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ON QUANTUM SYSTEMS OF PARTICLES WITH SINGULARMAGNETIC INTERACTION IN ONE DIMENSION.M-B
STATISTICS.
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Institute of Mathematics, Tereschenko str.3, Kyiv, UKRAINE, 252601

ABSTRACT. Quantum one-dimensional systems of particles interacting via singular “col
lective” (depending on all the position vectors of particles) vector electromagnetic potential is
considered in the thermodynamic limit. The reduced density matrices in the limit are com
puted for the cases of short-range interaction and one-dimensional analog of Chern-Simons
interaction (j-th “collective” vector electromagnetic potential of n particles equals the partial
derivative in the position vector of the j-th particle of the Coulomb potential energy of a system
of n charged particles).
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1 INTRODUCTION

ii - dimensional systems of nparticles with singular magnetic interaction are characterized by

the “collective” vector electromagnetic potential a(X), X = (xi, ..., x) IR , which de

pends on the differences x — xk of the position vectors of particles and has a mild singularity(in

the neighborhood of hyperplane xj = xk it behaves as x — xk), and the Hamiltonian H

defined on C°°(IR), IR = 1R\U<k(xj = xk)

=
2

— a(X))2,X = (xi,...x) E (1.1)

a(X) E C(),(p — a)2 = — a)2,pj =

The motivation to study such systems originates from the 2-d Chern-Simons (C-S) system

which is believed to describe a phenomena of high temperature superconductivity based on the

mechanisn of the Bose condensation of clusters of anyons,i.e.particles with exotic statistics {1-3].

C-S system corresponds to the case

a(X) =e60U0(X) = aU0(X), X 1R (1.2)

where ix the partial derivative with respect to x, c is the antisymmetric tensor, there is a

summation over the index

= JJkc(cs)(x — Xk), (1.3)
1<k<jy<m

9
x 1 2

qc(x) = iriixL cs(x) = arctan —i-, x = (x , x )

o is the charge of the j-th particle. The existence of anyons is explained by the singularity of

C-S potential and equality (2): interaction is gauged out (formally) and the singular phase has

discontinuity on union of hyperplanes x = xk that “spoils” symmetricity or antisymmetricity

of a complex wave function.

C-S particle system is derived in Topological Electrodynamics( Maxwell term is dropped

in the Lagrangian containing C-S form). There are many interesting conjectures concerning

the phase structure of the system[4-5]. But up to now a mechanism of Bose condensation was

not established. The description of anyons in the zero-temperature 3-d Lattice Scalar Quantun

Topological Electrodynamics (QED) in rigorous terms was given by Frohlich and Marchetti in

[6]. A change of a phase diagram produced by the topological (C-S) term is poorly explored

in the zero-temperature Lattice QED. Anyons at non-zero temperature up to now were not

discussed in the framework of the Constructive QFT and QSM.

If the vector collective potential a3 satisfies the condition

a(X) = 8U(X), x xk, (1.4)
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there exists the simplest selfadjoint extention H of H, which generates a contraction semigroup unitary equivalent to semigroup, whose infinitesimal generator is the minus one-half vndimensional Laplacian. It is not difficult to check that for the Dirichlet boundary conditionand the Maxwell-Boltzmann(M-B) statistics the grand canonical partition function coincideswith the grand partition function of free particles.
The conjecture that the system is equivalent to the free particle system in the thermodynamic limit seems plausible oniy for the case of short range magnetic interactions( U isexpressed through k-particle “magnetic potentials” integrable by k-i variables) when the reduced density matrices are easily computed in the thermodynamic limit. The existence ofthe matrices for long-range magnetic interactions ( k-particle “magnetic potentials” are notintegrable) is an open problem (we solve the problem for the simplest ‘integrable’ i-d system).
For the case of Fermi or Bose statistics the aforementioned selfadjoint extension for the C-Ssystem produces the system of free anyons. Another extension introduces interaction betweenthem.
One-dimensional systems with singular magnetic interactions are also interesting. Thereare also anyons in the systems hut they appear as a result of special selfadjoint extensions of then-dimensional Laplacian restricted to G0c(IR) or H (a simplest class of them are consideredin this paper). The collective vector potential a creates interaction between them.
Earlier seifadjoint extensions, corresponding to jumps of partial derivatives of a wavefunction on the hyperplanes where the position vectors coincide, were considered in [7-8].
In this paper we investigate one-dimensional systems of r sorts of particles with v1-Bstatistics with magnetic interaction for which eq.(4) holds and

U(X) = u(x
— Xk). (1.5)

1<k<j<n

At first we compute the reduced density matrices in the thermodynamic limit for the case ofshort range pair “magnetic potential” Cc.(1R\O)flL1()and the class of selfadjoint extensions of H,correspondig to jumps of a wave function on the hyperplanes where the positionvectors of particles coincide. Then we study the system with long range pair “magnetic potential” = It turns out that if u -y then the reduced density matrices are nontrivialin the thremodynamic limit if the differences of variables sit on the lattice 27_2,\1.
It is not difficult to show that this system can he derived from the 2-d electrodynamicswith the additional term A08’A1 in the Lagrangian( Maxwellian term has to be omitted).

