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Abstract

Using extended Khuri-Treiman equations, we evaluate the final state in
teractions due to two-pion rescatterings to the decays i — r°wr and

— OUO• As subtraction to the dispersion relation we take the one-loop
chiral perturbation theory result of Gasser and Leutwyler. The calculated
corrections are moderate and amount to about 14% in the amplitude at the
center of the decay region. A careful analysis of the errors inherent to our
approach is given. As a consequence, the experimental rate of the decay can
only be reproduced if the double quark mass ratio Q2 E is

increased from the usual value of 1/(24.1)2 to 1/(22.4 + 0.9)2. We have also
calculated the ratio of the rates of the two decays and various Dalitz Plot
parameters. In particular, the linear slope a in the charged decay is different
from the one-loop value and agrees better with experiment.
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1 Introduction

Chiral perturbation theory (ChPT) [1, 2] offers a consistent description of low
energy QCD, in particular of the strong and weak mesonic interactions. Whereas
most phenomena are quite well accounted for, the predictions for the decays i —* 3rr

remain much below the experimental results. The lowest order amplitude is fully
determined by chiral symmetry [3] to be

F(Sa,Sb,Sc)
= _Bo(m—rn)

ft2(a) (1.1)

T(Sa) = 1 +
—

m —

where m, and md are the up and down quark masses, F0 and B0 QCD parameters
and 5a, Sb, s kinematical variables to be defined later. While the form of eq. (1.1)
is valid for the decay into the expression for three neutral pious is obtained
by settingf2(a) = 1. Furthermore, in lowest order in the chiral expansion one has

Bo(lnd — in) = (n%o — m+) — (mo — (1.2)

These equations yield a width of 66 eV for the decay j “ r0rwhich is far below
the experimental value of 281 + 28 eV [1]. It is an unusual situation, since most
predictions of current algebra fall within 20 to 30% of the experimental results.

however, also the next-to-leading calculation of Gasser and Leutwyler [5] failed to
reproduce the experimental value, despite a dramatic improvement. These authors
obtain a width of 167 + 50eV for the r, —* rr decay (We have adopted the
new value of f, [6] which increases the width by about 7 eV). Thus, one may con
clude that higher order corrections are very large, possibly preventing a satisfactory
representation of this decay by C1hPT.

Since the decay rate is proportional to (m — md)2 it is particularly sensitive to the
value of the quark masses. The quark mass ratios are known with some precision [7]
from a variety of low energy investigations. Since they are fundamental parameters
of the basic theory, they should be determined as accurately as possible. Of special
interest is the up quark mass because rn = 0 is a very appealing solution to the
strong (P problem [8] . From eq. (1.1) we see that decreasing rn indeed increases
the rate as required by experiment. On the other hand, corrections to the second
factor will also have this effect. Thus, only a careful investigation of higher order
effects will enable one to draw a conclusion on the quark masses.

Let us formulate this more precisely. The amplitude for the decay “

can be written as [5]

F(Sa, 3b, s) = B0F1 f(a, 3b, Sc i4, m, ..) + e.m. (1.3)

1



where the quark masses are the renormalization group invariant masses, zl a QCD
scale. s, the Mancleistarn variables for the decay. Sutherland’s theorem [91
implies that the electromagnetic contribution is of order p2. where p2 stands for any

invariant product of momenta. Moreover, the leading (in momentum) electromag

netic contribution of order is further suppressed by a factor if the amplitude

is assumed to be linear in sa [10, 11]. Recently, these terms were reanalyzed in an
effective Lagrangian framework [12] and the expected smallness of the electromag
netic corrections (Sutherland’s theorem) was confirmed. We will therefore neglect
them throughout.

Returning then to the QCD contribution in eq. (1.3), the second factor, the
function f, is expanded in chiral perturbation theory in powers of momentum and
mass

f = f + f +.. (1.4)

Here, f(2) has already been defined in eq. (1.1) and f(4), etc. are of higher orders.
j(4) was given explicitely by Gasser and Leutwyler [5] and consists of a variety of
loops and counterterms. The corresponding coupling constants also occur in other
observables which are also calculated using the chiral Lagrangian, for instance the
decay constants or the masses of the mesons. To order p4, it is therefore possible
to express some of these corrections through physical quantities. In particular, the
quark mass contribution to the kaon mass difference can be written as [13]

2 2 9 T1i- 2 9
I1QCD (mo —mK+)QCD = Q —-(rn — in;) (1.5)

and can be obtained from the measured masses once the electromagnetic mass dif
ferences are subtracted. Here,

rnJ — m + iflu
(1.6)

in — in in5 + in

with ih ( m + rn,1).

Then, one can rewrite the amplitude as

2 1
Fa,Sb,Sc) = _Q2

rn)? (1.7)

•f2a)(1 + DEC)

DEC contains the remaining part of the 0(p4) terms as well as corrections from
higher orders in the chiral expansion. Terms of order (ind —

in,,) are tiny and are
therefore neglected throughout. As anticipated, the rate is indeed proportional to
the quark mass difference squared.

31n passing, we note that in the generalized framework of chiral perturbation theory [14], matters
are more complicated and a careful reanalysis of all relations entering eq. (1.7) is required.
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The decay r —* 3w fixes the quantity Q2 rather than the ratio This is

in agreement with the observation by Kaplan and Manohar [15] that the chiral
Lagrangian possesses a curious reparametrization invariance under which masses
and some of the other parameters are changed. It implies that matrix elements
derived from Green functions which do not involve scalar or pseudoscalar densities
are invariant [16] with respect to that transformation. And indeed, the combination

Q2 in eq. (1.6) is invariant, while for instance is not. Unfortunately. there is
no direct experimental access to this ratio, the relevant Green functions must be
obtained from semiphenomenological analyses [7].

There exists an independent determination of Q2 by means of the following equa

tion
rn = LI1QCD + (zK — 7T)em. (1.8)

Provided that the electromagnetic contribution is known, eqs. (1.5) and (1.8) can
be used to check the consistency of the different calculations or to predict the rate
for the decay i —* 3w.

The calculation of the electromagnetic mass differences is notoriously difficult.
Dashen’s theorem [17] implies that the electromagnetic mass difference of the kaons
is equal to the mass difference of the pions, up to terms of order e2p2. If these are
neglected, one has LKqcD = rn and one can write

Sb, J2(Sc)(1 +6DEC) (1.9)

and DEC determines the rate. In their calculation of the decay rate for i —k :3w

Gasser and Leutwyler [5] obtained a correction bDEc of about 50%. Together with
eq. (1.9), the value of 167 eV for the width results, still far below the experimental
number.

However, it was found recently [18, 19] that the corrections to Dashen’s theorem
could be substantial. One should therefore start from eq. (1.7), avoiding unnecessary
uncertainties arising from corrections to Dashen’s theorem. The normalization of
the —÷ 3w amplitude is then determined by Q2 which follows in principle from eq.
(1.5). As pointed out in [20], the positive corrections to Dashen’s theorem found in
[18] increase zXK such that together with the value of DEC obtained by Gasser and
Leutwyler the experimental rate for 77 —* 3w would be reproduced.

Thus, the rate of the i decay can be increased either by determining further cor
rections in DEC (beyond those calculated by Gasser and Leutwyler) or b increasing
the value of iKQCD. In view of eq. (1.6) this latter term amounts to an increase in

Q2 and thus to a smaller up quark mass. But before any conclusion on the quark
masses can be drawn, the decay corrections must be understood better.

It has been argued [21] that r’ mixing may increase the theoretical rate to the
experimental value. However, it was recently shown [22] that the effects of the r’

are in fact included in the standard treatment and that the enhancement is due to

4the QCD contribution to the pion mass difference is proportional to (n4 — m )2 and negligible

3



an incomplete treatment of the resonances as an explanation for the constants of

the chiral Lagrangian. We therefore omit this issue in the following.

The goal of this paper is to calculate one class of corrections in DEQ, the so called
unitary corrections which ensure that the decay amplitude satisfies unitarity. These
corrections are the sum of certain diagrams, namely those describing the rescattering
of the final state particles to all orders. It is believed that they dominate the
corrections, in particular since the final state interactions of two pions in the I = 0
s-wave channel is strong and attractive. In fact, in the one-loop calculation of Gasser
and Leutwyler they yield the largest new contributions. They account for roughly
three quarters of the corrections, pion loops contributing about 85% and kaons and
etas about 15% thereof, while other terms provide the remaining quarter (of course,
the division of the corrections depends on the renormalization scale chosen; however,
physical arguments such as resonance saturation of the counterterms indicate that
the scale used for the above numbers is reasonable).

A method to evaluate the unitary corrections has been given long ago by Khuri
and Treiman [24]. Keeping only two particle rescatterings of pions (and neglecting
p-waves) they derived a set of dispersion relations, the Khuri-Treiman equation.
This paper was subsequently analyzed by several authors [25, 26, 27, 28, 29, 30]. In
particular, Kacser [28] derived the correct prescription for the analytical continuation
of the partial wave projections of the decay amplitude. Bronzan [29] and later also
i\Teveu and Scherk [31] omitting also the I = 2 rescatterings, solved the Khuri
Treiman equation approximately. Using the properties of the Omnès function D(s)
entering their approximate solution they argued that the remaining terms are small.

Some time ago, Roiesnel and Truong [32] reconsidered the problem, using similar,
although not equivalent methods to those of Neveu and Scherk to calculate the
unitary corrections. These authors found a large enhancement of the amplitude,
enough to account for the observed rate. The numerical results of this work were
criticized in Ref. [5] on physical grounds and we confirm their findings. We believe
therefore that their result is a overestimate of the unitary corrections.

In this work we will use (and generalize by the inclusion of p-waves (see also [33]))
the method of Khuri and Treiman to determine numerically the unitary corrections.
It is organized as follows.

In section 2, after rewieving the decay amplitude for —p 3w and giving the
necessary definitions, we formulate the Khuri-Treiman equations and the inclusion
of the I = 1 rescatterings. In section 3 we discuss the subtraction procedure, and
in section 4 we build up an iterative scheme for the numerical solution of the set
of coupled equations for the projected amplitudes U, V, 11/. In section 5 we discuss
our numerical results and the quality of our iteration and in section 6 we draw the
conclusions. Some appendices contain necessary technical details.
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2 The dispersion relations

2.1 Isospin decomposition for the amplitude

We begin with a short review of the amplitude for the decay i —÷ 3ir. It serves to fix
the notation, give the isospin decomposition and to discuss its symmetry properties.

We denote the three pions in the decay i —* 3ir by the letters a,b,c, their cor
responding four-momenta by ka, kb, k and label their isospins by , 3, y. The
• 9 9 2 9
invariant masses of the pions are then k; = k = k = m disregarding all mass
differences at this stage. The four momentum of the isospin singlet is denoted by

In the standard model of the strong, electromagnetic and weak interactions, the
decay ‘1 —* 3rr proceeds either through the isospin breaking piece of the QCD
hamiltonian or through an operator of electromagnetic origin. For both contri
butions, the interaction Hamiltonian H(O) is zI = 1. It is then convenient to treat
the i as a spurious isospin triplet and to assume isospin conservation in the decay.
•The corresponding isospin state is labeled by p.

The amplitude for a general isospin assignment of the pious is

M = <c/ca;/3,kh;7,kcH(O)kr>

(2)4(ka + kb + kc — kr)My;p(a,s6,c). (2.1)

The invariant amplitude has the decomposition

3b, = F(a, 3b, Sc)iyp

+F(s6,3c sa)p

+F(c,a 3b)ap, (2.2)

where the isoscalar amplitude F is a function of the Mandelstam variables

- 1 2 1 2 21Crka) , sbkTkb) , krk) , (.3)

which are related by the on-shell condition

a + 8b + c = 3’n + m 3s0. (2.4)

Bose statistics of the three pion system implies the symmetry

b, s) = F(a, Sc, Sb) (2.5)

such that the amplitude AILi;p(Sa, 5b, s) remains invariant under the exchanges of

a a bc,

b 5 ca,

c c ab. (2.6)



The amplitude for the decay into charged pions is then found to be

-°H(0) >= i(2w)4(A + b + k — L7 )F( ) (2 7j

whereas the amplitude for the decay into neutral pions is expressed as

<O O °H(0)r1> = i(2K)4(k+ kb + kC — kr) (2.8)

[F(s, Sb SC) + F(sb, 5c Sa) + F(SC, 5a Sb)]

2.2 Isospin sum and scalar dispersion relation

We begin with the dispersion representation for the decay amplitude ed. (2.2)
derived by Nhuri and Treiman [24]

1 p° / disc ia!3’:p(5a, s, s)
hI;p(Sa,5b,5c) =

— I dS /

1 disc 1I8yc;p(Sa,S,SC)
+ —f cIs b (2.9)

4

disc I1i ;p(5a, 5b, s)
+ —J iS

ir 4

Here arid below, all momenta and masses are taken in units of rn; in particular,
the mass of the ?j will be denoted h m.

