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Abstract

The understanding of superfluidity represents one of the most challenging prob

lems in modern physics. From the observations of [1-3], in various respects the

Bogoliubov theory [4—8] is not appropriate as the model of superfluidity for Helium

4. His outstanding achievement, i.e., the derivation of the Landau-type excita

tion spectrum [9, 10] from the full interacting Hamiltonian, is based on a series of

recipes or approximations, which were shown to be wrong, even from their start

ing point [11—14]. We therefore present some very promising new results performed

in [15]. In particular, we explain a new theory of superfluidity at all temperatures.

At this point we then touch one of the most fascinating problems of contempo

rary mathematical physics - the proof of the existence of superfluidity in interacting

(non-dilute) systems.
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L Superfluidity of Helium 4 versus the Bogoliubov theory

1.1. Historical remarks

The past years has seen a increasing interest in the analysis of quantum phase
transitions, driven by experiments on the cuprate superconductor, the heavy fermion
materials, helium liquid and dilute trapped Bose gases.

One of the first important quantum phase transitions is Bose-Einstein condensa
tion, a phenomenon, first predicted by Einstein in 1925 and experimentally realized
in 1995 [16—18]. A very interesting liquid, long associated with this phenomenon
in correlation with another quantum phase transition, the superfluidity, is liquid
helium. Actually, its first isotope, Helium 4, is unique in having two liquid forms.
The normal liquid form is called Helium I and exists at temperatures T between 2.17
K and its boiling point 4.21 K. Below the “.)-transition”, i.e., for T TA = 2.17
K, Kapitza [19] and Allen, Misener [20] in 1938 discovered that Helium-4 becomes
superfluid (i.e., its viscosity, or resistance to flow, nearly vanishes). Its thermal con
ductivity becomes more than 1,000 times greater than that of copper. By contrast,
the second isotope, Helium 3, forms three distinguishable liquid (quantum) phases,
of which two are superfluids. This last phenomenon in Helium-3 was first observed
only in 1972 [21,22].
The system in question in this paper is related to 4He which are bosons, but at the
end (Section 4.3), we explain how this theory may also be a starting point for a
microscopic theory of superfluidity for 3He within the framework of Fermi systems.

In theoretical physics, Landau understood for the first time that the proper
ties of 4He, which rest liquid (under normal pressure) even for T —+ 0 K, can be
explained only by a new kind of quantum arguments. In particular, the Landau
phenomenology is based on the following assumptions [4,6,7,23—26]:

• quantum liquid is still fluid even for zero-temperature;

• at low temperatures, apart translations (flow), the state of this liquid is entirely
described by the spectrum of collective (elementary) excitations;

• through thermodynamic data [26, 27] (e.g. specific heat capacity) this spec
trum for 4He should be a phonon-like for the long-wave length collective exci
tations and should be above a straight line with positive slope with (“roton”)

o —1

minimum in the vicinity of krotW 2 A (figure 1.1).

This structure of spectrum agrees with the low-temperature thermodynamic
properties of liquid 4He, such as specific heat and others [9, 10, 26]. Moreover, the
two last assumptions ensure that this liquid is superfluid via the famous Landau’s
criterion of superfluidity [9, 10].

Within the framework of mathematical physics, the key-problem to explain the
Landau’s assumptions is to show that quantum mechanical behaviour of the macro
scopic system of about n = 1023 atoms of 4He is such that the spectrum of the
corresponding microscopic Hamiltonian H5 for n particles is close to the one pro
posed by Landau. More precisely, this homogeneous system of bosons interacting

2



Figure 1.1: The Landau-type excitation spectrum EL as a function of the momentum

p.

via a (real) two-body interaction potential ço (x) = ,o (Wx) is interpreted via the
following seif-adjoint (s.-a.) extension

=
(h2z) +

(x — x)
j=1 i,j=1

s-a

on the symrnetrized n-particle Hubert spaces

(V (A))symm ‘i4° = C,

appropriate for bosons [28,29]. We denote by V Al = Ld=3 the volume of the box

A. The one-particle energy spectrum is 8k h2k2/2m and, using periodic boundary

conditions,

{k e k
= 2n

n = O,+1,±2,..., a = 1,23}

is the set of wave vectors.
Within the framework of the second quantization, the standard device often

used in quantum many-body problems, the corresponding Hamiltonian acting on

the boson Fock space
+00 1

F1
n=O

is equal to
(1.1)

with

TA > Ekakak,
kEA*
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UA )qa1qak2_qak1ak2,

k1,k2,qOEA*

U}F ak1ak2ak2akl = (N — NA). (1.2)
ki,k2eA*

Here

k =f d3x(x) k e

is the (real) Fourier transformation of (x) , whereas NA aak is the particle
kEA*

number operator, with a = {a or ak} defined as the usual boson creation/annihilation

operators in the one-particle state /k (x) = V_eikx, k e A*, x E A, acting on F.
To ensure the thermodynamics properties of HA,,0>o via its superstability [29],

as usual, it is assumed that .,o (x) L’ (R3) and ) > 0, 0 )k = —k lim )‘k
IIkII—O÷

for k E IF. However, notice that the helium liquid is a Bose system with strong
interactions, i.e., it does not corresponds to a dilute Bose gas. The interaction
potential Uth (r) is of Lennard-Jones type [29] and was found by Slater et Kirkwood
[30] using the electronic structure of 4He (see figure 1.2 with Uth (r) in Kelvin and
also [31]).

