%) t

when ' <0 or v’ >0, :/ >t
I z) =
() (2) 0

z
—5 when ' >0, - < t;
o4 +0% T

(b) the sequence {Cp(t),n > 1} for t > 0 obeys an LDP in R_ for normalizing sequence b2 with
rate function ‘
B (ot

2(c% + 0%) t

—2urz

0?4 + 0%’

-z
, whenr>0o0rr <0, uy— >t
r

I =

C(t)(z) .

when r <0, p— < 1.
"

Remark 3.5. Note that in “the ergodic case” r < 0, ghe rate function for {Cp(t),n > 1} is
the same as for the arrived work {(V}, o A, (t) — nt)/(bpy/n),n > 1} which follows by Remark 3.4.

Remark 3.6. We do not know an explicit expression for Ip and I.

We end the section by showing, analogously to diffusion approximation results, that the LDPs

for the processes of waiting and departure times can be established directly without invoking LDPs

12



for continuous-time processes, and that for the ergodic GI/GI/1 queue an LDP holds for stationary
waiting times as well (cf. Prohorov [12]). Let us denote by un4,% 2 1, the time between the ¢th and
(1 + 1) th arrivals and by vn,¢ > 1, the service time of the ith customer in the nth system. The
associated partial-sum processes U}, = (Up(k),k =0,1,2,...) and Vo = (Va(k),k =0,1,2,...) are

given by
Zum, UL(0 va, (0) =0, (3.32)

so that, as above, V; (k) is the cumulative service time of the first & customers. The obvious

equations for waiting and departure times are

Hy(k + 1) = Vo(k) = Up(k) — Orgiigk(vn(i) - U,(9)), (3.33)
Lok +1) = U/ (k) + Ho(k + 1) + Un k41 (3.34)

Let
U = (Up(t),t > 0), Up(t) = ™ f (Un(Int]) — A5 nt). (3.35)

Recall that if the nth queue is a GI/GI/1 queue with Ay < pn, then the waiting times Hp (k)
converge in distribution as k — oo to a proper random variable (see, e.g., Borovkov [1]). We
denote the latter by HY and let ._H—?l = HY/(bpy/1) .

Theorem 3.3. Let (3.15) hold.

(a) Assume that {(UL,V5),n > 1} obeys an LDP in D(R?) for one of the topologies Ji, My or M
and normalizing sequence b2 with rate function Iyy(u,v).
Then {Hn,n > 1} obeys an LDP in D(R) for the same topology and normalizing sequence b2 with

rate function

IH(h) = inf IU‘v('u,,’U) .
u,vED(R?):
h=R(v—u—r'e)

If, in addition, Iy y(u,v) is infinite when v is either discontinuous or not equal to 0 at 0, then
{(Hn,Ln),n > 1} obeys an LDP in D(R?) for the same topelogy and normalizing sequence b2 with
rate function
Iy r(h,1) = inf Isv(a,v) .
: u,wED(R?):

h=R(v—u~r'e),
[=u+h+r'e

13



(b) Consider a sequence of GI/GI/1 queues for which the conditions of Remark 3.3 hold. Assume
that v < 0. Then the sequence {ﬁg,n > 1} obeys an LDP in R, for the normalizing sequence
b2 with rate function

2r'z

Igo(z) = ———.
H() O'2U+CT'€‘/

Proof. We begin with part (a). For the part related to Hy, , we use that by (2.4), (3.33), (3.35),

(3.8), and (3.13)
‘En=7z<'vn—ff; (AL - 1)-‘5—56).

For the second claim, we use that by (3.34), (3.35), (3.14), (3.13), and (3.8)

—n _ 7 -l ot _\Z—T_L = Un,|nt]+1

the fact that by the hypotheses and Lemma 2.3 sup,<; Un,[ns]+1/(bn\/ﬁ> Pl 0, and Lemma 4.2(b)
n [17].