E.qn.(2.9) expresses the connection between causality and analyticity for the con
sidered amplitude. Unitarity gives an expression for the discontinuity of
for fixed 5C and analogous ones for the other two discontinuities in the form of a sum
over intermediate states involved in all the rescattering processes. The intermediate
state with lowest mass contributing in this sum is the two-pion state leading to a
rescattering of two outgoing pions in the decay. As any other intermediate state
such as a. KK or a 4ir state will contribute to the discontinuity at a much larger
threshold it is a reasonable approximation to drop them [24]. Hence, we find

2idiscaM;p(sa,sb,sC) !iddde (2.10)

(2)4(kr —
— Pd — Pe)N;7(Sa, S, s) . Msa;p(sa, 3d, s)

where Pd and p are the four-momenta of the intermediate pions d, e. In eq. (2.10)
we have introduced the invariant pion-pion scattering matrix element

<ci,ka;!3,kbTrpe;m1,pf> (2.11)

i(26(k + kb
— Pe — Pf)’’ai3;e(5a, 8, s)

an(l the phase space measure for the intermediate pious

(2dZE, E =. (2.12)
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The variables s and s are defined by

= (k6
—

(2.1:3)

= (kbpe)2

In the Rhuri-Treiman approximation, the discontinuity of the decay amplitude be
comes thus just a product of the pion scattering amplitude with the decay amplitude
itself.

rfo perform the phase space integrals in eq. (2.10), one usually chooses the c. m.
frame of the rescattered pious defined by + = 0. Letting the 0-angle in dj5d to
be the angle 0da between and the discontinuity becomes

disc = (c) (2.14)

f dQa
NE;/37(Sa, cos Obd) . Ma;p(sa, cos Oda)

where we have introduced the shorthand notation

a(s) (2.15)

We note that some of the kinematical variables are not well behaved in the decay
region; we shall supplement a correct analytic interpretation for them below.

Adopting the normalizations from Ref. [34], we continue with the isospin decom
position of the invariant pion-pion scattering matrix element

-3;5a5b,5c)

+ (T2(3a,Sb,Sc) ± T’(Sa,S6,Sc))6c&3S (2.16)

+ (T2(8a, 3b, s) — T’(a, 5b, .sc))6&37

where the T’ are the isospin amplitudes to isospin I. In our frame of reference
they depend on two variables only, the total invariant mass of the pions and the

intermediate scattering angle 0bd. The corresponding isospin decomposition of the
decay amplitude has already been given in eq. (2.2).

We now insert ec. (2.16) into eq. (2.14) and use eq. (2.2). This yields, for the

discontinuity of i’i in .sa

1 Ic cia
disc aM;p : 4w

[jyp{T (.Sa, 8, Se)F(Sa, 5d, Se)
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+(T0*(5C,5,5) —T2*(Sa,S,S))F(Sd,Se,Sa)} (2.17)

S, s) + Tl*S, S, S))F(Sd, )

+(T2*(5a, S, S) — Tl*(S S, S))F(Se, Sa, Sd)}

+a6p{(T2*(Sa, 5, 5) +T1(Sa, S s))F(s, 5a, Sd)

S, S) — T’(Sa, 4 S))F(Sd, e,

Next, we use this result and the two analogous ones for the discontinuities in 5b

and s, in the dispersion representation eq. (2.9) for the full amplitude. Comparing
the coefficients in the different isospin channels we obtain three dispersion relations
for the scalar functions F [24]:

1 [C0 ds 1 / [d2d
b, s) = — I , /(a) I

J — —
ZE 32ir .‘ 4r

0* I I / /{ T 5d’ Sp)F(Sa, 5d, Se)

+(T0*(% 44 — S, S))F(Sd, e, s)

+(T0*(S, S, S) — T2*(s, S, S))F(S, S, Sd)}

1 [CO cls 1 r dft
+ - I / —(S) / (2.18)

‘3i, — ZE 32ir .j 4ir

{(T2*(s, S, S) + Tl*(s, S, S))F(Se, S, Sd)

5’) — Tl*(s, s, s))F(sd, e, s)}

1 [D ds 1 ,

___

+ — i / —/() i
t J4 S — s — ze 327r i 4ir

{(T2*(s, s, s) +T1(s, s, s))F(sd, e, s)

+(T2*(4 s, 4 — Tl*(s, S, s))F(s, 4 5d)}.

The invariant variables 5d, 5e s, s must he expressed in terms of s, b, s. The other
two scalar dispersion representations are obtained from eq. (2.18) by permutation
of a, b, c.

To evaluate further this dispersion relation we retain only the s- and p-wave
contributions to the rescattering. The relevant partial wave expansions of the pion
scattering amplitudes T’ for fixed isospin I are given as usual by [34]

cos 8)
=

(2l + 1)Pi(cos 8)f/(s) (2.19)
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where .s is the total invariant mass and 0 the scattering angle in the c.m. system of
the colliding pions. In the elastic region 4 < s < 16, the partial wave amplitudes
are parametrized by real phase shifts as

f/(s) = ei8Rsin[(s). (2.20)

The lowest contributions for I = 0, 2 are s-waves

T°(s) = f(s) (2.21)

T2(s) =

while for I = 1 it is a p-wave

T’(s,cosO) = 3cos0.f(s). (2.22)

The factors /3 in (2.18) just cancel now against the corresponding factors in the
partial wave expansion of T’ and we are left with two types of angle integrals.

In the case of s-wave contributions the pion-pion rescattering is isotropic. For
I = 0, 2 we have thus angle integrations of the type [24]

fdQaF(SSdS (2.23)

fdc2da
F(5a) I F(Sd,Se,Sa)

i 1ir

where 5d, 5e are expressed through 5a and cos as

= 3Oad

3Oa

=
+1i(5a) •cosOda (2.24)

d2da = d . dcos 0da

Here we introduced the Kacser function [28]

K(S)545(m415(71H. (2.25)

Its cuts and limits in the complex s-plane will be discussed below.
We may now recast the integrations above as integrations over 5d and obtain

— 1 ISd+(Sa)

F(a) = / dsd F(5a, 5d, 3so —
— sd) (2.26)

2A(5a) 5d—(5a)

and in an analogous way

I s(sa)
F(a)

= 2K(5a) L_(5a) dsd F(sd, 3s — — 5d, 5a) (2.27)
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where

Sd+(S) + A(s), Sd-(S) E
•3s S

— K(s). (2.28)

The integral F( .s) obeys the symmetry property

1 fS(Sa)

F(Scj) J cL5dF(350
— ci — 3d, Sd) (2.29)

2A(Sa) Sd_(Sa)

which follows immediately from the Bose symmetry properties of F itself a.nd a
change of variable 5d — 3o — —

The p-wave contribution for I = 1 leads to the more complicated integral

I(Sa, 5b, s) f dQ
cos ObdF(Se, Sd). (2.30)

In order to perform the angle integration explicitly and to get rid of the two angles
we invoke a partial wave expansion for F

F(Se.SaSd) = (2l+ 1)Pl(cos6da)Fd(sa). (2.:31)

Making use of well-known properties of the Legendre polynomials we obtain

‘(5a8b,5c) = cosOba Fj(a). (2.32)

The 1 = 1 projection of F is next expressed as an integral over 5d

1 fsd+(Sa)

F(a) = 2f J d(25d + a — 3s) (2.33)
IA 5a) Sd_(Sa)

.F(3s0 —
— 5d 5a Sd)

and cos O is recast as
55 — $

cos6ba
= (2.34)

2I (Sq)

Plugging all together we obtain the desired expression

I($a.$,Sc)
= 5b $Cfr(5 (2.35)

defining the function of one variable

3
3 J (1$d (2sd + a — 3so) (2.36)

A ($a) Sd_(Sa)

.F(3s0
— — 8d, 5a 3d).

I(Sa,3,c) satisfies

sb $ fSd+(Sa)

i(Sa, &. s) = J d3d (25d + a —
3s) (2.37)

A (Sa) Sd_(Sa)

F(sd, 3o — — d, 3cc)
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following from the Bose symmetry properties of F and a change of variable sj —

— 5a. — 3d This will allow us to rewrite the integral equation for F(Sa,, 9h s) as
an equivalent set of coupled integral equations for functions of one variable only.

Note that the projections as given in eqs. (2.26), (2.27) and (2.36) are defined only
for values of s in the physical decay region 4 < a < (in — 1)2. Outside this range,
the argument of the square root in the Kacser function eq. (2.25) becomes negative
and we have to give this funcion a meaning by appropriate analytic continuation.
This was studied by Bronzan and Kacser [27, 28] whom we follow closely. Based
on comparison with explicit expressions for the projection operation in perturbation
theory and demanding that the general definition of the projection should reduce to
these expressions, they find that the naive integrals have to be replaced by contour
integrals in the complex sd-plane. The respective paths joining Sd_(5a) with Sd+(Sa)

must avoid the real axis for 4 < 5d < cc as the amplitude F has a cut there. Where
necessary, Sd_(Sa) and 5d+(Sa) are taken infinitesimally above or below the real axis
according to the prescription obtained by replacing in2 in2 + i, — 0+ for
real s. Hence, we will consider the projections above, eqs. (2.26) (2.27) (2.36), as
contour integrals with suitable integration pathes and introduce the function H

H(s) = - 4)(s - (in - 1)2)(s
-

(rn* 1)2)
( 38)

which is well defined for all s different from zero and allows us to express the neces
saranalytic continuation of the Kacser function K in a simple way.

Next we turn to the description of the different paths in the sd-plane belonging
to the four cases we have to discuss if evaluating the aforementioned definition of
the projection operation. We must distinguish four cases.
i) 4 < a. < as a is in the physical decay region K(5a) coincides with H(s1).
(see Fig. Ia). rhe end points of the contour are lying infinitesimally above the real
axis and are found to be

5d+(5a)
= 3s— a

+ H(a) + i, (2.39)

5d-(5a)
= 355a

ii) ‘ < sa < (in — 1)2: a is still in the physical decay region so that K(5a)
coincides with H(5a) again. The point 5a = is important because when 5a
goes through it, the endpoint Sd_(Sa) continuously turns around the beginning of
the cut at 4 and remains then infinitesimally below the real axis (see Fig. Ib) such
that only the other endpoint 5d+(5a) of the contour remains infinitesimally above
the real axis. The two end points are now found to be

5d+(a)
= 35ü5a

+H(5a)+, (2.40)

Sd_(Sa)
=

_____

— H(a) j6. (2.41)
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iii) (in — 1)2 < S < (in + 1)2: as Sa has left the physical decay region K(a)
must he analytically continued and is defined to he K(a) jH(a). The endpoint
sd_(s) turns now smoothly into the half plane below the real axis whereas the
other endpoint d+(Sa) turns smoothly into the half plane above the real axis in a
symmetric fashion such that

—
—

= 2
+ iH(a), Sd_(Sa)

= 2
— ZHa). (2.42)

The most adequate contour for numerical purposes joining those two points follows
just the path the end points move along if a goes from (in — 1)2 to (m + 1)2 (see
Fig. ic) and is thus parametrized by 8 itself as shown in eqns.(2.42).
iv) (in + 1)2 < as sa is out of the physical decay region K(a) must again be
analytically continued and is defined to be K(a) H(a) (see Fig. ld). The end
points of the contour are lying in this case on the real axis

3d+(Sa)
= 2

— H(a), Sd_(Sa)
= 2

+ H(a). (2.43)

Note that at 3a = (in — 1)2 the projections of a function with a cut have a
singularity because K vanishes at this point whereas the integration contour still
has finite length and the integral over the imaginary part of the function along
the contour does not vanish. The actual form of this singularity for F(a) around

= (in — 1)2 is then given by

1
. const. (2.44)

((in 1)2
—

and for P(3a) by

•const. (2.45)
((in — 1)2 —

where the constant is in fact the value of the contour integral for ‘5a = (in — 1)2. M/e
will use this form later to analyse the consequences of this pole in the projection
prescription.