2 MAIN RESULTS

Let’s consider the Hamiltonian f[ with a satisfying eqs.(4),(5.) and the case v=i. Fromsimple equality

—

= exp{iU}pexp{—iU}
it follows that

= exp{iU}Hexp{—iU}, (2.1)
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where U, are operators of multiplication by functions U(X), a(X), respectively, and His the minus one-half n -dimensional Laplacian, restricted to C(IR). Now let’s define severalfunctions
Uc(X) =

—

1<k<j<n

= arccos (x), c(x) = a.e.,

U*(X) U(X) + U(X),
where Fj are functions on a discrete set. By D(A) we’ll denote the domain of the operatorA and by the operator of multiplication by the function U*()(X). These operators areunitary and the equality

exp{iU}C°(IR) = C(IR) (2.2)
holds.As the result the set exp{iCJ}D(H) is dense inL2(IR). It is the domain of the selfadjoint operator II

* 0
9= exp{zU }Hexp{—zU}

PROPOSITION 1 Operator LI is a selfadjoint extension of the operator H.PROOF follows immediatly from the eq.(1.2) and the fact that the operators of partialdiffirentiation commute with the operator exp{-f-(—)iU} on G(IR).Operator EI is the infinitesimal generator of the contraction strongly continuos semigroup

= exp{iU}exp{—tH}exp{—ifJ}

and by the “core theorem”its core coincides with exp{iCJ}S(IR’) [9].We’ll assume in what follows that

Fj,k = 0jk (2.4)
ow we consider the system in the interval [-L,L] with the Dirichiet boundary condition on itsboundary, i .e.with the 1-lamiltonian H,L

n,L = exp{—,H,L} = exp{iU}P(L)exp{—iU} (2.5)
where the semigroup (nL) is generated by the n-dimensional Laplacian with the Dirichietboundary contition onthe boundary of [-L,L]. Let’s define the reduced density matrices for thesystems of r sorts of particles (aj Z(r), Z(r) is the set of r elements) with the M-B statistics[10-11].

m m
pL(X.mYm) = fi (n!)’ II Zgt f P)(Xm,XYm,X)dX, (2.6)k1 TlO s=1

[—L,L]

where L coincides with the numerator in (1.4) for the case m=o, the sums in are performedover the set Z(r), z is the activity of the particle with the” charge” u, /3 is the inversetemperature, P)(XflYfl) is the kernel of the operator L• The reduced density matrices inour case are functions in °, ..., Jm,since the Hamiltonian is diagonal in variables that describe
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the inner degree of freedom. In order to simplify notations we don’t indicate this dependencein
A•

LEMMA

For the system with the Hamiltonian defined be eqs.(1.4),(1.5) the following equality is true

pL(Xm/) = CXp{j[U*(Xm) — U*(Ym)]} II ZukPL)(XkYk)CXP{GL(Xm},

L m
GL(Xm,Ym) =

x) — *(yj
— x)j}

— 1}PL)(xx)dx.

where PL)(xy) is the integral over the Wiener measure concentrated on paths, starting atzero moment from x and arriving in y at the moment /3, of the characteristic function of pathsthat are strictly inside [-L,L].
= OE*(X) + (x).

THEOREM 1

Let the condition of the Lemma be satisfied and g(x) G(1R\O) flL’(IR) , then thethermodynamic limit of the reduced density matrices are given by

p(Xm) = 1impL(XYm) = (2.7)
= exp{i[U*(Xn)_U*(Y)j} fi ZP0(X) exp{G(Xm,Ym)+G(Xm,Ym)}x(Xm,Ym),k1 irES2m
where 52m is the permutation group of 2m elements, x is the characteristic function of the setV(i) <V(2) < ... < V(2m),V2m = (Xm,Ym),

f1) mG(Xm, }) z(2/3) f + f ) [exp{i
- x)

- (Vj+m - x))} - 1]dx,
\co V(2m) /

Vw(+l)2m m
G(Xm, Y) = z(2/3) f {exp{i jj.(*(v.

—

x) —

— x))} — ljdx.s=1 j=1

THEOREM 2

Let g5(x) = , and (r) C -y, and the following condition be satisfied

—
2’, (2.8)

then the reduced density matrices in the thermodynamic limit is given by (1.7) provided G isequal to zero. If (1.8) is not satisfied then the matrices in the limit are equal to zero.
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3 PROOFS.