We now prove part (b). The argument is borrowed from the corresponding proofs of diffusion
approximation results [12]. Since HY is distributed as supy>o(Va(k) — Up(k)) (1], we have, for a
Borel subset A of R,

P(H, € 4) - sup (Vo(k) — Up(k)) € A) < P( sup (Va(k) = Up(k)) 2 0).

P <__1
b1 o<k<|nt k>|nt]
Since supg<k<nt|(Va(k) — U’ (k)) coincides in distribution with Hy(|nt] + 1), and {Hn(|nt] +

/(bp/n),n > 1} by Corollary 3.2(a) obeys an LDP with the rate function Ip) (z) for which
lim¢ o0 infoea Tp(y) (2) = infzea Igo(z), when A = [a,b],[a,0), (—o0,b], (a,b),, Lemma 2.2 implies

that the required would follow by

lim Tm PYen( sup (Vu(k) —UL(K)) >0) =0, (3.36)

t—00 n—oo k>|nt]
where, as above, a, = b2.

Denoting 6, = E(un1 — Un,1) and &ni = Un; — Un; + On , we have, since 0 >0,

o9}
P( sup (Va(k) = Ua(k)) 2 0) < p( ( s - )Z)
k>[ntj( (£) ( ) l:UoLgvj(nt)J 2l+1<1c<2!+1 Z
o0 21 . oo L
. -1 1

< Z P Zﬁn,zZQ on | + Z Bf(lg}ca%)glzgnlz‘? 5)
I=[logy(nt)] i=1 1=|log, (nt)]

=? Z P<1<k<ozzf7”— o )
i={logy(nt)]

Limit (3.36) now follows by Lemma A.l in the appendix and the near-heavy traffic condition

\()/—j% — 7' >0 as n — oo. The theorem is proved.
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4. Moderate Deviations for Queueing Networks in Near-Heavy Traffic

We now extend some of the above results to the queueing-networks set-up. Our results here are
in the spirit of Reiman [19]. We consider a sequence of networks indexed by n. The nth network has
a homogeneous customer population and consists of K FIFO single server stations. The network
is open in that customers arrive from outside and eventually leave. Let A,x(f),1 <k < K, be
the cumulative number of customers who arrived at station & from outside the network during the
interval [0, ], and let S (¢),1 < k < K, be the cumulative number of customers who are served at
station k for the first ¢ units of busy time of that station. We call A, = (Apk,1 < k < K), where
Apng = (Api(t),t > 0), and Sp = (S, 1 <k < K), where Sp = (Snk(t),t > 0), the arrival
process and service process respectively (note that some of the entries in A, may equal zero). We
associate with the stations of the network the processes &% = (Pp i, 1 <1 < K), 1 <k < K,
where @, g = (@p (m),m =1,2,...), and ®,, ki(m) denotes the cumulative number of customers
among the first m customers who depart station k that go directly to station [. The process
Op = (P, 1 < kI £ K) is referred to as the routing process. We consider the processes A; g,
Snx and @, as random elements of the respective Skorohod spaces D(R), D(R) and D(R®);
accordingly, An, S, and ®,, are regarded to be random elements of D(RX), D(RX) and D(RE*K),
respectively.

We next introduce normalized and time-scaled versions of the arrival process, service process
and routing process. Let A\p g >0, ping >0, and py € [0,1], 1 <Ak < K,1 <1< K. Define
T, 4(0) = An,k(";)t:\;ﬁ/\n,knt Bualt) = Sn,k(ngz\;ﬁﬂn,knt B ult) = %,/cz([?:z/% print
where as above b, — oo and b,/\/n — 0, and let Ay =(Ang 1 <k <K), Sn = (Snk, 1 <k <K),
O = (Ppp,l <I<K),1<k<K,and &, = (EI;n,kl, 1 < k,l < K). Again the latter processes
are considered as random elements of D(RX), D(RK), D(RK), and D(R¥*¥), respectively. Also
we denote Ap = (Ank,1 <k < K), pin = (a1 Sk < K)and P = (pg, 1 <k < K,1<I<K).