The projection operations occuring in the eqs. (2.26), (2.27) and (2.36) are now
given by well defined contour integrals and we use them in the further evaluation of
the integral equation (2.18) for F. We thus insert the partial wave expansions of T’
in the expression (2.18) for the scalar function F. Using the definitions (2.26), (2.27)
and (2.36) for the different projections and including the subtraction polynomial as
required by the discussion in section 3, we may recast F in the following way

886, c) = P(Sa, , Sc) + U(3a) + V(s6) + V(Sc) (2.46)

+ (8c — Sa) W(s6) + (Sb Sa) W(c)

12



where we defined the functions of one variable U, V, TV

U(s) = — sJ f° fl(s
- j)(’a — — ic)

(2.47)

•{f(s)7(s) +
— f(s))P(s)},

V(sa)
= W=i(8a — s) /00 ds

(2.48)
‘ ll=ds — — 8 — :e)

f2(8’)P(S’)

and

W \ — (8a81)(8a82) 100 ds
k8a)

— 3ir (481)(882)(48aI6)
.f*(8)fr(j) (2.49)

+ perm.,

where perm. denotes the symmetrization of W in .s, 2, 83. Note that, unlike U and
V, the function 14’ is subtracted only twice. As ChPT yields the amplitude F only
to the accuracy p4 and as W is multiplied by factors of 0(p2)we can not make three
subtractions here. On the other hand, convergence of the integral is still ensured as
the p-wave projection brings an extra factor of * coming from the Kacser function
K in the integrand.

Numerically it is easier to deal with three integral equations for three functions of
one variable than with one such equation for a function of three variables. We thus
have to transform the content of the subtracted dispersion representation eq. (2.18)
for F by taking its 8- and p-wave projections. Note that all projections of functions
of one variable are either trivial or may be expressed as a “bar-projection” (see eq.
(2.26), where each argument s is understood to be expressed by the integration
variable 5b and constant terms by

‘sc 3o—a (2.50)

The projections become now

7(sa) = EP(s) + U(Sa) + Vo(Sa) + Vc(sa)
+ (Sc — s)Wo (8a) + (So — 8a)Wc (Sa),

flsa) = P(sa)+Uo(Sa)+Vc(sa)+V(sa)
+ (8a80)Wc(Sa)

= P(sa) + 4K ){(So — 8c)Uc(Sa) + (S& sc)14 (Sa)

+ (so —
. W(s) + (so — 8c)(8a — 8c)Wo (sj}

13



where the subscripts b, c denote the argument of the respective function under the

projection integral. Note that certain terms vanish because s5 — = 0. We next

change arguments of the functions above to s, and omit in the following the sub

scripts making use of the relations

Ac(Sa) = A&(Sa)
(2.51)

ScAc(Sa) = SbAb(Sa)

where A denotes any of the functions U, V, J4/. Eqs.(2.51) are thus rewritten as

= (a) + U(a) + 2V(a)

+ 2(s — Sa) (Sa),

= P(a) + U(8a) + V(a) + V(a)

+ (Sa 5c)1/V(Sa),

= P(a) + 4J){(5c Sb)L’(Sa) + (Sb — Sc)V(5a)

+ (5b
— W(Sa) + (Sb

— c)(a — s)W (a)}.

Finally, we insert eqs. (2.52) for the projections expressed in terms of U. V, J47

into the defining eq. (2.47) for U, eq. (2.18 for V and (2.49) for W. This yields the

coupled system

fl(Sa — s) ds
L (a) = J4 fl3( — )(‘ — a i)

.{f*(!)
[(s a) + U(s) +

+V(s) + /T(qf)

(sc
(s)] (2.52)

_j(s) [(5) + U(s) + V(s)

+V(s) + (5a - s)1V (s)]},

— fJ_1(a — .s) j cls

— J4 fl1(s - s)(s
- a

-

.f*(/) [P(s) + U(s) + V(s) (2.53)

+V(s) + (Sa - s)W (s)]

and

T (a — i)(8a — 32)
[‘

______________________________

iT (a) — j
, / /4 (a — 5i)(5a — 52)(5a — 3a —

14



•f(s) [P(s) + / {(s - h)L (s) ± (sb
- V (.) (2.51)

hi (ba)

+h — s)2 T’V(s) + (sh —
— s)W (s)}]

+ perm.

These are our final expressions which generalize the Khuri-Treiman equations. As

we mentioned above there are in fact singularities in the projected functions ocduring

under the integrals. The question of whether this leads to problems in the recon

struction of the amplitude by the dispersion integrals will be analysed in section

1.

3 Subtractions

The generalized Khuri-Treiman equations in (2.46-2.49) have been formulated with

three subtractions, because we will use them in this form. However, as usual in dis

persion relation techniques, the number of subtractions is to a large extent arbitrary.

The minimal number of subtractions is determined by the high energy behaviour of

the amplitude. If this is known, one is of course still free to take more subtractions

than necessary for convergence. With fewer subtractions, the dispersion integral

is more weakly convergent and depends more strongly on the poorly known high
energy behaviour of the scattering phase. Conversely, if many subtractions are used

the integral is better behaved; however then we need a larger number of subtraction

constants which in general are less well known. Thus, one must keep a delicate

balance in order to optimally use the available data and their uncertainties.

The asymptotic behaviour of the ?7 —+ 3mr amplitude may be indicated by Regge

phenomenologv. Since there is no pomeron exchange in ir —* the leading

Regge trajectory is the one associated with the p; we therefore expect an asymptotic

behaviour A •/2
(b = 0) for the I = 1 component of the amplitude in the t

channel. The I = 0, 2 components are not affected by p-exchange and are expected
to approach a constant asymptotically. In order to ensure convergence, it is thus
sufficient to subtract the dispersion relation once.

1-lowever, our calculational scheme of dealing with rr final state interactions relies

on elastic unitarity. In the I = 0 s-wave channel the phase shift exhibits large

inelasticities above 1 0eV. Therefore it is desirable that this region is unimportant

in the evaluation of the dispersion integrals. It turns out that this requirement

implies at least two subtractions. We will discuss the influence of the phase shifts

above 1 0eV on our results in sect. 5.
Besides the final state interactions we are attempting to control, there are also

mass corrections to the r, —k 37r amplitude. These are also known at the one-loop

level where the total amplitude is [5)

f’)m. / 9
‘—- in - — HR

= — X A(Sa,Sb,c),
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A(Sa, 5b, s) = Tea) + U(a, 8b, s) + V($a) + W(Sa, $b, se). (:3.1)

The leading order expression T(a) is given in ccl. (1.1) and the other terms
will be discussed below. U(Sa, 3b, s) denotes the unitarity corrections and V(a),
‘V(Sa, 5h, s) are polynomials in 5a 8b, s resulting from tadpole and tree graphs at
order p’ in the low energy expansion. U(a, 5b, s) contains the two-pion I = 0, 1 and
2 final state interactions. These rescattering graphs are primarily responsible for a
large enhancement of the amplitude at next-to-leading order. However, as discussed
in great detail in Ref. [5], only the sum of all terms in eq. (3.1) is a meaningful
quantity: the magnitude of the final state interactions of the pions depends on the
manner in which the unitarity corrections are split off from the rest.

In this work we use the ChPT one-loop amplitude to obtain an improved estim
ate for the subtraction polynomial entering the generalized Khuri-Treiman equa
tioiis. There are three important points here: i) As mentioned above the one-loop
amplitude contains already some final state interactions. In order to avoid double
counting, these final state interactions have to he incorporated in a well defined
manner. ii) The choice of the subtraction points: In principle, a dispersion relation
can he subtracted at any point. However, since the amplitude is approximated by
a polynomial near these points, they should lie as far as possible from kinematical
singularities. Furthermore, we expect that the low energy expansion is more reli
able, if the invariant mass of the interacting pion pair is as small as possible at the
subtraction points. However, as soon as I = 2 (and I = 1) final state interactions
are included, the problem depends on two variables 3a and 3b, i.e. the pions interact
also in the sb- and s -channels. This is reflected by the fact that there are three
dispersion integrals. They should all be subtracted at small momenta, but there is
no point in the Mandelstam plane where all three variables 3a, 5b and s are small.
iii) The subtraction constants as determined from the existing one- loop calculation
will have uncertainties due to yet unknown higher order effects. These uncertainties
can be estimated by comparing the one-loop amplitude with the leading order term.
A precise description of our estimate will be given in section 5.

The solution to the first two problems is straightforward and motivated by the
following observation. In chiral perturbation theory, the imaginary part of the r
3ir one-loop amplitude is generated by the graphs where qr-ir, lrrl, KK or ip rescatter.
They are easily obtained from two-body unitarity provided the lowest order vertices
are inserted in the unitarity relation. Given the absorptive parts, the real part at
order p4 can be reconstructed from a dispersion representation up to a second order
polynomial in 3a, 5b, s. Due to the work of Gasser and Leutwyler [5], this polynomial
is known in terms of rn, inj, rn, F, F1 and the low-energy constant L3.

The Khuri-Treiman equations are of course more general than this dispersion rep
resentation of the ri ‘ 37r amplitude to order p4. However, they can he matched
onto the ChPT one-loop amplitude in the following sense. Consider an iterat
ive solution of eqs. (2.46 - 2.49). In particular, use the current algebra result,
F(a, 5b. s)(u) = T(Sa), as a first approximation to be inserted on the right hand
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side of eq. (2.47) and the partial waves of the rrr scattering amplitude as given by
their low energy expansion, i.e.

f(s) S[ i,C’hPT (3.2)

where [cT($) are the expressions for the phaseshifts at leading order ChPT given

in Ref. [5]. By construction, the first step of this iteration yields exactly the imagin

ary parts of the ChPT one-loop amplitude which are due to wir intermediate states
‘. Moreover, the dispersive part of the Khuri-Treiman equations contains also all
7r7r-threshold effects present in the ChPT one-loop amplitude. Therefore, after the
first iteration step as described above, we have reproduced all singularities close to
the physical region. We note already at this point that three subtractions will be
necessary in order to make this procedure well defined.

In the low energy region, the remainder of the ChPT one-loop amplitude can be
expandec[ to a very good accuracy into a polynomial of second order in 5a ô, Sc.

This last step then determines the subtraction polynomial of the generalized Khuri
Treiman equations.

Before turning to the details of our subtraction prescription, we give a more
complete discussion of the structure of the one-loop amplitude in Chiral Perturbation
Theory.

3.1 Structure of the ChPT one-loop amplitude

We work with the reduced amplitude A defined in eq. (3.1). The aim is to rewrite
Al_lOOP(Sa, 5b, s) as a suitable dispersion integral. The singularities of the amplitude
A are contained in the unitarity corrections U(Sa, 5b, se). We may split them up

further by writing

(:3.3)

with

5b, s) S0,w(5a)[:3Ta) + T(sb) + T(sD)]

+i,(5b) [T(a) - T(s)] + [T(a) - T(sb)]

+2,(5b) [T(5a) + T(s)] + L2,(5) [T(Sc) + T(sb)]

2,ir(5a) [sb(t) + ‘T(s)] (3.4)

and
5IChPT(5I)

=

— j cW
i2 ,

(3.5)
7 4m (s — s

—

5The absorptive parts due to 7r7], KK or ‘m intermediate states were not included in the
calculation of the imaginary part. Because of their high thresholds, we expect a small effect and
will neglect them.
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The phaseshifts I,ChPT are the expressions to leading order in ChPT given in Ref.
[5]. contains the singularities clue to irw intermediate states. The remainder,
(frem is polynomial except for singularities due to KK or ii intermediate states.
More explicitly, it is given by

Weu(Sa 3b, s) 3O(5a) [3T(a) + T(t) + T(s)]

+i(b) [T(a) - T(s)] + A1(s) [T(a)

+2(3b) [T($a) + T(s)] + LX2(5) [T(a) + T(sb)]

+A3(a) (3.6)

with

=
— (2k —

19)2)s}

=

=

(3s — 4in) r+ 4F
Jj (s) +

3F2
(s)

3(Sa) = + T(s)) + (k + 96K2)Sa] }
Sa(3Sa — 4rn) r 77’i(3Sa — 4m) r
4F(m —m2)JK1 +

3F(rn —
rn 3a(3a — 4i) 1

8F(sa—4m)
JKK(5a) (3)

The functions kpp, JQ, JPQ and M are defined in Ref. [13] and are not displayed
here explicitely; when not given, their arguments are as on the left hand sides of
the equations. l4(5a,5b, s) will be reproduced by iterating the Khuri-Treiman
equations as discussed before and shown in more detail below. In fact, it is uniquely
determined by unitarity. The rest of the amplitude,

4rem(Sa &, s) = A(Sa, 8b, s) — UP(a, 3b, s)
= T(a) + V(a) + W(Sc, 5b, s) + Wern(Sa, b, s) (3.8)

is smooth in the physical region and it is expanded in a second order polynomial in
3a’ 5b, s around the center of the Dalitz plot, 5a = = = = (m + 3m):

A(Sa, 5h, = + /3(Sa 5) + (Sa so)2 + 6(sb
— s)2. (3.9)
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This form is the most general second order polynomial if the constraint + .s + .s =

3.s = ( in +:3rn ) and bose symmetry are satisfied. The expansion of urem is tedious
and its analytic form will not be displayed here. T(Sa), V(.s7) and W(.Sa, b. .s) are
already polynomial and their contribution to , .... 6 is

To)+V(so)+(so,so,so)

= in)
{1 + ai+ 3a2n— in) + ct3(9m — in)

2 4rn2 12s
+—(d1 + 2 2

c12)}
— 2 2 2

L3
3 (m — rn _) F (rn

— rnT)

F(rn—
2)L3

FQL3. (3.10)

The constants a1, a2, a3, cli and d2 are tabulated in Ref. [5]. We note here that
the coefficients , ‘ and 6 depend on the low energy constant L3 which is phe
nomenologically not known very accurately 6• Its value extracted from I14 decays
is [35] -

L3 (—3.62 + 1.31) i0. (3.11)

The error bar on L3 leads to corresponding error bars on , and d:

L3 = 0

IL3 F(rn—
9)(L3) +0.76GeV2

IL31 = (L) +3.1SGeV’
— 17i.)

