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We present a numerical study about the confining regime of compact U(1) lattice gauge theory in 4D. To address

the problem, we exploit the duality properties of the theory. The main features of this method are presented,

and its possible advantages and limits with respect to alternative techniques are briefly discussed. In Monte

Carlo simulations, we focus our attention onto the case when a pair of static external charges is present. Some

results are shown, concerning different observables which are of interest in order to understand the confinement

mechanism, like the profile of the electric field induced by the static charges, and the ratios between Polyakov

loop correlation functions at different distances.

1. GENERAL SETTING

Compact U(1) lattice gauge theory in 4D dis

plays a confined phase, analogous to non-abelian

gauge models; since different gauge theories may

share the same (qualitative) mechanisms for con

finement, it is interesting to study an external,

static QQ pair in this model, which provides a

very simple confined system.
The fundamental d.o.f. of the pure gauge the

ory are U(x) phase variables defined on the ori

ented bonds of an isotropic hypercubic lattice,

the dynamics is described by Wilson action: S =

/3(1—ReU). ForO </3 < ,3 = 1.0111331(21)

[1] the system is confined, while for /3 > /3 it is

in a deconfined (“Coulomb—like”) phase.

This theory enjoys a “duality” [2] property: via

a group Fourier transform, the partition function

and observable VEV’s map to a dual formulation

in terms of *1(x) Z variables. In 4D the dual

model is still a gauge model of “ferromagnetic”

nature:

Z =(2r)4vfJ>e_IId*lI(/3) (1)

(we follow notation of [3], where the same method

was used to study this model). This exact map

ping allows one to get results for U(1) theory from

simulations of the dual model. A QQ pair (rep-

resented by Polyakov lines in the original model)

can be introduced by means of a stack of topo

logical defects * onto a set of plaquettes:

ZQc, =(2r)4NfJe_IId*l+*nI(/3).

*1

(2)

Simulating the dual model gives some practical

advantages from the numerical point of view; the

major improvement arises evaluating ratios be

tween Polyakov line correlators at increasingly

large interquark distance, which are affected by

exponential signal-to-noise ratio decay in direct

simulations, whereas this problem can be com

pletely overcome in simulations of the dual model

— see also [4]. This method was used for Z2

gauge model in 3D [5—7], and it is a possible al

ternative to other error reduction algorithms, like

the one proposed by Lüscher and Weisz [8], which

has been successfully used in a number of works

about different gauge theories [9—14], including

U(1) LGT in 4D [15,16]. However, this duality

inspired technique cannot be straightforwardly

generalized to non-abelian SU(N) theories.

2. OBSERVABLES AND RESULTS

We focused our attention onto the profile of the

electric field longitudinal component induced in

the symmetry plane between the static charges,
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onto the interquark potential, and force.
According to the dual superconductor picture,

at large distance p from the mid-point between
the external charges, the electric field is expected
to be described by a modified Bessel function:

E(p) cx m2Ko (mp) (3)

m being the mass of the dual gauge boson. This
is based on a purely classical analysis; however,
fluctuations of the flux tube can be included [17]:
they induce logarithmic growth of the flux tube
width [18].

As it concerns the interquark potential and
force, they can be worked out from Polyakov loop
correlators, which, according to the bosonic ef
fective string scenario, are expected to behave as
[19,20]:

—crrL—iL

(P(r)P(0))
= e

[ (.L)]D_2
(4)

Here r is the interquark distance, L is the
Polyakov line length, o is the string tension, and
ij denotes Dedekind’s function. Correspondingly,
the interquark potential V(r) reads [21]:

rr(D—2) I
V(r)ur+—

24r
1+—)+... (5)

where we also included a possible “boundary
term” contribution (depending on b) which was
suggested in [9], although it would break the ex
pected open—closed string duality [22]. However,
this picture is under debate: in various gauge
models it was observed that, despite the fact
that the string behaviour onset already appears
at short distances (corresponding to 0.5 1.0 fm
or so), in that very same region the excited state
spectrum does not match the expected effective
string pattern [7,11,23,24].

In our runs, we considered various lattice sizes
(typically 16k) and /3 values in the range from
0.96 to 1.01. In the study of the E profile, we
chose interquark distances dQ from 3 to 7; the
results show rotational invariance and (at least
qualitatively) the expected scaling properties as /3
or dQ are varied. The profile has a marked peak
centered in the mid-point between the charges,
and a fast (most likely exponential-like) decay as

a function of p. Errorbars for the data shown in
fig. 1 are smaller than plotted symbols, but more
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Figure 1. E in the symmetry plane between the
external charges, as a function of p, the distance
from the QQ mid-point. Results for 3 = 0.96,
dQ = 3.

precise statistics is needed in order to confirm or
refute the large p behaviour predicted by eq. (3).

As it concerns the interquark potential and
force, in fig. 2 we plot the interquark force F ver
sus the QQ distance r; r0 is Sommer’s scale [25].
Notice the constant errorbars for different values
of r. The dotted line is a fit to the theoretical ex
pectation for F(r) obtained by derivation of eq.
(5). Our results are in agreement with [16]; data
analysis for V(r) and F(r) shows that the string
behaviour is indeed confirmed at large distances,
whereas at shorter distances the role of possible
further contributions beyond the Lüscher term is
not completely clear.

3. CONCLUSIONS

Our preliminary numerical results show quali
tative agreement with the predictions for the elec
tric flux induced by external charges. As it con
cerns the interquark potential and force, the ef
fective string scenario appears to be confirmed
at large interquark distances, whereas at shorter
distances the picture breakdown seems not to be
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Figure 2.
distance, for various values of 43.

Force as a function of the interquark

completely cured by including a boundary term.

As it is suggested by a comparison among differ

ent gauge models [9,13,26], we guess that a pos

sible effective pattern at short distances might be

non-universal, i.e. dependent on the gauge the

ory. Further details, larger statistics results, and

a more complete data analysis will be published

in a forthcoming paper [27].
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