, (41)

The first two vectors as well as other elements of R¥ are regarded to be column-vectors.
In analogy with the hypotheses of Section 3, we assume that A, — A= (;\1,‘..,;\;{) and
pn — 4 = (f1,..., k) as n — oo, where p is componentwise positive, and that the near-heavy

traffic condition holds: for some r € RE,

\/ﬁ()\n — (I =PD)py) =7 asn— oo, (4.2)

ba
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in particular,

A= (I-PT)u. (4.3)

(As above, T denotes taking the transpose of either a matrix or a vector.) We also assume that
the spectral radius of the matrix P is less than unity.

Our main concern here is the queue-length process @Qn = (Qnk,1 < & < K), where Qp =
(Qni(t),t = 0), with Qpx(t) denoting the number of customers at station k at time ¢. Other
related processes can be treated analogously to Section 3. The associated normalized and time-
scaled process @, = (@, 1 <k < K) is defined by

Tuslt) = %ﬂﬁﬁ (4.4)

We fix some notation. If ¢ € D(RX) has componentwise nondecreasing nonnegative paths,
then for y € D(RK) we denote yoz = ((yx o zx(t),1 < k < K),t > 0), accordingly, if #(¢) =
(pra(t),1 < kI < K) € REXE | then ¢ox(t) = (¢p o zx(t),1 < k1 < K). For a vector
o= (o,...,ag) € RX we denote ae = ((alt,...,dkt),t > 0). For a subset J of {1,2,...,K},
we set F; = {a = (a1,...,aK) € R_{f o =0k € Jap > 0,k @ J} and Fy = {a =
(a1,...,ax) € RE : ap =0,k € J}; 1; is the K -vector with entries from J equal to 1 and
the rest of the entries equal to 0; J¢ denotes the complement of J. We also denote: Rg_ is
the interior of R4, 1 is the K -vector with all the components equal to 1, C is the set of all
the subsets of {1,2,...,K} excluding the empty set. For vectors a = (ai1,...,aK) € RX and
o = (a),...,a%) € RE we denote a® o/ = (10,...,axdy) € RKE .

Theorem 4.1. Let Q,x(0) =0,1 <k < K,n > 1, and the near-heavy traffic condition (4.2) hold.

(a) Assume that the sequence {(An, Sn, ®n),n > 1} obeys an LDP in D(RE x RK x RE*E) for one
of the J1, My or M, topologies and normalizing&equence b,% with rate function L4 ss(a,s, ).
Then {Q,,,n > 1} obeys an LDP in D(RX) for the same topology and normalizing sequence b2
with rate function

Ig(g) = inf Iss0(a s @) .

a,5,p€D(RF x RE x REX K.
q=Rp(a+(gope)T - 1—(I-PT)s+re)

(b) Assume, in addition, that I4se has the following form: for a = (ai,...,ak) € D(RK),

3:(31,...,8[{) ED(RK) and‘¢:(¢lv"'7¢f{) ED(RKXK):

K K K
Lisa(a,s,0) = Ialar) + > Is,(s6) + ) To, (¢%),
k=1 k=1 k=1
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where

1o,
Loy(ak) = 5 /0 ROR

‘Ua,k

for ay, absolutely continuous with ax(0) =0 and I4,(ax) = oo otherwise,

1 /o,
Toy(o6) = o= | au(e)%de
s,k

for sy absolutely continuous with sg(0) =0 and Is,(sx) = co otherwise, and
* T 1.7
a(60) = [ sup (NThu(t) = 53T DA )
0 ARk 2
for ¢ = (¢, 1 <1 < K) absolutely continuous with ¢ (0) =0 and Is, (¢r) = oo otherwise, where
Yo i, 1 <k < K, are symmetric nonnegative-definite K x K matrices.

Assume that the symmetric nonnegative-definite K x K matriz I' defined by

K
T =diag(o2y,...,00) + (I = PT) diag(o3 ..., 05 k) (I = P) + > AkZek
k=1
~ is positive definite.