Let’s start from the Lemma. In all formulas instead of A we’ll write L. The semigrouphas the kernel

P&(Xn IY) = exP{iU(Xfl)}PhL)(Xfl JYn)expiUn)},
where

PIL)(XflIYfl)
= fl (3.1)

It is obvious that

U*(XXj) = U(Xm) + U(X) + W*(XmIX)
where

W(Xm)IJ<) =

k=1 j=1
Hence

.FL)(Xm,XnIYm,Xn) = exp{i[U(Xm) + U*(Ym)1}x

x II PL)(xkIuk) II Po(L)(xJIxk)exp{:I:W (xjIXm) — W(34IYm)]}
Substituting this equality into eq.(1.6) we prove the main formula of the Lemma. In orderto pass to the thermodynamic limit or to prove the THEOREM 1 we have to represent then-dimensional space as a union of not intersecting sets of ordered variables. Each such subsetis labelled by the element of the group of permutations of 2m elements. Then we split theinterval of integration in the expression for GL(Xm, I’m) into three intervals. In the first intervalx1,yj > x, in th second x5,y1 <c and the third is the compliment of these intervals to [-L,L].So

Cfl{GL(Xyn,Ym)} = E xr(Xm,Ym)exp{(G + G9(Xm,Ym)}
xES2m

The terms with#6(xa — x) cancel exactly the terms with qS(yj — x) under the sign of integralin the expression for G!. Since the pair “magnetic potential” q$(x) is integrable then we passto the limit L —. oo in the integral. Since the integral over the third interval (function GT)does not depend on L we obtain the main formula of the THEOREM 1, since PL)(xIx) tendsto (2irf3)4 when L tends to oo . In order to prove the THEOREM 2 we have to prove thatGE is equal to zero if variables sit on the defined lattice or tends to -oo if the variables are noton the lattice. This can be shown easily since we can compute the function. Really

GE(Xm, Ym) = E z[[exp{i eeA(x1
— y)} — 1] J PcL)(xIx)dx+
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+[exp{—i uA(r
—

y)} — 1] f PL)x)dx]
jl V(2m)

In order to have OL is equal to zero we have to demand that x
—

2r1\’72.From
the computed expression for the function GL it follows that it tends to -oo if the differences are
not on the lattice and tends to (2) in the limit of infinite L. theorem is proved.

DISCUSSION. We established that in the thermodynamic limit the behavior of the re

duced density matrices for short-range pair magnetic interactions and the long-range C-S type

magnetic interaction differs essentially. But there is the common property: on the diagonal

they coincide with the free particle reduced density matrices.The question in what respect do

the systems differ from the free particle system remains opened. In the next paper we’ll show

that the similar results hold for the sytems with the Fermi and Bose statistics for two simplest

cases: ,=0,1. The second case corresponds to impenetrable free bosons. It is known that

there is no condensation in such the system [12] and that it is equivalent on the thermody

namic level to the free fermion system (fermionization of the system).It can be stated that

impenetrable bosons is an example of simplest anyons. The proof of the absence of the con

densation is not trivial. This is a good hint that the thermodynamic equivalence to free particle

systems does not automatically yield an equivalence on the level of an algebra of observables

and its symmetries. It is known that in one-dimensional Bose gas in an external potential

there is a condensation [13].Is there a condensation in the system of impenetrable bosons with

a long-range magnetic interaction ?. The problem of condensation in systems of 1-d anyons

is very interesting and may clarify in some sense the same problem for 2-d anyons. Besides

that an investigation of 1-d anyons may clarify rigorous picture of connection of anomalies and

bosonization in 2-d systems,including the Sthwinger model.

ACKNOWLEDGMENTS.

The author thanks profs. W.Koshrnanenko, J.Lewis, L.Pastur D.Petrina, C.Pfister, V.Priezzhev

for discussion and expresses his gratitude to prof.J.Lewis for inviting l1im to the Dublin Institute

for Advanced Studies and hospitality.

REFERENCES.

1 Jackiw R., Pi S-Y. Phys.Rev.,D15 ,1990, v.42, p.3500.
2 Lykken J, Sonnenschein J.,Wess N. The theory of anyonic superconductivity. A review.

Preprint/TAUP- 1858-91/.

3 Fradkin E. Field Teories of Condensed Matter Systems.Addison-Wesley Publishing Com

pany.

4 Kitazawa Y., Murayama H., Nucl.Phys.B338, 1990,p.7T7.

5 Rey S-J., Zee A. Nucl.Phys.B352, 1991, p.857.

6 Frohlich J., Marchetti P., Commun.Math.Phys.,v.121, l989,p.l77.

7



7 Gaudin M., La Fonction D’onde de Bethe, Masson, 1983.

8 Aneziris C., Balachandran D., Sen D. Int.Journ.Theor.Phys., 1991,v.6,p.4721.

9.Simon B., Reed M. Methods of Modern Mathematical Physics.v.2, Academic Press, 1972.

10 Ruelle D. Statistical Mechanics.Rigorous results. W.A.Benjamin, Inc.,1969

1 lGinibre J. ,Journ.Math.Phys.,v.6,1965,p.239.

12 Shultz T.D Journ.Math.Phys.,v.4,1963, p.666.

13 Van-Den-Berg M., Lewis J.T.,Commun.Math.Phys.,v.81,1981 ,p.465

8


