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1. Introduction

An interesting property of non-abelian Toda systems [1][2] is that they are also
conformal-invariant interacting WZW (Wess-Zumino-Witten) systems. This suggests
considering conformal-invariant interacting WZW systems in their own right, and a
large class of such systems, which we call Toda-like systems, is obtained by relaxing
the constraints on the coupling constants in the Toda systems. The resultant systems
may not be integrable, but they are conformally-invariant (at least classically).

We quantize the Toda-like systems by canonical methods and thus extend previ
ous work [3] [4] [5] on abelian and Toda systems and provide an alternative to BRST
quantization. We show that the the Toda-like systems are conformal-invariant at the
quantum level and exhibit the Virasoro algebra. The results for the Virasoro centre
illuminate the results obtained previously for Toda systems. The formalism can be ex
tended to curved spaces in the functional integral version and this extension provides
a new insight into the role of the centre.

For simplicity, we consider the sl(n) Toda-like systems associated with integral
sl(2) embeddings, with for which the relevant subalgebras (little algebras in sl(n) of
the grading generator M0 of the sl(2) embedding) are G0 = G EEG where
G is the centre, and the Ga are sl(na) subalgebras. In terms of G0 the Toda-like
systems may be described as systems with Lagrangians of the form

L =
LW(g) + kab(8a8b) + (1.1)

where LW(g) are the WZW Lagrangians for the simple subalgebras, the ka and

kab are arbitrary coupling constants, and the M(# 0) are constant matrices that
intertwine Ga and Ga+i. Throughout, the index a will be associated with (a, a + 1).
The central fields qYL(x) = tr(o, q(x)) are given by the duals o of the generators

(a)o of G defined by [a,, M+] = . From (1.1) one sees that the generalization
from Toda to Toda-like systems consists of keeping the Toda subalgebra G0 fixed
but relaxing the Toda condition that the (classical) coupling constants ka and kab
be determined by one overall coupling constant k, and that the intertwining matrices

= > M be the generators of the embedded sl(2).

2 The Virasoro Algebra

The problem with conformal invariance in the presence of a conformal scalar interac
tion V is that the canonical energy-momentum tensor T, = TL, + where IL,
is the free WZW energy-momentum tensor, is not traceless. Equivalently, the equal-
time commutators of T±± = + V do not close to form a Virasoro algebra. The
solution to this problem in all cases treated so far to add an ‘improvement’ term t,
to T, such that T, + t, is traceless but still conserved. Then L+ = T+± + t++ + V
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generate the Virasoro algebra. The role of the improvement term is to convert the
potential from a conformal scalar (with respect to T±±) to a conformal tensor of
weight (1,1) (with respect to T±± + t+±) and the important point to note is that it
is the (1,1) character of V that allows the Virasoro algebra to close.
At the classical level the improvement term for the Toda-like systems takes is the
same as for the Toda systems namely, t+±(x) = tr(M0,J’()) where prime denotes
differentiation with respect to the space coordinate. This is not true at the quantum
level, however, because at that level V is not a scalar, or even a tensor of definite
conformal weight. However, V takes the form V = > V1, where each Va has a definite
(anomalous) conformal weight h(\a, Aa). Thus in the quantum case an improvement
term is needed to convert the anomalous conformal weights h(Aa, .Aa) to (1, 1). Our
main result is that such an improvement term exists and takes the form

= tr(I, 4(a)) where I = M0 — hMq = >(1 — hda)a (2.1)

Note that Mg lies in G but, in contrast to M0, it is not uniform in a. With this
improvement term the quantum Virasoro centre takes the form

C = h[nc + k+hg]
— l2Zkabtr(gaIubI) (2.2)

where n is the dimension of G and g are the Coxeter numbers of l(a). The
contribution in the square bracket is the standard anomalous contribution of the free
WZW system and the term with the double-suimmation is due to the potential.