Then {Qn,n > 1} obeys an LDP in D(RX) for the Jy topology and normalizing sequence b2

with rate function
Il =3 [ 1alt) € RO =T (o)~ r)ds

+ %/w 1(q(t) € Fy) inf (4(t) ® 1ye —r — (I = PP)y)TT7H(d(t) ® Lye —r — (I = PT)y) dt,
Jex 0 YEF je

when ¢ is absolutely continuous with ¢(0) = 0 and Ig(g) = oo otherwise.

(c) Assume that the processes Akl <k <K, Sl <k <K, and Bk, 1 <k < K, are mutually
independent for each n. Assume that the processes An g and ?n,k are renewal processes and let
Un, denote the generic ezogenous interarrival time and Oy, the generic service time in station k.
Let the stations be indezed so that, for some K', N >0 when 1 <i <K', and N\ = 0 when
K'+1<:1<K. Let

Eiin g — Ap ', Var dng — oog, 1<k <K,
Le

By — gt Var tn g — o, 1<k <K,
and either one of the following conditions be met:

(i) sup, E(fnz)?™¢ < 00,1 < k < K, sup, E(fp;)*" < 00,1 < k < K, for some € > 0 and
Viogn/by, — oo;
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(ii) suanexp(a('&n,k)ﬁ) < o0, 1 <k <K, suanexp(a(ﬂn’k)ﬁ) < 00,1 <k < K, for some

a>0,0<B<1 andnP?/p2P = co.

If, in addition, the routing mechanism does not depend on n and is i.i.d. at each station with py;
being the probability of going directly from station k to station I, then the conditions of part (b)
hold with

02 =0l AL 1SE< K, 00, =0, K'+1< k<K, o]y = oz i, 1<k <K,

pr(l—pr), fm=l1,
g = : . < k< <[ < < <
(Zak)m { oim. iEm L 1<k<K,1<I<K, 1<m<K,

and

1 & 1% Gi(t)?
I =—§:/ Pull)” 1<k <K,
fbk(¢)/€) 2l . 0 Dkl

for ¢ = (pr1, 1 <1 < K) absolutely continuous with ¢x(0) =0 and S K or(t) =0, and Is, (¢x) =

oo otherwise.

Remark 4.1. If the matrix I' is degenerate, then the LDP in part (b) holds with the same rate
function Ig provided in its definition expressions of the form %xTF“lm, z € R¥, are understood
as sup,egr (A Tz — 2ATTA).

Proof of Theorem 4.1. The proof is a straightforward extension of the proof of Theorem 3.1
(cf., a similar argument in the proofs of corresponding weak convergence results in [19, 3]). In

analogy with (3.4), (3.5) and (3.3), we have that for 1 <k < K

K
Qn,k(t) = An,k (t) + Z ®n,lk o Dn,l(t) - Dn,k(t)v

=1
where
Dy i (t) = Snk (/Ot 1(Qnk(s) > 0) ds) _
Introducing
C—In,k(t) = /Otl(Q_n,k(S) > 0) ds, E;,k(t) = P&’;}Ln_tly

we then have by (4.1) and (4.4) that

< K —
Qn k(t) = Zn,k (t) + Z (Dn,lk © Dn,l(t)

3

=1
K . _, . _, \/7-:!,' K
+> peSng 0 Cpyt) = Snp o Cni(t) + T(An,k + > Prrting = tn k)t
=1 n =1
N . K -
2 i, [ U@ pls) = 00 = Y- putang | 1@nsls) = 0)ds (43)
n =1
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which implies that

0, =Rp(An+ (F,0D,)" - 1-(I-P") 5, 0T+ Y20 + (PT = Dpn)e) (4.6)