=
— 9 2

(L3) +1.06GeV4 (3.12)
— in)

We shall comment on the importance of this uncertainty in the determination of L3
in section 5 where we discuss the phenomenological implications of our results.

The information needed to fix the subtraction constants of the generalized Khuri
Treiman equations is contained in coefficients , ..., 6, eq. (3.10), as well as in the
corresponding expressions coming from the expansion of Wem.

3.2 Fixing the subtraction constants

We consider the generalized Khuri-Treiman equations in the three times subtracted
form given in eqs. (2.46)-(2.49) . The s, w2 are finite subtraction points,

5Note that L3 is scare independent.
‘Note the functions U, V, W are not identical to the functions U, etc. introduced above.
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= sin 6(e( is the partial wave for w scattering with angular momentum 1 in the
isospin channel I and the precise definition of F and F has been given in section 2.
P is a polynomial of second order in 5a Sb, s with the same form as eq. (3.9):

P(Sa, 5b, Sc) = + 5a + + (5b
— )2 (3.13)

The reason for using three subtractions will become clear soon. Note that the
polynomial P is not equal to because the latter refers to a twice subtracted
dispersion relation (see eq. (3.5)) while P corresponds to three subtractions.

Now we iterate eq. (2.47) by inserting on the right hand side the current algebra
expression F(Sa, Sb, Sc) = T(Sa). Moreover, we replace fi by its low energy expansion

f/(Sa)
6iChPT(5 (3.14)

We observe that this reproduces the absorptive parts of the ChPT one-loop amp
litude due to 72t intermediate states. For isospin I = 0, 2 this is trivial because
T(Sa) is linear in 5a and hence T(s6)+ T(Sc) is again a first order polynomial in S.

For the I = 1 p-wave irr intermediate state the absorptive part is in general given
by

ImF(Sa, 5b, Sc)
= i8h8 sin 6(S 3FNSb) + (t ‘,‘ Sc) (3.15)

where K(Sb) is the Kacser function and Fj(Sb) is the p-wave projection in the 5b-

channel of the function F(Sa, 5b, Sc) defined in section 2. Setting T(Sa) = dt + bSa,

the p-wave projection in the Sb-channel is calculated to be

T(Sb) = —K(Sb)b. (3.16)

Thus the first iteration with the approximations given above yields

I1I1F(Sa, Sb, Sc)6i
= T(T(Sa)

— T(Sc)) + (Sb <‘ Sc). (3.17)

This is indeed the result of the one-loop calculation obtained in Ref. [5].
Turning now to the dispersive part, we shall show how the real part of eq.

(3.4), is reproduced in the first iteration of the generalized Khuri-Treiman equations.
In order to make the argument more transparent, let us consider first the simpler
case where all subtractions are taken at zero. The term U(Sa) on the right hand
side of eq. (2.46) then reads, after the first iteration

Re U’t(Sa) =
gChPT(S/)(a + bs’) — ChPT(a + bS’)

(3.18)
7r 4m S’3(S’ — Sc

— )
with

5 2
a = a+bSo,

9 1a = a+bSo,
3

(3.19)
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and
a = i

—

2
b

=

,.

(3.20)
ifl — iTi rn — iii:

In eq. (3.18). P denotes the principal value of the integral; the combinations in eq.
(3.19) simply stand for the appropriate isospin projections. Using the decomposition

PJcis’ —

= (s — z)PJds’ +
s — s

—

zc) s12(s!
— s

—

zc) ir

(3.21)

eq. (3.18) can be brought into the form

ReUiter(s) = [T(a) + (T6)+ T(s))] Reo,(sa)

çO,ChPT1 ,
SaT.) I—a—i I as

7T J
1

— [T(a) + T)] ReA2,(sa)

2 62,ChFT

+ã—P f ds’ °
. (3.22)

We thus have transformed Re L7(s) into the first and last term of plus two
polynomial terms. In other words, eq. (3.21) serves to transform a three times
subtracted relation into a twice subtracted one. Likewise, we may decompose

Re (V(sb) +
7($))iter = {T(s) + T(s)]Re2,(s6)

2 ç2,ChPT( /

-5b I ,‘o

_

—a—P i ‘ ,
+ (s& .‘“ s) (3.23)

7r J S

\rit h

a=a+bso. (:3.24)

Finally, using (3.16) and the definition of F(s’), eq. (2.44). we see that the I 1
contribution in the generalized Khuri-Treiman equations yields precisely the terms
in proportion to in eq. (3.4):

Re ((Sa — s)W(sb) + (Sa — Sb)W(SC)yter
=

[() — T(s)] Re1(sb)+(sb ‘S’,
se).

(:3.25)

We see that linking the dispersion technique to the one-loop ChPT calculation al
lows to subtract U,V and W separately avoiding the problem (mentioned previously)
that these points may lie outside the physical region.

We are now ready to determine the subtraction polynomial P of the triple sub
tracted Khuri-Treiman equations. After the first iteration, the amplitude can he
written as

F(Sa,
5)iter

= P(Sa, 5b, s) + U(5a, 5, c) + R(Sa, 5b se). (3.26)
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If all subtractions are taken at zero, R is given by eqs. (3.22)- (3.23), i.e.

O,ChPT

R(Sa,Sb,Sc) = _aPfds0 S

+(a_a) f (3.27)

Requiring the matching of the first iteration of the generalized Khuri-Treiman equa
tions with the one-loop amplitude from ChPT we obtain

- - 1 disp
&, Sc) = 1A(.5a, 5b, Sc) — — Rca, 5b, Sc)f (3.2b)

expand

= + d(Sa — 5) + (5a — so)2 + (8b — Sc)2 — R(s, 5b, Sc)

where the subscript “expand” means a Taylor expansion up to second order in

5a 3b, 5c; in fact the expression in the curly brackets is just 4rem
— R.

Eq. (3.2$) and its generalization for finite subtractions points described below is
the main result of this section. It describes our method of using the ChPT one-loop
amplitude (see however below) to fix the subtraction constants of the generalized
Khuri-Treiman equations. In order to make the procedure transparent, that is show
explicitely how the higher corrections unitarize the amplitude, we were forced to
subtract the Whuri-Treiman equations three times. Otherwise the integrals occuring
in R(s. 3b Sc) would not converge. By construction, the first step in an iteration of
the Rhuri-Treiman equations reproduces the ChPT one-loop result in the physical
decay region to very good accuracy. The numerical solution of the generalized
Khuri-Treiman equations as attempted in section 4 can therefore be interpreted as
a correction on top of the ChPT one-loop amplitude due to all possible two-body
final state interactions of pious.

There remains the important question of higher order corrections to the one-loop
results which may shift the subtraction constants substantially. We will address this
issue in section 5. Here we only note that also in this case the above framework of
three subtractions can he employed if the necessary modifications are made.

3.3 Finite subtraction points

In the preceeding subsection all three subtractions have been taken at zero for the
sake of simplicity. Here we shall describe the modifications which arise if the sub
tractions are taken at finite values. We do this for two reasons: Since the dispersion
relations do not fix the subtractions points, varying them over a certain domain
gives an estimate of the error of our procedure (see also the discussion in section 5).
Second, it is numerically favorable to have subtraction points which do not coincide
when we solve the Khuri-Treiman equations iteratively.

Introducing now finite subtraction points and performing essentially the same
steps as before, we find that only the function R(s, 5b, Sc) 5 modified. It explicitly
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1

depends on subtraction points 8, v, i=1,2,3 and w, i=1,2 and is given as

R(s0,8b, 8; s) = bR(0)(8; Si, 82, 83; —j) — uiR2(sa;v1,V2, v3;

+&F$2(sb;V1,v2,v3;—j) + izF62(s;v1, 1)2,1)3; —)
+bR(8a, o, to1,to2). (3.29)

The explicit form of functions I = 0,1,2 is given in Appendix D.
The subtraction polynomial is then again given by eq. (3.28) with R taken from

(3.29). It depends explicitly on the subtraction points s, v and w. However,
by construction this dependence on the subtraction points is counterbalanced by a
corresponding dependence of the dispersive part of the generalized Khuri-Treiman
equations, provided only the first step of the teration described above is performed.
The procedure of fixing subtraction constants is in this sense independent on the
choice of the subtraction points. Up to the first iteration, the ChPT one-loop amp
litude is reproduced, in the physical region, for any value s, ..., W in the low energy
regime. Beyond the first iteration this is no longer true.

Finally we give numerical values for coefficients a, ..., S of the subtrac
tion polynomial F. We consider the sets of subtraction points SF =

= i = tVi, 82 = 2 = 83 = 1)3 displayed in Table 1. The input parameters
we use are m = 140MeV, rn,, = 549MeV, Fr = 92.4MeV, Fjç = 114MeV,

= (—3.62 ± 1.31)10. The calculated coefficients a, ..., 6 for these sets of
subtraction points are given in Table 2.

The dependence on the choice of subtraction points is substantial and we shall
discuss how it propagates into the final numerical solution in section 5. Note that
error bars due to the uncertainty in the determination of L3 are correlated. For
instance, the value of F(8a, , se,) at the center of the Dalitz plot does not depend
on L3 — the errors for a, ..., 6 cancel for this quantity. Also it appears that for
subtraction points SF 0, 7 is rather small. In the physical region, the term in
proportion to 7 contributes only 2% to the subtraction polynomial. The error bar
on 7 due to the uncertainty in L3 is therefore phenomenologically less important.

3.4 Comments

We have swept over several subtle points rather briskly and would like to come back
to them.

1. The polynomial P depends on four constants. On the other hand, we have
subtracted the three functions U, V and W separately; this implies 3+3+2 = 8
constants. It is clear from the form of F that there are only four physically
relevant parameters and that there are redundant parameters. The reason
for this is found in a general invariance of the dispersion relations: they fix a
function only up to a polynomial; therefore, we can ‘shift’ certain constants
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from one function to the other. For instance, we can redefine in this way two
constants in 117 and two in V (the constant and the linear terms). Thus, only
four constants remain.

2. The asymptotic behaviour of the amplitude has been discussed only briefly.
Taking three subtractions we want to make sure that the actual behaviour
in the asymptotic region does not matter for the solution in the physical de
cay region. There is however an other subtlety which we should mention.
Mathematically speaking, the solution to the integral equations (2.46-2.51) is
not completely determined by specifying the asymptotic behaviour of the amp
litude. The number of parameters (extracted from ChPT) to be input depends
also on the asymptotic behaviour of the irir-phase shift. 8 Let us consider the
twice subtracted relation for definiteness and omit V and W. The solution to
this problem can be written in the form

F(s) = P(s) + i(3) + (S) (3.30)

where o and ‘o are defined in eqs. (4.8-4.15). Now, if the phase goes to zero
for large s, the Omnes factor is constant; correspondingly, the amplitude rises
linearly with s. On the other hand, if the phase approaches r, the Omnes factor
decays like .s—1 and the amplitude tends towards a constant. Stated differently,
a given asymptotic behaviour of the amplitude, say const., requires one or
two subtractions for the two limiting cases of the phase shift respectively. This
ambiguity in the phase is reflected in an additional term

(s — s)(s
— 82)(S — 33), Q(s) polynomial, (3.31)

which can be added to the approximate solution o, c.f. eq. (4.21). It intro
duces an uncertainty in the final solution which should be well controlled since
the assumptions entering the analysis are not rigorous. We have estimated this
uncertainty by modelling the phase in the high energy region. The details as
well as the resulting error bars on our final answer are given in section 5.

4 The iteration

With reasonable assumptions we now build up an iterative scheme for the numerical
solution of the set of coupled equations for the projected amplitudes U, V, T’V. It
consists of two distinct kinds of iterations. The first one accumulates contributions
to V and W for a corresponding part of U while the second yields the contributions
to U itself.