3. Anomalous Conformal Weights

We compute the anomalous conformal weights A using canonical formalism. The
main point is that, by using a suitable formalism for the normal-ordering, it possible
to define ‘group elements’ g and g’ such that

[J,g(y)] = urg(y)8(
—

y) [Jr,g’(y)j = —g’(y)8(x
—

y), (3.1)

just as in the classical case. More precisely, it is possible to show that (3.1) is com
patible with the Kac-Moody algebra for the currents J1, and the (normal-ordered
version of) the differential relationship between g and J. Once (3.1) is established
it is easy to show that with the usual definition of the free-WZW Virasoro operator
L(x) = T+± + t- we have

g’(y)S(x
—

— hc
g(y)6’(x

—
y) (3.2)

2(k+hg)

where c is the value of the Casimir operator OTOr. Equation (3.2) shows that in the
quantum theory g acquires an anomalous conformal weight hc/(2k + hg). It follows
that the potentials Va of (1.4) acquire anomalous conformal weights of the form Ma

where 2)a = h(c/ica + c+i/ii+i + ca/ka), and 2k is shorthand for 2k + hg, the c’s
for the simple subgroups are just the Casimirs ca = (n — 1)/na in the fundamental
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representation and the constants c = (n;’ +n1) are the values of the Casimir for

the adjoint action of G on iv4. Thus finally

= (n — 1)
+

(m1
— +

(n + Tha+i)
(33)

a(2ka + hga) a+i(2ka+i + hga+i) 2nan+ikcj

4. Comparison with Reduction Formula

To compare the general formula (2.2) for the Virasoro centre with the standard for

mula [2] [4] for the Toda case we first note that in the Toda case the coupling constants

satisfy [2][5] the universality conditions ka + hg = k + hg and k,,b = (k + hg)tr(oub)

(not ka = k and ka, = ktr(oaub)). In that case the general formula (2.3) reduces to

C = h[nc+
2kg]

_12(2k+hg)tr(Mo_hMq)2 Mq
= (2k+hg)

(4.1)

On the other hand the standard formula for the central charge in the Toda theory is

hm 2

C = hdimG0 — 12(2k + hg)tr(Mo +
° ) (4.2)

2k + hg

where M0 and m0 are the grading operators corresponding to the actual and the

principle sl(2) embeddings respectively. The expression (4.2) cannot be compared

with (4.1) immediately because it is not in the canonical form in which the free

contribution is seperated. However, it can be converted to the canonical form by

decomposing m0 into the principle m’s for the seperate sl(na). i.e. by writing

m0 = > m + M where M is a remainder consisting of block averages of m0. Since

the m are trace-orthogonal to M0 and to M we can write (4.2) in the canonical form

tr(m)2 hM 2

C = h[m +
— 122ka +hgj]

— 12(2k + hg)tr(Mo +
2k + hg)

- (4.3)

— h[mC + Z (ka+hg)]
— 12(2k + hg)tr(Mo + 2k+hg)

where we have used the ‘strange’ formula 12tr(m)2 = Comparing (4.3) with

(4.1) we see that the two expressions agree if M = —(2k + g)Mq, and from (4.1) and

the definition of M as a block-average it can be verified that this is indeed the case.

The result also shows that (4.4) and not (4.3) is the natural form of the Virasoro

centre for the Toda case.

5. Curved Space Interpretation

An interesting insight into the role of the conformal group may be obtained by em

bedding the theory in a curved space [6] with metric g and gauging it with respect

to the Weyl group. This leads to the partition-function

Z(g) = fd(g)e(R) (5.1)
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where L is the Lagrangian (1.1), R is the curvature and a Polyakov factor of the form
exp(_7Rz’R), where ‘y = tr(k0) and k is the inverse of kb, has been factored
out for normalization purposes. As usual, Z(g) has a Weyl anomaly and it takes the
form

8Z(g)
= —cR + m where c = 7 + Cq (5.2)

sv/
cq is a finite quantum correction to 7, and m is a renormalization constant. Integrating
(5.2) with respect to and using the diffeomorphic invariance of Z(g) one obtains

Z(g) = ef(_’m) (5.3)

The relevance of this for the Virasoro algebra is that the improved energy-momentum
tensor < T,, > is obtained from Z(g) by differentiation with respect to the metric,

SZ(g)
8gP’’(a)

=< T(x) > (5.3)

Thus the Virasoro algebra may also be thought of as a differential algebra operating
on Z(g). In particular, to leading order in (x — y)’ and up to a universal constant,

=< T(x)T(y) >=
( —

)4
(5.5)

and thus c may be identified as the Virasoro centre. Thus the Virasoro centre may
also be computed as the coefficient of R in the Weyl anomaly.
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