é’l%

and hence

Y} PP = T+ (B0 DT 1= ([ = PT) Sy 0Tt b+ (P = Din)e =T
3 n

where C,(t) = (_C";l’k(t), 1<k <K) and len(t) = (_D';Z’k(t),l < k < K). The Lipshitz property of
Rp, the LDP for {(4An,Sn, ®n),n > 1}, (4.2), and the fact that I — PT is nonsingular yield by

the argument of the proof of (3.23), since p is componentwise positive,
14 _— Pl/a.n
/ (@ p(s) = 0)ds 75" 0as n = 00, 1 << K, £ >0,
0

where again a, = b2, implying that

— Pl/ﬂn

Cpr — easn— o0 (4.7)
Then by Lemma 4.2(b) in [17]
E;L Py pe (4.8)

after which Lemma 4.3 in [17] enables us to conclude that the sequence {(A,,Sno C D, ODn), n>
1} obeys an LDP in D(RE x R¥ x RE *KY) with rate function Tase given by the equality
Tasa(a,s,¢ope) = Iase(a,s,¢). The claim of part (a) follows by (4.6) and the contraction
principle.

Part (b) is a consequence of part (a) and Lemma 2.4. In more detail, we have by part (a),

Lemma 3.3 in [15] and Lemma 2.4

K K K
Iolg)= inf (Z Ta(ar) + > Is (s6) + I<1>k(¢k)>
(a,5,0)ED(RF x RK x REXK); k=1 k=1 k=1
q:Rp(a+(¢oue)T1—(I-—PT)s+re)

/00 ( K
= Ilflf Z ak: + Z
0 (O"ﬁywa”/)ERKXRKXRKXKXRK: k=1 2 a k

j(t)=a+ypT p—(I—PT)B+r+(I-P*)y,
quk(t)=0,1<k<K

«

+ Z fix, SUp (A%k - -,\T Lo kx)) dt.

k—1  AERF
By mean squares, the infimum in the integral over o, B and v, for « fixed, equals (g(t) —7— (I—
PTYNTT=Y(§(t) —r — (I — PT)y). This completes the proof of (b).
The conditions of (¢) imply the conditions of (b) by Lemma 6.1 in [17]. The theorem is proved.
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Remark 4.2. Note that the matrix T' in part (c¢) coincides with the covariance matrix in
Reiman’s result [19].

Remark 4.3. The rate function in part (b) is not as explicit as in Theorem 3.2 in that on the
faces F; we need to solve quadratic programming problems. It appears that generally this needs
to be done numerically.

Remark 4.4. The contraction principle allows us to deduce that under the conditions of the
theorem one-dimensional projections also obey LDPs. An open question is deriving explicitly the
rate functions as in Corollary 3.2. It is not difficult to see that the optimal paths ¢ must be
piecewise linear. However, we can solve explicitly only the case K =2 (cf.,, Ignatyuk, Malyshev
and Scherbakov [6]).

We now apply Theorem 4.1 to obtain LDPs for waiting and sojourn times (cf., Reiman [19]).
Let Wpi(t),1 < k < K, denote the virtual waiting time at station %k at time t. Define
War(t) = Wy (nt)/(bpy/n) and let Wn = (Wni(®),1 <k < K),t >0). Next, for a vec
Ctor k = (ki,...,k), where k; € {1,2,...,K}, let Apy(t) denote the number of customers
with the routing (ki,ks,...,k) who have exogenously arrived by ¢ and Y, k(m) denote the so-
journ time of the mth exogenous customer with the routing (ki,k2,..., k), and let Yok(t) =
Vose(1nt] + 1)/ (/) s Toe = (Trselt), £ 2 0), Zpge = (Anselnt)/m, ¢ > 0).

Corollary 4.1. (a). Assume that the sequence {(An, Sn, ®n),n > 1} obeys an LDP in D(RK x
RE x REXKY for one of the J; or M| topologies and normalizing sequence b2 with rate function
Iaso(a,s,¢), which, in the case of the Ji topology, equals infinity unless s is continuous and
equal to 0 at 0. Then the sequence {(Qn, Wr),n > 1} obeys an LDP in D(RK x RE) for the
same topology and normalizing sequence b2 with rate function Igw(q, w) such that ¢ =p®w,
when Igw(q,w) < oo. In particular, the sequence {Wn,n > 1} obeys an LDP in D(RX) with
rate function Iy (w) = Io(p @ w).