8We are indebted to H. Leutwyler for pointing out this to us. A more complete discussion of
these issues can be found in Ref. [22].
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4.1 Iterating in f and ft
The first type of iteration relies on the assumption that to lowest order only U
contributes, but not V and W. It is motivated by the fact that pion-pion scattering
at low energies is dominated by the s-wave, I = 0 channel as the s-wave, I = 2
contribution is suppressed by a much smaller phase shift f C f0°. The I = 1
contribution comes from a p-wave scattering and therefore is also suppressed. We
may thus expect that, in comparison to V and W, U will still yield the dominant
contribution to F in our refined analysis.

To organize this first iteration we take the terms with the phase shifts fJ, f as
perturbations and introduce accordingly a counting parameter A. f is taken to be
of 0(A°) whereas

.- Af1

—. Af (4.1)

are treated as small parameters. In principle, one could introduce different counting
parameters for the two isospin channels, but for sufficently many iterations in A,
this is irrelevant. Expansion of V, W and U in a series in A yields

V(sa) = EA’14c(8a)

W(sa) = EAkwk(8a)

U(sa) = EA’14(sa) (4.2)

where we set by assumption Vo(sa) = Wo(sa) = 0. We insert these expansions in
the integral equations eqs. (2.52), (2.53) and (2.54) and obtain by equating equal
powers of A

TI — 1V=i(8a — s) j’°° ds
‘kj8a)

— J -3 (I .\I’’4 11j15a83A8a5a16
.f*(j)

[P(s)5ki +Uk_l(s) + Vk_l(s)

+Vk_1(s) + (se — sc)Wk_1 (s)j, (4.3)

(8a81)(8a82) f°° ds
Wig5a) = 3w J4 (s — 8i)(3 — 82)(8 — 8a — ze)

.fI*(/) [P(s)6kl

+4J.2(I){(8c —86)Uk_l (s) + (Sb — s)11k_I (s)

+(sb — )2
. lV_1(s) + (Sb — Sc)(8a — se)Wi_1 (sj}]

+perm. (4.4)
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and

n3 ( —

- - i1i=1a -) I

___________________________

= 0k(a) + I , -7r J4 FI_*a —
— 51 —

•f(s) [Uk(s) + Uk(s)], (1.5)

xvhere we have introduced the subtraction functions

— fJ_i(Sa — s) [c ds
P0k(Sa)

= J 3 , — —fl3(s1 j)(’a 5a Ic)

{fO*(f) [{(s) + P(s)}ko +

+Vk(s)+ (s - S;)Wk (s)]

i’a) [P(s)&i + hk_i(Sa) +

+Vk_i(3a) + (a — .s)Wk_1 (s)]}. (4.6)

It is now obvious that for given Uk_i, 4_i, W_4 and their respective projections

we may use eqs. (4.3)-(4.4) to determine V and Wk. This allows to compute the

subtraction function ok as given in eq. (4.6). If we can also solve eq. (4.5) for U1,
the iteration step is complete and we may perform it once again for k instead of

k—1. Note that the lowest non-vanishing contributions U0, V1 and W1 are completely

determined by the different projections of the subtraction polynomial P containing

the input information of ChPT on the decay amplitude.

As the process converges rapidly, we will have to perform a small number of

iterations, typically four or five, to obtain a precision below one part in thousand.

Of course we take now = 1 as it was introduced as a counting parameter only and

may sum the different contributions to obtain the fully iterated U, V and IV.

4.2 Iterating in f0
V’e turn to the second kind of iteration which yields the yet undetermined Uk from
eq. (4.5). We thereby follow the discussion of Bronzan [29] and Neveu and Scherk

[31] extending it to our case. As we are dealing with one variable only we omit the

usual subscripts here.

If in the equation (4.5) for Uk the second term in the square bracket were absent,

we would have to deal with an Omnès type of integral equation describing ordinary

two pion-pion rescattering without rediffusion terms coming from the third pion in

the final state. Decomposing U1, into two auxiliary functions

L(s) ik(S) + ‘k(S)
—
Li1,(s) (4.7)
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where collects the two pion-pion rescattering contributions and ‘k —
7L the

rediffusion effects we are able to recast the equation for U in a form which is now

accessil)le for a second kind of iteration [29. 31].
By its definition fulfils the Omnès integral equation

— d’
— 11z=1 i I

_________________________________

= Ok(8) + I ,j4 1J=1(s — s)(s — s —

0*/ / -

1o s ) ik (4.)

which is indeed solvable in terms of Ok [36] and yields

TT. I — rco 1’llz1’ ii

ik(3) = ok() +
wD(s+) — s)(s’ — s — i)

•f(s’)D) Ok(’) (4.9)

where the solution is determined only up to a polynomial which we will exphicitely
introduce and discuss below. Here = s + i and D(s) is the usual Ornnès function
corresponding to the phase shift

o ‘

_rdItL)
D(z) = e S (4.10)

As its the cliscontinuit is given by

D(s) - D(s) = -2iD(s)f(s) = _2iD(s)f*(s) (1.11)

we may represent it as a dispersion integral

1 D1’
D(z) =

—— / ds’ )JO\ (1.12)
7rJ4

This representation and the insertion of the dispersion representation eq. (4.6) for

Ok into the formula (4.9) allows us to eliminate in the latter and to rewrite
in the more convenient form

—

s) jcc (is’
ik(S) = wD(s) 14 fl(s’ — s)(s’ — s — i)

•D( ){ f(s’) [{(s’) + P(s’)}6ko +

+k(S)+ (s
-

(s’)]

_f) [jP(s’) +3L1()+

+Vk_1(s’) + (Sa — s)Wk_l (s’)]}. (4.13)
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To obtain the desired form of the equation for U,, accessible to an iterative solution
we next insert eqs. (4.6) and (4.8) into the r.h.s. of (4.5) and find that ?/‘ obeys

2-_f fl1(s — .s) [c ds’
y,,(s) = —Li,,(s) + 33 4 1J=1(s — s)(s — s —

(4.14)

This equation is again of the Omnès type and has a solution in terms of the unknown

2— fJ(s — s) ds’
= U,,()+

D(s+) 14 fl1(s’—s)(s’—s—iE)

f’)D(s) U,,(s’). (4.15)

Insertion of this result into eq. (4.7) yields the desired form of the equation for U,,
[29, 31)

U,,(s) = ,,(s)
+ D(s) L fl1(s’ - s)( - - iE)

.f(s’)D(s) U,,(s’). (4.16)

tP1,, is already determined in eq. (4.13) as an Omnès inversion. We may now account
for the second term in eq. (4.16) by iteration, noting that at every step one multiplies
with the phase shift f. Introducing the counting parameter t

‘S
(4.17)

we expand U,, in a series in t

U,,(s) = [Im_l(S) (4.18)

and obtain for in> 1

1J-(s
—

s) j° cis’
= wD(s) 14 fl=1(s’— s)(s’ — — iE)

(rn-i)k(5’). (4.19)

Again a small number of iterations is sufficient as the process here converges
rapidly, too. Taking now = 1, we sum up the different contributions to obtain the
fully iterated U,,
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4.3 Explicit form of t]5 and numerical aspects of the iter

ation

For numerical purposes it is convenient to have an explicit form for io in terms of

the subtraction polynomial and the Omnès function only. As for k = 0 D(z) is the

only function with a cut under the integral (4.13) we may use eq. (4.11) to rewrite

J(s)D(s_) and recast the dispersion integral along the cut L as a contour integral

along C starting at oc and going down to 4 lying infinitesimally below the cut L,

turning there and going back to oc infinitesimally above the real axis such that

— .s) j dz’cPio(s) = — I / FJo fl_1(z — s)(z — s
—

.D(z’) {(z’) + P(z’)}

+fl(s
-

sj). (4.20)

Q (s) is the polynomial occuring in the general solution for 1k which is not restricted
as long as no asymptotic boundary conditions are imposed. The form (4.20) is easily

evaluated with the help of the residue calculus and yields after a little algebra the
final result

— 1-D(
= [P(s) + P(s)].

3 D(s)

+[P(si) + —P(s1)].
3 (s

(s—

(2—

(s —

(33-

(4.21)

Note that it is of course possible to set two or more of the subtraction points s

in equal. As one has then to deal with multiple poles the expression for the
corresponding residue becomes more involved.

We finally turn to a short description of the numerical aspects of our iterative
scheme for the solution of the set of coupled integral equations for the projected

amplitudes U, V and W.
To obtain the decay amplitude with the inclusion of the final state interactions

as described by the Khuri-Treiman equation we need to know the three functions

). V( z). LV( z) only for physical values of z lying infinitesimally above the real
axis, z = s + i. But in both types of iterations described above, projections of U. V

— 32)(3 — 33)

— 2)(3l — 33)

— 33)

— 33)

— 52)

3i)(33 — 32)

+[(32) +

+[P(s3)+ P(s3)].

+ - s)

D(s1) — i
D(s)

D(s2) — I

D(s)

D(s3) — 1

D(s)
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and 1/V have to be computed. Since the corresponding projection integrals involve
contours lying in the complex plane, the functions must be known in a certain
domain around the real axis.

As discussed in section 2 there is one sa-region, namely (in — 1)2 < s < (rn + 1)2,

in which the projection integral has to be performed along a contour joining two
points lying in the upper and lower complex half planes respectively which must
not intersect the real axis from 4 up to cc as the integrands have a cut there. As
they are analytic elsewhere we are free to choose those paths which minimize the
number of necessary lattice points in the complex plane. The two possible choices
join the respective end points as given in eq. (2.42) along the path the end points
themselves describe as s increases from (in — 1)2 to (in + 1)2. In a second Sa

region with 2 < a < (rn — 1)2 we have to perform integrals along paths lying
infinitesimally above and below the real axis such that we have to know all the
functions involved for z = s — i if 4 < s < in + 1.

As we are doing numerical computations, we have to replace the connected do
mains just discussed by a lattice. The spacing of its points is adapted to the accur
acy required and to the possible occurence of numerically problematical points, Of
course we will cut off the differeilt integrals at some large value of the integration
variable which is determined on one hand by the phenornenological knowledge of
the pion scattering phases involved and on the other by demanding that numerical
results do not change sensibly if one varies the cut-off. The corresponding cut-off
for negative values of 8a is then automatically fixed by eqs. (2.42). As a result we
have to know all the functions on a lattice of points lying in the complex plane as
displayed in Fig. 2. The actual numbers for the different cut-offs are given in section
5 and their impact on our results is discussed there.

5 Numerical Results

We consider the decay function in the form (see eq. (2.46))

3b s) = P(a, b, s) + U(a) + V(sb) + V(s)

+(a — s)W(sb) + (Sa — Sb)W(S). (5.1)

P is a polynomial and U, V and J4/ correspond to the I = 0, 2 and 1 pion rescattering
channels. They satisfy the generalized Khuri-Treiman dispersion equations, which
describe the unitary corrections to the r, — 37r decays (see eqs. (2.52,2.53,2.54)).
As explained above, we solve the dispersion relation iteratively, starting from an
aproximative solution obtained by Neveu and Scherk.

Using the existing one-loop results of Gasser and Leutwyler as basis and casting
their unitary corrections into a dispersion relation, we were lead to a three times
subtracted dispersion relation for the three amplitudes U, V, J4/. Although this pro
cedure appears reasonable it is by no means unique. In order to assess it, we con
sider for comparison also a twice subtracted case where the subtraction polynomial

30



is simply taken from current algebra.

5.1 Uncertainties

We can identify several sources of uncertainties. Dispersion relations do not fix
the subtraction points, except of course for the requirement that they should lie
in a region where the approximate theory makes sense. In addition there is the
ambiguity to the solution of the Khuri-Treiman equations related to the asymptotic
behaviour of the 7r7r-phase shift and the amplitude itself, as discussed in sect. 3.
Then, there are the errors in the input parameters (the subtraction constants). The
two uncertainties are of course not completely disconnected; for instance the one-loop
result from which we determine the subtraction constants may he rather accurate
for some values of the subtraction points hut not for others, and so a wrong choice
of the subtraction point may underestimate the error completely. And finally, there
are technical problems, such as the convergence of the iteration and the numerical
integration in the complex plane.

1. Varying the subtraction points
In section ;3, we constructed the second order subtraction plynomia1 which was

obtained by writing the one-loop result in the form of a three times subtracted dis
persion relation. This polynomial then serves as the starting point for the complete
dispersion relation. As discussed in section 3, the choice of the three subtraction
points i, 2, 53 for U and those for V and 14/, which will he denoted collectively by
SF, affects the subtraction polynomial considerably and consequently the complete
amplitude. Whereas in chiral perturbation theory and in view of the treatment in
section 3 small SP (at s 0) seem most natural, varying the points gives us a

feeling for the error. We have therefore calculated some important quantities for
several SP in Tables 3 and 4 for the subtraction points in Table 1. The values of
the physical quantities which correspond to SF = 0 will be taken as the central
values.