(b). Assume, in addition, that the rate function I se(a,s,®) equals infinity unless a,s and ¢

are both continuous and equal to 0 at 0, and

—f Pl/an

T, 75" e (4.9)

as n — oo, for some Ax > 0.
Then the sequence {(Wpn,Ynx),n > 1} obeys an LDP in D(RX x R) for the Jy topology and
normalizing sequence b2 with rate function Iwy(w,y) = Iw(w), when yo (Ae) = S wg,

and Iwy(w,y) = co otherwise, where w = (wi,...,wk). In particular, the sequence {?n’k,n >
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1} obeys an LDP in D(R) for the Jy topology and normalizing sequence b2 with rate function
Iy (y) = infw’?FZf-:l wepoAre) Iy (w).

Proof. The proof is much similar to that of Theorem 4.1. We only give a sketch. Let V,, ;(m),
for k=1,2,...,K,and m=1,2,..., denote the cumulative service time of the first m customers
served at station k: Vyx(m) = inf{t > 0: Spx(t) > m}, Vok(0) =0, and let E,x(t),t > 0,
denote the total number of arrivals to station k by time t: Ep x(t) = Ay x(2) 5K k0 Dnylt) .
Introducing Voi(t) = Vas([n8)/(bav/A), Val) = Van ()., Vag(®), T = (Falt),t > 0),

ok (t) = Bng(nt)/n, E,(t) = (B ,(t),..., B, x(t)) and Ej, = (E;(t),t > 0), we have, in analogy
with (4.5),

In analogy with (4.8) and in view of (4.3), Lemma 4.2(b) in [17] implies that

1/an

ELFET e, (4.10)

Therefore, recalling (4.6), (4.8) and (4.7), we have that the sequence {(An, S, Vi, ®ny Qn, Wa),n >
1} obeys an LDP in D(RX x R x RE x REXK x RK x RX) with rate function 4 sv.8,0,w(a, 5, v, ¢, q,w)

such that whenever it is finite the following equations hold

p®w=Rp(u@vo (ue) +a+(¢7 o (ue)) - 1+ Pls+7),

s=—p®vo(ue), ¢=Rpla+ (¢ o(ue) 1~ (I —Ph)s+r).

An application of Lemma 2.1 ends the proof of (a).

We now turn to (b). Note first that the argument of the proof of part (a) implies that the
sequences {Wn,n > 1} and {V,,n > 1} obey LDPs for the J; topology with rate functions
which equal infinity both at discontinuous functions and functions not equal to 0 at 0.

Next, let us denote by Up,x(m) the arrival time of the mth exogenous customer with the
routing vector k, by Thiki(m),1 <1 <[, the time it arrives at the 1 th queue of its itinerary, by
H, xi(m), the time it awaits service in the 4th station and by Unk,i(m) , the time it is served in

the 7th station. We obviously have

Trnxi(m) = Unx(m), Taii(m)=Thxi-1(m)+ Hnxi-1(m) +vnxi-1(m), (4.11)

and

Wn,ki (Tn,k,i(m)_) < Hn,k,i(m) < Wn,ki (Tn,k,i(m))' (4'12)

21



e

Inequalities (4.12) account for the fact that we make no assumptions about the mechanism of
resolving conflicts between simultaneous arrivals. Next, it is easily seen that

1 _
—=Unki(m) < sup AV k()] 413
bay/n osSsEg,kng,k.i(m)/n)' i) (4.13)