In Table 3 we give the splitting of the one-loop amplitude ([5]) in the center of
the Dalitz plot into a polynomial and a dispersive part, as described in eq. (3.28).
Furthermore, we list the first approximation, o, and our final result. Whereas, by
construction of the subtraction polynomial, the one-loop amplitude at the center of
the Dalitz plot is reproduced for all SF, the relative contributions of the two pieces
vary strongly. However, a.s long as the subtraction points are not too close to the
two-pion threshold, the total amplitude given in the last column of Table 3 is rather
stable. We therefore consider it most natural to select a small subtraction point.
Excluding SF = 3, we obtain A0(s0, S) = 1.57 + 0.12 + i(0.41 ± 0.03).

Table 4 contains the physical observables for the various subtraction points. The
rates in the second last two columns are calculated from eq. (1.9), e.g. with the
normalization of the amplitude given hy nn. We will discuss the relevance to the
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quark masses in the next section.
As may be expected, large subtraction points (near the physical region) yield

smaller rates because there the full result is nearer to the one-loop result which is
too small. On the other hand, large negative SF do not arbitrarily increase the
rates; rather, these remain remarkably stable. Thus it is not possible to (artificially)
enhance the rates by playing with the subtraction points. The uncertainty of the
subtraction point can be substantially reduced, if the Dalitz plot slopes a, b, c (to be
discussed below) could be measured with two percent accuracy; This would allow
to narrow down the error bar on r to 10 % or 16 eV. At present, the experimental
values (which admittedly have larger errors) prefer small SF.

2. Errors in the subtraction constants
Without a next order calculation, the error of the subtraction constants in the

polynomial, in particular on 7 and S which vanish at tree level cannot be truly
assessed. A reasonable estimate of the errors can be obtained by the following
observation by Anisovich and Leutwyler [22]. The current algebra result for the
q —* 3w amplitude has an Adler zero (a value of the kinematic variables where the
amplitude vanish), which for finite quark masses is shifted to s = This
can be easily seen from the tree level result; obviously, the Adler zeroes lie on a
straight line. The one-loop amplitude shares this feature (with a slightly shifted
S,j), if in addition we fix 5a = = 5A (or .sa = = La). Moreover, along the
line 5a = s the slope *(8a = Sc = SA) is practically unchanged compared to the
leading order expression m2 —m•

This suggests that the amplitude along the line

= 5c near .sA is remarkatly ;table against corrections and that this kinematical
point is well suited as subtraction point. One may therefore expect that higher
order corrections lie within the usual 25 % range of chiral corrections. Note that it
is crucial to stay on the line 5a = 5c For if we consider for example the subtraction
polynomial in the form corresponding to an expansion around the point s = 0,

=

F = a+f3s+7s+6(s&—sj2, (5.2)

The coefficients a, fi in (5.2) are indeed very different from the current algebra
expressions a = —4m/(m — m), 13°” = 3/(m — m). The amplitude is not
stable against corrections along the line b = 5c and it is difficult to assign an error
bar to a, . ..S in (5.2) as noted before.

We therefore expand around 5a = 5c = 5A, i.e.

F=bz+&+dw+ëw2-FJwz, (5.3)

where
WSgS. (5.4)

By Bose symmetry, only three of the five constants in (5.3) are independent; for
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instance

h — d
e — +c

6(.s
— A)

1)—Cl
j = +2c (;)

2(so — .SA)

Numerically we find

b = 1.87GeV2

3 = 13.65GeV1

d = 11.88GeV2. (5.6)

Here, oniy those contributions from the subtraction polynomial which come from
4rern (see section 3.2) have been included. The remainder R(Sa, 8b s) serves oniy
to bring the one-loop amplitude into the form of a dispersion relation and is can
celled once the first iteration step has been performed. As discussed above, the
constants ‘9A and b are rather stable agains correctionsknown with very good accur
acy. However, 3 receives contributions only at one-loop order and d is very sensitive
to corrections. For the error estimate, we therefore assume that 5A and b are given
exactly by (5.6) whereas ë and d are assigned a relative error of 25 %, typical of
higher loop-corrections:

63 3.11GeV4

= 2.97GeV2. (5.7)

These errors induce sizeable uncertainties of the constants a 6 in the expansion
(5.2) for P (again, the contributions of the remainder R(a, Sb. are not written):

a —1.02+0.01+0.31

3 = (20.35 + 0.72 + 5.69)GeV2

= (—1.38 + 13.65 + 23.72)GeV’

6 = (6.22 + 0.0 + 2.63)GeV2. (5.8)

The first and second errors come from the uncertainty in ë and ci respectively. The
latter are particularly large, however they are correlated and cancel completely for
the polynomial (5.2) evaluated at the center of the Dalitz plot.

The induced error bar on the amplitude at s = s = can be estimated by
calculating the change in P(so, Only 66 matters of course and we find

6P(so, 5) 66(a
—

54)2 0.12. (5.9)

This is $ % of the full amplitude corresponding to a 16 % error on the rate. i.e. 26
eV if Q = QDashen is employed. The actual change of the full amplitude is somewhat
larger and summarized in Table 7.
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The rate is thus very sensitive to the value of the constant ë. If its higher order
contributions turned out to be large and positive using its one-loop value would

seriously underestimate the rate. We therefore attempt a more quantitative estimate

of the higher order corrections to ë by considering a twice subtracted dispersion
relation, following again Anisovich and Leutwvler {22]. We start by decomposing
the amplitude into its isospin components, i.e.

F(s, 5b, s) = M0(a) + (a — sc)Ml(Sb) + (a —

+M2(s6)+ M2(s0)— M2(s0). (5.10)

This decomposition is ambiguous for unitaritv determines only the singular part of
the amplitudes M0, M1 and M2. A polynomial in s can always be shifted between
the isospin amplitudes, a feature which can be used to make the I = 1,2 parts in
F small in the physical region. Then, a dispersive analysis is performed for the
function M0 only, which must satisfy the twice subtracted relation

1 (s — SA)2 r ds’D(s’)f0°(s’)Mo(s’)
Mo(s0) o +/3o(sa — SA) + I 2 ID(s0) (s —54) (s —s _?€)J

(5.11)
if we neglect the small pieces proportional to M, 1112 under the integral. The two
subtraction constants c, 3o are fixed by the requirement

i—loop
Mo(SA) =

i1’Io(SA)
= d1ilOOPo) (5.12)

dSc, dSa

The I-loop amplitude enters here only to fix the subtraction constants at the Adler
point. As mentioned, the corrections at this point are very small so that this pro
cedure is reasonable. There is however a further implicit assumption in the method,
namely the choice of the I = 1,2 amplitudes. Although it affects the total amplitude,
say at the center of the Dalitz plot, rather substantially, the resulting uncertainty
on is not important. The contribution to can then he written as a integral over
the discontinuity in the a channel.:

(M) — 1 ds’D(s’)f’)[ao + U(S’ SA) + Mo(s’)]
( 13)

— 1wD(SA) J ( — )3

Solving cci. (5.11) by iteration we obtain e(bo) = (7.9 + iO.5)GeV4,which has to
ilOOp (f 1—loo ibe compared to the contribution of i11 c’ 0 P = 5..DGe\’ . Thus

= 2.05GeV1 (5.14)

which lies perfectly well within the range established above. However, the sign
of the correction (positive) is now well understood. The reason is that current
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a’gebra underestimates the I 0 s-wave rescattering, hence yielding too small a
discontinuity.

We conclude that the actual value of 6ë is higher than the one-loop value: and we

will adopt e° = (7.9 H- iO.5)GeV4 as the most likely number. It shifts the amp

litude at the center to 1.71 +iO.45 (of which 1.47 is in the subtraction polynomial)

or by about 9 % .

3. As mptotic behaviour of the irir-phase shift
In sect. 3 we mentioned an ambiguity to the solution of Khuri-Treiman equations

due to the so far unspecified asymptotic behaviour of the irir-phase shifts. Here we
give a quantitative estimate of the effect on our results. We neglect the I = 1, 2
phase shifts and consider the approximate solution F = P + where is
given explicitly in eq. (4.21). This approximation is actually very close to our final
numerical solution, c.f. Table 3. Now we study two cases with distinct asymptotic
behaviour of both, phase shift and amplitude: i) (s) — 0 and Q = 0, i.e. F(s)
and ii) 6(s) — w and Q = const. 0, where we fine tune Q such that the amplitude

has the improved asymptotic behaviour F s. In the first case we use the phase
O. Schenk

shift as employed before, given in eq. (B.2) and denoted here by b0 (s). In
case ii) we need a model which guides the phase to its asymptotic value if. We take

0 Schenk (s), s

(s)

= { 0, Schenk oh

with = (865MeV)2 and A is the scale where the phase reaches its asymptotic
value. We consider two choices Ii = 1/4 and 1/8 with corresponding scales

(2.16GeV)2 and A1/5 (4.87GeV)2 respectively.

We then calculate the difference F = — F(u) at the center of the physical
regioti for various subtraction points SP. The maximal difference we obtain is
bF = 0.015—i*0.020, or 1 % and 5 % of the full amplitude for real and imaginary part
respectively. This in turn implies an error on the rate F of less than 3 % or 1eV.
The exercise shows that rather different assumptions on the asymptotic behaviour
imply only modest changes of the amplitude in the low energy region. Here, taking
three subtractions pays visibly. The same estimate for a twice subtracted relation
(see below) yields an uncertainty in the real part of the amplitude of already 5%

or 17eV on the rate.

1. Technical uncertainties
We conclude with some remarks on the structure and convergence of our iteration.

As described in section 4, we distinguish two iterations, namely the iteration when
solving the dispersion relation (rn-iteration, in the I = 0 rescatterings) and the one

Ioer of the weaker I = 2. 1 rescatterings (k-iteration). We will discuss some

We have taken the subtraction point SP = 0.
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exemplary numerical results and comment on the general trends. We will always
use the subtraction at zero with the corresponding values of the polynomial.

To illustrate the rn-iteration, we take the succesive values of the contribution to
pure I = 0 problem as considered by Neveu and Scherk. Writing the amplitude U
in the form (see eq. (4.18))

Uk(s) mk(5) (5.15)

we find in the center of the Dalitz plot the following numbers:

RecP10 = 0.1828 Re20 = —0.0631 ReP30 = 0.0051 Re4o = 0.0001 (5.16)

This suggests that the iteration in the I = 0 scattering phase converges nearly like
a geometrical series with a coefficent of 0.3. We have found this behaviour over the
whole Dalitz plot and for all values of k. The iteration is therefore terminated at
771 = 5.

Next we consider the k-iteration. As example, we take again the amplitudes U,
V, W at the center. We obtain:

U0 = 0.1248 + iO.4786 no I = 1,2 corrections
U1 = —0.0180 + iO.0638 one I = 1,2 iteration
U = 0.1145 + iO.5431 total result

= 0.0407 — 0.0617 one I = 1,2 corrections
V = 0.0343 — iO.0649 total

= —0.0038 — iO.0003 one I = 1,2 corrections
1/1/ = —0.0039 + iO.0002 total I = 1,2 iteration

Again, the convergence of the results is rather good; consecutive terms decrease
by about 10 to 15 percent.

To appreciate the degree to which the final result fulfills unitarity, we take amp
litude at the center of the Dalitz plot for various stages of the iteration. Including
only the first iteration, o, the value of the amplitude is Aapp = 1.57 + iO.5017.
Unitarity is checked by inserting this (and the corresponding values for all s) value
into the dispersion relation for the total amplitude which yields a new value, say
on the left hand side and calculate the relative difference d = (Aapp —

At the center of the Dalitz plot, we obtain for this deviation 0.0441 — iO.0301 which
indicates that unitarity is fulfilled to about six percent. Taking now the full amp
litucle, 1.57 H- iO.4128. The urntarity check now yields only ci = 0.0007 + iO.0002.
The iteration has improved the unitarity drastically, although the central value of
the amplitude is not much changed.

Another result of interest is the quality of the Neveu-Scherk o iteration and
the relative sizes of the various isospin amplitudes U, V and J4/. The sum P +
corresponds rather accurately to the final value. This is accidental. If we just solve
the complete Neveu-Scherk problem, e.g. only include I = 0 rescatterings, the result
would he U = 0.1248 + iO.4786 and o would not be a good approximation. On
the other hand, the complete calculation yields U = 0.1145 + iO.5431, V = 0.0343 —
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i0.0065, 1/V = —0.0039 + i0.0002. This shows that the contribution from V is quite
substantial, and that U alone does not saturate the amplitude at all. Nevertheless we
note that V/U is roughly about a third, which justifies our perturbative treatment
of V (and 1/1/).