1/an

Since Ej, () P fgt by (4.10), Upx(|nt] +1)/n P A;'t by the assumption K;,k P Ake
and Lemma 4.2(c) in [17], Wy i(|nt])/n Pl 0 by the LDP for {W,,n > 1} and Lemma 4.2(c)
in [17], and supsSt[Avn,k(s)l P g by the fact that {V,,n > 1} obeys an LDP with rate
function that equals infinity both at discontinuous functions and functions not equal to 0 at 0

and Lemma 2.3, it follows from (4.11), (4.12) and (4.13) that, for i =1,2,....[,

1 1/an
~Toallnt] +1) "7 AL (4.14)
and
S ! vni(|ns] +1) P (4.15)
up —— 1 S . .
Ogszt bn\/ﬁ kst ’

Let Hpuxi = (Huxi(lnt] +1)/(bpv/n),t > 0),1 <1 <. The LDP for {W,,n > 1}, (4.14) and
(4.12) imply, by Lemmas 4.1(c) and 4.3 in [17] and Lemma 2.3, that {Hnx1 s Hogeps Wn)yn >
1} obeys an LDP in D(R' x R¥) with rate function Im,,. m w1, - b w) = Iw(w),

when Ay = wg, - (A le), and equal to infinity otherwise. The proof is completed by noting that

l {
— — 1
Yn,k(t) = Z Hn,k,i(t) + Z vn,k,i(LntJ + 1)
i=1 i=1 bny/n

and using (4.15), Lemma 4.1(c) in [17] and the contraction principle. The corollary is proved.
Remark 4.5. If the routing mechansim is as described in part (c) of Theorem 4.1, then
convergence (4.9) in part (b) holds with Ax = pk; - -pk,_lkl;\kl . This follows by Theorem 6.3 in
[18] and Lemma 4.2(b) in [17].
Acknowledgement. I am grateful to Ward Whitt for fruitful discussions and suggesting

Theorem 3.3(a) and to Marty Reiman for valuable comments on the contents of the paper.
A. Appendix “

We state and prove the lemma used in the proof of Theorem 3.3(b).
Lemma A.l. Let {£,;,4 > 1},n > 1, be a triangular array of row-wise 1.4.d. r.v. with zero

mean. Let b, = o0 as n—> o0, and a>0.



(i) If by//n — 0 as n— oo and, for some € >0, we have sup, E|én11*7F < oo, then there exist
ng, to >0, C, >0 and Cy >0 such that, for all t >ty and n > ng,

‘).s.g 1

] (a1

<
P (1<k:<[ntj b \/EZ@H = at) exp(—C1b2Vt) + Ca2s

(ii) If for some v >0 and B € (0,1], we have sup,, E exp(7[én,1|?) < oo and nB/2 /028 5 0o as

n — co, then there exist nly, th >0, C; >0 and Cy >0 such that, for all t >ty and n > ng,

1
<
P <1<k<LntJ 7 \/_Zﬁm > ozt) exp(—C1b2V/t) + exp(—Chy(bnvn (A.2)

Proof. The argument uses the ideas of the proof of Example 7.2 in [14]. Let the conditions of (i)

hold. We first prove that there exist C; > 0 and #o such that for ¢ >y

P( max o \/_an, <%{§n,z| < ﬁ) > at) < exp(—C1b2V1). (A.3)

1<k< (nt)

- Denote B = sup,, E|,1]|*"¢ and let

s = 2= (i1 (lens] < VE) = Btnst ( Jlensl < vi)).

By Doob’s inequality (see, e.g., Liptser and Shiryaev [9, Theorem 1.9.1]), for A >0,

g <1<’€<WJ b/ 2 Z <§n : (%lg"’i{ E ﬂ) — E&p il <‘\b/—%|§n,i| < ﬁ)) > %ﬁ)

(B [mt]

<
- eAbiat

(A.4)
Since EE,L 1 =10, |§n 1| €2V and Efnl < Efn 102 /n, it follows that
R ) 2
EePént <142\ 2WVIEE | < 142220 bhp
’ n

o (Ee”éM)WJ < 6Xp(2)\264>‘\/thb%). Choosing in (A.4) A =1/V%, to = (4¢*B/a)? and C) =

/2, we get
bn by ot 9
P Qé??ﬁi D) Z (nst (ﬁ»gn,is < V) - Bt (ﬁgmt < \/%)) > —2-) < exp(—Crb2VA).