A further error comes from the arbitrary cutoff of the dispersion integral. Chan
ging it from 82in to 164in, the rates vary at most by I eV and thus the variation
is negligible.

i\lso, the low energy constant L3 [2] is not very precisely known. Varying it within
the error bars yields the small ranges

182.1 — 181.1eV
T_oo.o : 250.9 — 253.5eV
a : —1.21 — —1.12
h:0.25—0.23
C: 0.10 —0.09
for the one-loop value of the constant 3.

Apart from the changes in a, these variations are small. A more precise measure
ment of a could therefore restrict L3.

5.2 Rates and Dalitz Plot Distribution

Let us turn now to the values of the physical quantities. If we take the one-loop
value for the constant 3, the rate for , normalized by m, is

F = (180 + 40) eV. (5.17)

The error given reflects our estimate of the uncertainty of 25 % of 3. On the other
hand, if the improved value for 3 is used, the rate becomes

F = 209 eV. (5.18)

We estimate the remaimng error on this result to be about 20 eV. Since the one
ioop value of 3 is most certainly too small, the result in eq. (5.18) should be more
reliable than the value in eq. (5.17) The corresponding values for the decay into
neutral pious are (252 + 56)eV and 295eV. Thus, the rates are not substantially
larger than the previous results, if the the one-loop value of 3 is taken. However,
if its improved value is employed by taking into account the rescatterings through
the Rhuri-Treiman equations, the corrections are substantial, although the result
is still considerably below the experimental one. The size of the corrections are
qualitatively reasonable: since the one-loop corrections amount to about 50 % in
amplitude, next order corrections might he expected at about 40 eV, roughly the
value we found.

The ratio
= I’ooo

(5.19)
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between the rates of the neutral and charged pion channel takes the values

r= 1.40+0.03 (5.20)

and
= 1.41 + 0.03 (5.21)

for the two values of ë, respectively. The values correspond to the the small subtrac
tion points SF considered; the error is obtained by varying the SF between —10
and 2 (see Table 4). In comparison, the value r = 1.43 was obtained in Ref. [5].
The particle data group quotes

r = 1.35 + 0.05 “our fit”

r = 1.27 + 0.14 “our average”, (5.22)

favoring smaller values for r, in particular almost excluding the current algebra
result. Recently, r has been remeasured in a direct measurement [37]

r = 1.44 + 0.09 + 0.01 (5.23)

with smaller errors than previously and which is in very goocj agreement with our
result and the one-loop value but somewhat below the current algebra prediction of
r = 1.51.

The distribution over the Dalitz plot is conventionally described by the two van
ables x and y

x = (s — Sb) (.24)
2inQ

y = ((rn — rn)2 a) — 1 (5.25)
2rnQ

= rn — 2rn+ — mo. (5.26)

Since is small, it is important to keep the masses of the charged and neutral
pions different. The mass difference is generated by electromagnetic corrections.
However, as discussed in the first section, the other electromagnetic contributions
to the decay amplitude are small and can be neglected.

The Dalitz plot distribution A(x,y)2 can be parametrized by a second order
polynomial. For the decay into charged and neutral pions we may write, respectively,

A°(, v)2 = N° (i + ay + by +

4°°°(x y)2 = N°°° (i + g(x2 + p2)) (5.27)

Of course, the neutral pion mass must be used for x and y in the second expression.
The various determinations of the slopes a, b, c and g are as follows:
Gasser and Leutwyler [5]: a = —1.33, b = 0.42, c = 0.08
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Lavter et al. (exp)[38]: a = —LOS + 0.014,5 = 0.034 + 0.027, c 0.046 + 0.031

Gormley et al. (exp)39J: a —1.17 + 0.02,5 = 0.21 + 0.03. c 0.06 + 0.01

Amsier et al. (exp)[:37]: a = —0.94 + 0.15,5 = 0.11 + 0.27
Aide et al. (exp)[40]: g —0.014 + 0.046
This work: a = —1.16,5 = 0.24,c = 0.09,g = —0.028 (one-loop value for )

a —1.16,5 0.26,c = 0.10,g = —0.014 (improved value for ).
We see that our numbers are very near to the experimental values, in fact closer

than the one-loop results. The values of a for negative SF are somewhat too large,

while the result for SF = 0 correspond nicely to the result of Gormley et.al. Unfor

tunately, the two most accurate experiments are mutually inconsistent and thus pre

clude a definite statement; measuring the slopes with larger accuracy would remove

the uncertainties inherent in the choice of the subtraction points. The quadratic
slope parameter of the neutral decay mode, g, is experimentally compatible with
zero. We observe that the slopes (with the exception of g) do not depend strongly

on the value of 3.
However, the shape of the amplitude changes when compared to the one-loop

amplitude. In Fig. 3 we plot the real part of our numerical solution (with the one-

loop value of 6) along the line Sa = s, together with the current algebra prediction as
well as the chiral perturbation theory one-loop amplitude. At small .s, all amplitudes

are close together which reflects the fact that we have subtracted at 3a 0. The

cusp generated by the two-pion threshold is more pronounced in the solution taking

into account the corresponding final state interactions to all orders. However, the

requirement of unitarity bends the amplitude down more strongly in the physical

region, leading to a value of the amplitude at the center of the Dalitz plot close to
the value obtained by one-loop ChPT. At the same time, the slope of the amplitude

is reduced substantially giving a smaller values of the linear slope parameter of the
Dalitz plot distribution. The imaginary part is seen to be enhanced over the whole
physical region. c.f. Fig. 4. This was to be expected, as the one-loop amplitude
gives only the leading term to the imaginary part. The figures for the improved 6

have a similar shape, but with different normalization corresponding to the larger
rate discussed above.

5.3 Two Subtractions

We turn briefly to the twice subtracted dispersion relation. Starting from the current
algebra polynomial, we obtain the results in Table 6, taking the subtraction points
in Table 5. We have used the same scattering phase as in the three times subtracted
case, and set the polynomial Q equal to zero. This time, the rates grow fast if we

change the subtraction points to large negative values. On the other hand, this
increase is accompagnied by an unreasonable change of the slopes a and S as well
as unacceptable values of r. We expect similar changes, if we vary the asymptotic
behaviour of the amplitude and the phase (see above). We conclude that artificially
enhancing the rates with large negative subtraction points does not yield correct
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results and that the higher order terms in the subtraction polynomial are essential.
An alternative approach would be to use the one-loop subtraction data, but to
maintain a twice subtracted relation. We expect in this case larger uncertainties
from the assumption of elastic unitarity as well as from the asymptotic ambiguities.

Roiesnel and Truong [32] were the first to invoke unitary corrections to enhance
the decay rate. These authors obtained satisfactory values for the rates, using a once
subtracted dispersion relation; Their analysis was restricted to I = 0 rescatterings,
but only for one part of the amplitude. As a result, their discontinuity is not given by
the usual form, but is larger by a factor 9/5. Since the sign of the I = 2 contribution
is negative, this factor in fact gets enhanced because the I = 0, 2 pieces suffer an
artificial cancellation. If this factor is omitted, the result is not as dramatic and close
to our results for SP = 0. As noted, the dispersion relation with one subtraction is
subject to large ambiguities and thus the result will be beset with high uncertainties.

6 Conclusions

The decay amplitude of i —* 3ir is proportional to the quark mass difference (md —

m) and thus provides one of the ingredients to determine the important ratio
Including also higher orders in chiral perturbation theory, the decay rate can indeed
be written as

F = (QDT/Q)4F (6.1)

where
Tfl — mu Tfl + mu

(6.2)
— mn + in

with mm (md + mn1). QDT is the value of Q if Dashen’s theorem for the electro
magnetic kaon mass difference is used (see eq. (1.9)) and F the corresponding width
as given in the previous chapter.

Using the value QDT (or the corresponding and long established values for the
quark mass ratios), the one-loop ChPT prediction for the rate given by Gasser and
Leutwyler [5] has been considerably below the experimental number. Theoretic
ally, the rate can be increased by lowering the ratio mu/md [20] or by including
further corrections in F. In particular, it has long been suspected that the unitary

corrections may be sufficient to enhance the rate sufficiently.
The existing framework embodied in the so called Khuri-Treirnan equations [24]

allows to take into account rescatterings of two pious which are thought to dominate.
Some time ago, Roisnel and Truong [32] claimed that in fact these corrections solve
the problem, but as explained in section 5 (see also [5]), we believe that their results
are an overestimate,

In this paper we have calculated the unitary corrections using the Khuri-Treiman
equations (which include the I = 0, 2 pion pion rescatterings), complemented with
the I = 1 interactions. To specify these dispersion relations completely, that is to
define the subtraction method, we have used an iterative procedure for solving it
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which accounts in lowest order for the one-loop ChPT results of Gasser and Leut

wvler This forced us to a three times subtracted dispersion relation with rather fast

coiivergence and little dependence on the unknown high energy scattering phase. In

this approach, the subtraction polynomial is quadratic in the invariant momenta.

rather than the linear form of current algebra. The major source of errors lies in the

choice of the subtraction points and, particularly, in the uncertainties in the subtrac

tion constants. The constants connected to the quadratic terms vanish at tree level

and only start at the one-loop level; thus their one-loop value is rather uncertain.

In section 5 we have described how this problem can be overcome (following recent

work of Anisovich and Leutwyler [22]), and have given a reasonable estimate of the

constant 3. We have chosen to give the results corresponding to both their one-loop

value and to the improved one. U.sing everywhere the new value of f [6], the rate

corresponding to the the one-loop value is

F = (180 + 40)eV, (6.3)

while the improved number of 3 yields

F = 209eV (6.4)

and where we estimate the remaining errors to be about 20eV. We view the second

result as the more reliable one. Although the corrections are ciuite large, they do

not suffice to explain the experimental value of (281 + 28)eV.
From eq. (6.1) we obtain

Q = 22.4 + 0.9. (6.5)

while the rate of 180 eV in (6.3) would imply Q = 21.6+1.3. In contrast, QDT = 24.1.

These lower values of Q can obviously be accounted for if the ratio is lowered,

and another mass ratio. say ci+u is kept fixed. In this case, -- is reduced from 0.57
m rn

to 0.49 + 0.04 or to 0.52 + 0.03 depending on whether eq. (6.3) or eq. (6.1) is used.

Thus, while it may be somewhat smaller than previously thought, the up quark
mass does not vanish We note that the somewhat lower value of in [20] was

obtained with a changed value of md-I-mU The constant Q can also be determined

from electromagnetic corrections to the meson masses. As already noted in [20],

these lower values of Q correspond roughly to the one obtained from the kaon mass

difference, if electromagnetic corrections are positive and large as found in [1$].

We have also determined the slopes in the Dalitz plot distributions; the results are

given in the last section. We find that the ratio r between the rates of the neutral

and charged pion mode remains roughly at 1.4 which is also favored experimentally

[37]. On the other hand, the slopes change from their one-loop ChPT values; our
number for a is higher than the previous result and nearer to the experimental value.

10our analysis is based on the assumption of the validity of standard chiral perturbation theory.
In contrast, a treatment along the lines of Ref. [14] might lead to different results; however the

larger quark masses in that scheme exclude a zero mass automatically
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The experimental situation is rather unsatisfactory. The decay rates are normal

ized with respect. to the decay with F(i7 —* where the results from two-photon
production disagree with those from Primakoff production. The two-photon meas
urement.s seem more reliable; however, in order to resolve the issue completely a
reanalysis of the Primakoff data would he necessary. The Dalitz plot distribution of

has been measured with rather high accuracy [39, 38]. However, the

assumptions made by these authors are not compatible and do not allow comparison
ot the numerical values. A recent experiment [37] has still too large error bars in
order to he conclusive. As our results show, there is a rather strong correlation
between rates and slope parameters and a more acurate measurement of the latter
would fix the rates, and thereby the up quark mass better.
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Appendix A

In this Appendix we give the three projections of the subtraction polynomial P.