(A.5)
Now note that, since E&,1 = 0, by the Chebyshev inequality,

Bt (Zlenal < VE) | = Bt (Zltnal > Vi) < T
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hence
bE
Py ,_/!)

|nt| bn
boun Eénql <7—7:L'|£n,11 < a)

so, by the fact that /n/b, = co as n — oo, for all n large enough and ¢ > 1o,

b
P (1<k<[_nt_| bu/T0 anz (%En,ii < \/E> > at)

—————l Ek n n at
< P . | < . ] On_ 1<
= <1§I/]g:l§‘|_}§zt_l bn\/‘f—‘l, Pt <€n,7,1 (ﬁléﬂql' >~ CL) Eé‘n,zl (\/ﬁign,zl =~ a)) > ——2 ) ,

which together with (A.5) proves (A.3).

Bt(l_ )/

Estimate (A.1) now follows by (A.3), the inequalities

1 b
F E > bnal | —=lenal <
(1<k<[_ntj bn \/—Zg’” ” at) F <1<I}clgf$ztj bpy/m =T ! (ﬁlén’ | ﬁ) > at>

1=1
bn
+P (1;/?3&@] ﬁ[fn,zl > \/Z>

and
2+ B

bn b2
P (151;12% %Ifn,i[ > \/Z) < [nt)P (\/—-Iénll > \f) < |nt] —=2— s T

Part (i) is proved.

For part (ii), we write

ot
P <1<1Ixcl<a'§1tj bn\/_zém > at) <1<k<Lnt1 b \/—Zém (fifmi - \[) > —2_>

|nt]
+P( J_Zm (\/—Eéml>\/_> ) (A7)

Noting that the conditions of part (ii) imply the conditions of part (i), we estimate the first term

on the right with the help of (A.3). For the second; we use the inequality

[nt]
( Zifnzu( l»:m;>f) ) P(bﬁmwmmwf)

( %Mnm( gm|>J) (Elﬁlﬁn,ilsﬁ)»‘g). (A.8)

We first work with the second probability on the right. We have, for A > 0, by the Chebyshev

inequality,

( {55 enalt (Zlendl > V) 1 (o linsl < VE) > c_;_g)
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|nt]

< (Bexp (m—jﬂ:ifn,m (Zlénil > Vi) 1 (mlenn < Vi) expl-rtkan)
< exp (tBexp (A2l ) 1 (Stenal > Vi) 1 (gl < VE) = \at). (a9)
Next, for 0 < 8 < 1,¢>0,Ac <7v/2,
Eexp (m%tw) 1 (%15n,1[ > VE) 1 (- mlnal < Vi)
< Boxp (2l 1 (Stenal = > )1 (il < Vi)
+Bexp (20 2lenal) 1 (Sl < 2 1 (flfn > Vi)
< exp (QAb,%\/E —y (%ﬁ) - Eexp (1lénal?) )

+Eexp ((2/\c+ ) |§n1|5) exp ( ) (A.10)

Taking A = 1/(2v/1) and ¢ = v/%/2, it is not difficult to see by (A.9), (A.10) and the condition

wu

nPl2/p2=B — 0 as n — oo, that, for all n and t large enough,

(nt]
( Z ién le <\b/_%"§n,zi > ﬁ) 1 (ﬁlfn,zl < \/¥> > '024_75) < exp (-Ci’bi\/f) :

By a similar argument, this bound is seen to hold for 8 =1 as well.

Finally, the first term on the right of (A.8) is estimated as

'Ylfn l|
Enal > \f) < < exp(—C4(b,vnt)?).

P(b Vn 1<ilnt)

Substituting the estimates into (A.7) finishes the proof of (ii). The lemma is proved.
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