Since P has no cuts, the integrals as defined in section 2 are trivial and may be

performed explicitly.
The second order subtraction polynomial is of the form

P(Sa, 5, c) = + 3a + 75 + b —

)2 (A.1)

and we need the projections for ri = 0, .., 3. The corresponding results are

1=1
= 3s —

(A.2)

— aN2
J2()

=
2 ) +

3
= 3s— a [(380 _Sa)2

+

We now insert P into eq. (2.26), reexpress s = — — 8b arid ohtaiii

P(a) =

+ (4S_4(3SO_Sa)+(3SO_Sa)2) (A:3)

4I(S)
= +Sa+7S+6

3

For P(Sa) we get from ed. (2.27)

P(Sa) = a+3+s2

+ (s— 2(3so — 28a) + (3s — 2s)2) (A.i)

=

+ ( + )
[(.3so_ ) +
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rftjg finally to P its insertion into eq. (2.36) yields

- -____

4I(Sa)

+ (S_2S(3SO_2Sa)+(3SO25a)2}

— 5a){ + /3+ (A.5)

+
—

2(3so — 2a) + (3so — 2Sa)2)}]

1

Appendix B

In this Appendix we discuss the parametrization of the different pion-pion phase
shifts used in our numerical computations and disply the resulting Omnès function.

A careful analysis of the different restrictions on the phase shifts is carried out
in Ref. [41]. There are two main points to he respected, namely first the threshold
behaviour of Ref/

Ref11(s)
= (S 4)1 (af+

5[(5 _4)

+ .,.) (B.1)

where we used the notations of section 2 and where af denote the different scattering
lengths, bf the corresponding slope parameters. Second, one has to implement that
the phase shifts pass through at some experimentally known values s sf of the
energy. A simple parametrization respecting those conditions is given by [41]

/5—4 s—4 sf—4
taii (s) = . ( ) . (B.2)

v s 4

• (a[+f(54)+c[(54)2)

where the threshold expansion is reproduced with

bf = bf - af + (af)6io. (B.3)
s —1

As the experimental data on pion-pion scattering near threshold are rather poor one
uses the results of ChPT for the scattering length [13, 42]

= 0.20, a = —0.042, a = 0.037, (B.4)

= 0.24, b = —0.075.

The remaining data are extracted from. experiment

= 0.005,

c=0. c=0, c=O, (B.5)

= 38.45, s = —21.11, s = 30.39
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— be

where 4 is given in units of m as usual. These values correpond to the lest fits’
in [41]. We remark that the constraints of the Roy equation around 8 = 4 are taken
into account in this parametrization.

We already noted that all the numerical integrals will be cut off. In order to avoid
discontinuities in the numerical integrations, caused by the step-function induced
from the cut-off, we bring the phases smoothly down to zero multiplying them with
the exponential suppression factor

(B.6)

ensuring differentiability at 4. For k we chose the value k = iO.
We do not give explicitely the numerical result for the Omnès function. We just

note that instead of working directly with the definition in eq. (4.10) we prefer to
go over to the once subtracted form

x ,

______

D(z) = e ‘ •‘(“—‘). (B.7)

This is possible as we are dealing only with fractions of such functions in which the
extra contribution from the subtraction point at z = 0 cancels. The advantage of
subtracting here is the better numerical convergence of the integrals.

Appendix C

In this Appendix we analyse possible consequences of the singularities occuring
in the projected amplitudes as displayed in eqs. (2.44) and (2.45). We show in
particular that for physical values of the energy, 8+26, the amplitude resulting from
the dispersion integrals is finite.

Within the iterative procedure we have to perform dispersion integrals over pro
jected functions having poles at 8 = (m — 1)2 to obtain certain contributions to the
amplitudes in question. As long as the value of the external variable 8 is not around
8 = (rn — 1)2 there are no problems with the integrations. We have thus to analyse
only the case 8 (m — 1)2 where the two types of integrals are of the form

, 1 1
const.. I ds . . 1

J(m_.1)2._6_g 8’ — (m — 1)2 + 6 — :6 ((m — 1)2 —
8)*’t

+finite. (C.1)

Above we introduced the two positive constants g > 6> 0 dealing thus with the case
8 = (in — 1)2

— £ -.. (m — 1)2 from below. The other case is then treated similarly.
g should be small in the sense that we may replace the full integrand by its above
reduction to the two rational functions. ‘finite’ denotes the obviously finite rest and
n the two cases coming from eq. (2.44) with n = 0 and from eq. (2.45 with it = 1.
After a change of variable .1 — x 8— (m — 1)2 + 6 we obtain

1 1
dx . . (C.2)

J..., x—6
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discarding all unimportant contributions to eq. (LI). Using the Sokhotsky-Plernelj
formula we obtain the principal value integral

1 p+g 1 1
I=irr +P I cix—. 1

(C.:3)
x (—x + 6)

As the square-root has a cut we have to distinguish the cases —x + 6 > 0 and
—x±6<0.

For
— + 6> 0 we obtain

1 21 1 1
I dx— = I dz — (CA)

J X (—x +6)+m 6+ J z2 — 1 z2”

making the substitution z For n = 0 this leads to the contribution

± /-l
— 1og (.)

6r

for n = 1 to

- {2
.

+
log ‘-2. urn

}

(C.6)

where we properly distinguished the two cases Izi < 1 and z > 1 in the range of
integration and where the principal value prescription leads to the cancelation of
the infinities at x = 0.

_______ _____

For — x + 6 < 0 we have to continue analytically. With i/—x + 6 i/x — 6 we
find

r 1 1 —2ir 1 1
I cix— 1

=
1 I dz . — (C.7)

.1 x (—x + 6)r+n 6±71 J 2 ± 2n

making the substitution z For n 0 this leads to the contribution

/ —6
1tan/6 , (C.8)

for ri = 1 to

_____ _____

(C.9)

Here no further distinctions have to be made.
We collect all the contributions for ri = 0

1 1 /_i

___

Io=_ri7r_lo/Z _2iarctanJ
6

C.10)
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and for n = 1

1 / / 5
I —{iw — . I

____

— lou — / ((‘ 111 Vg+6 Vg—6

—2iarctan
6
+2.limf

6
+2ilirn

b

6 x—6 —x+h x- x—6

In the limit 6 —* 0 a Taylor expansion shows that the log-terms vanish whereas the

arctan-terms cancel the iir-contributions such that I remains finite.

In the case n = I there remains the divergent contribution Resubstitu

tion of = — (in — 1)2 + 6 yields a square-root singularity at s = (in — 1)2. As

this type of behaviour occurs in the function W(a) only which is always multiplied
with 5h — 2 cos 0ba K(a) we see that the square-root singularity is lifted by
the Kacser function K. The case S (in — 1)2 + 6 leads to the same results in the

limit 6 —* 0. The resulting amplitudes are thus finite at s = (rn + 1)2 + i although
discontinuities may occur at this point.

At the unphysical boundary s = (in + 1)2 — i the amplitudes badly diverge as
the arctan contribution does not cancel anymore the ir-terms as above.

Appendix D

Here we give the explicit form of the functions R’ occuring in the determination

of the subtraction polynomial for finite subtraction points, c.f. section 3, eq. (3.29).
The derivation employs the identity

Rei(s) = (s — sj)(s — Sj)y(S, sj. sj)

+ [sj (y(O,s,s) + y(O,O,Sj)) + (i

+sis1y(O,s,s), (D.l)

here
- 2 61,ChPT i

=
(iS’

,

/ (D.2)
7 4m s - (s — S — i.

and
1 1o:: 61ChPT(

!)
y1(S,sj,51)= —P] ds’ / / / . (D.3)

ir 4rn (s — s)(s — s)(s — sj)

P denotes the principal value and 61,chPT is the 7r7r-phase with isospin I to leading
order in ChPT. For I = 0, 2 we thus find

1.2 3

, 53; 54)
= { [s (y’(o, sj, s) + y’(O, 0, si)) + (i

“‘S i)]
i<J

—ssy’(0, s, s)}
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1,2,3

+y’(s1,2, (s — sk). (D.4)
‘ z<kkz,j

The corresponding expression for I = 1 is

(1) /99 2 1 2R (Sa, Sb, 3; w1,w2) =
— + 8a — (8b

x (y’(O, to1, 102) + y(o, 0, zo)) + (1 2)]

— so)wiw2y’(O, 101,102). (D.5)
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Tables

SP
-10 —9.6 —9.8 —10.0
-6 —5.6 —5.8 —6.0
-4 —:3.5 —3.7 —3.9
-2 —1.7 —1.9 —2.1
0 5 * 1O 1.2 * iO 5 * 1O
1 1.2 1.33 1.4
2 1.7 1.9 2.1
3 2.6 2.7 2.8

Table 1: Values of the subtraction points SF used in the three times
subtracted dispersion relation in units of rn.. The subtraction points
are the same for U and for V, for W we take the first two values on each
row (see also text).

SP /3
—10 —1.38 19.73 —7.87 3.74
—6 —1.28 20.52 —5.45 4.00
—4 —1.25 20.97 —3.45 4.13
—2 —1.27 21.39 —1.90 4.22
0 —1.28 21.81 4.09 4.19
1 —1.:34 21.99 11.24 3.88
2 —1.38 21.90 17.46 3.11
3 —1.47 21.08 36.67 1.81
error bar +0.14 +1.52 +3.18 +1.08

Table 2: Coefficients of the subtraction polynomial for the sets of sub
traction points specified in Table 1. The last line gives the error bar due
to the uncertainty in the determination of L3. All values given here and
in the subsequent tables refer to the one-loop value of the constant
discussed in section 5.
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SP P ReGL Aapp
-10 0.86 0.64 1.62 + 0.44 1.63 + iO.41
-6 1.10 0.40 1.70 + iO.49 1.69 + iO.44
-1 1.21 0.29 1.69+iO.50 1.67+iO.11
-2 1.26 0.24 1.60+iO.19 1.59+iO.42

1.40 0.10 1.57 + iO.50 1.57 + iO.41
1 1.16 0.11 1.51 + iO.40 1.50 + iO.39
2 1.49 0.01 1.42 + iO.49 1.46 + iO.3S
3 1.58 —0.08 1.32 + iO.48 1.41 + iO.36

Table 3: The polynomial approximation P and the real part of the dis
persive part of the one-loop result, ReGL, in the center of the Dalitz
plot. The sum is fixed to give 1.5, the value of the one-loop amplitude.
Also the result of the first approximation (including only and the
total amplitude are given

SP a b C g T--—o Pooo r
-10 —1.27 0.32 0.07 -0.023 201eV 278eV 1.3$

-6 —1.22 0.29 0.08 -0.020 213eV 297eV 1.40
-4 —1.21 0.30 0.08 -0.017 211eV 295eV 1.40
-2 —1.21 0.30 0.0$ -0.020 189eV 263eV 1.40

0 —1.16 0.24 0.09 -0.02$ 180eV 253eV 1.40
1 —1.04 0.13 0.10 -0.046 162eV 234eV 1.44
2 —0.97 0.05 0.09 -0.082 148eV 214eV 1.45

3 —0.7$ —0.06 0.08 -0.107 128eV 189eV 1.48

Table 4: Values of the physical quantities for different subtraction points
(three times subtracted dispersion relations).

SP i

-10 —9.8 —10.0
-6 —5.6 —6.0
-4 —3.7 —:3.9
-2 —1.9 —2.1
0 1.3 * 1o 5 * i0
1 1.2 1.33
2 1.9 2.1
3 2.7 2.8

Table 5: Values of the subtraction points SP in units of m for t.he twice
subtracted dispersion relation
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P U b c T+—o Tooo r
-10 —0.81 0.12 0.04 410eV 624eV 1.52

-6 —0.72 0.10 0.06 277eV 423eV 1.53
-4 —0.77 0.14 0.05 222eV 335eV 1.51

-2 —0.90 0.20 0.06 182eV 268eV 1.47

0 —1.14 0.:37 0.03 145eV 203eV 1.40
1 —0.96 0.28 0.04 120eV 173eV 1.44

2 —0.78 0.20 0.05 95eV 140eV 1.47

3 —0.71 —0.13 0.02 78eV 117eV 1.50

Table 6: Values of various physical observables for different subtraction
points and two subtractions.

be/e = +25% 6e/e = —25%
&l/d = +25% 0.15 + i0.04 —0.13 — iO.03
6c1/cl = —25% 0.18 + iO.05 —0.09 — iO.02

Table 7: Change of the reduced decay amplitude A at the center of the
physical decay region for a relative error of 25 % on constants ë, d.

Figure captioi’is

Fig. la Integration contour for case i)

Fig. lb Integration contour for case ii)

Fig. lc Integration contour for case iii)

Fig. id Integration contour for case iv)

Fig. 2 Lattice of points for the numerical determination of the different functions

Fig. 3 Real part of the decay amplitude for s = it (in units of rn) for SP = 0.

The full line is the numerical solution of the coupled integral equations as
described in the text. Also shown is the current algebra prediction (clashed)
and the chiral perturbation theory one-loop result (dotted). The physical
region lies between the two vertical lines.

Fig. 4 Imaginary part of the decay amplitude for s = it (in units of m) for
= 0. The full line is the result of the numerical iteration and the dotted

one the chiral perturbation theory one-loop approximation.
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