Figure 1.2: The theoretical interaction potential of 4He

The exact formula for the interaction potential Uth (r) given in [31] is valid only
for strictly positive r, whereas close to zero it is given by a polynomial interaction
like in figure 1.2. A first caricature of this interaction is the hard sphere interaction
potential (who gives an estimation of the condensate fraction surprisingly close to
the experiments [32,33]). However, to ensure the thermodynamics properties of our
models, we should mimic an interaction potential (x) close to Uth (r). In particular,
in contrast with the hard sphere potential the value of p (x) for x = 0 has to be
given and has not to be infinite. A standard way to do it is to cut Uth (r) when
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r — O as follows:

/ — — f Uth (r) for r > rmjn.
X — —

—

Uth (rmjn) for 0 r rmjn.

With this cut interaction potential, the Fourier transformation Ao(rmin) of (x) for
the mode k = 0 drastically depends on Tmjn (specially when rmjn — Oj, i.e.,

urn Ao(rmjn) = +00. (1.3)
rmjfl__*O+

Moreover, the influence of rmjn should only correspond to a small (specially when
rmjn 0+) perturbation of the Fourier transformation for k 4 0 of Uth (r). In fact
one should choose Tmjn << rmean where Tmeam p73 is the average length of the
inter-particle distance at density p > 0.

Finding a Landau-type excitation spectrum from H or HA,A0, the two mod
ellings of the liquid Helium 4, was a challenging program, since such questions pose
enormous problems even for a few-body quantum system (e.g. atomic or molecular
spectra beyond the hydrogen atom). Faced with this important difficulty, Bogoli
ubov was guided by the Landau’s bench-mark that (at least) the low energy part of
the spectrum of about 1023 atoms of4He is defined by coherent collective movements
of the system instead of individual ones. His starting point was to find a physical (or
mathematical) mechanism which as in crystals with phonons, favors the collective
motions of the “helium jelly”, via some kind of ordering or coherence.

Since the atoms of 4He are bosons (in contrast to 3He, which are fermions),

a plausible conjecture relates to the Bose-Einstein condensation predicted for the

Perfect Bose Gas (PBG) by Einstein [34] in 1925. In fact, it was originally suggested

by Fritz London [35] in 1938, since the transition of the normal liquid 4He (called

He I) to superfluid phase He II takes place at a temperature T, = 2.17 K, whereas,

if the liquid 4He is treated as a Perfect Bose Gas, its temperature of Bose-Einstein

condensation T would be very close to TA: T = 3.14 K. Experimentally, a fraction

of condensate in liquid 4He was only found in the sixties, almost 30 years after the

London’s idea of genius, via deep-inelastic neutron scattering, see [36,37].
However, in spite of arguments of Tisza and London [38], the spectrum Ek

h2k2/2m of the Perfect Bose Gas does not satisfy the Landau criterion of superflu

idity. From more recent experiments, the Bose condensate represents at T = 0 K

only 9% of the system, whereas there is 100% of Bose-Einstein condensation in the

Perfect Bose Gas! In fact, Bogoliubov stressed [4—8] that, in spite of a long-range

coherence of the condensate, elementary excitations in the Perfect Bose Gas corre

spond to movements of individual atoms, i.e. “quasi-particles” simply coincide with

particles. He accepted the idea that the Bose condensation plays a crucial role in

decoding a nature of superfluidity but he insisted that “an energy level scheme based

on the solution of the quantum mechanical many-body problem with interactions,

must be found” (in [7]: Part 3.4).

To summarize, the Bose condensation together with interaction between bosons

will transform individual excitations of the Perfect Bose Gas into collective excita

tions of the “helium jelly” with a Landau-type spectrum.
For more details concerning the Bogoliubov approach, including its history, see

[2].
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1.2. The Bogoliubov theory of superfluidity (1947)

Inspired by these observations, Bogoliubov proposed his famous microscopic theory
of superfluidity in [4—8] . The first main idea was the following. If one supposes that

Bose-Einstein condensation, which occurs in the Perfect Bose Gas for k = 0, persists

for a weak interaction (x) then, according to Bogoliubov, the most important terms

in (1.1) should be those in which at least two operators a, a0 appear. We are thus led

to consider the following truncated Hamiltonian, i.e., the Bogoliubov Hamiltonian

or the Weakly Imperfect Bose Gas (WIBG) (see [7], Part 3.5, eq. (3.81)):

HB —T UD U’ UBMF 14
A,o>0= A+ A+ A + A

with

U kaao (aak + a_ka_k), (1.5)
kEA*\{O}

Uj > ) (aaa + a2aka_k), (1.6)
kEA* \{0}

rrBMF — 0 *2 2 0 * ç-’ *
= -a0 a0 + .Vaoao

keA*\{0}

The Bogoliubov model (1.4) is “simpler” than the full Hamiltonian (1.1) but it is
still nondiagonal with an unknown spectrum.

Let us consider the grandcanonical ensemble (,8, ,a) where 3 (kBT)’ (kB is the
Boltzmann constant) and ,u are the inverse temperature and the chemical potential
respectively. For a density of Bose condensate c2 > 0, a very ingenious Bogoliubov
treatment to solve this problem was to consider the two operators ao/\/V, a//i
as complex numbers:

ao/VV—*c, a/v’i7—, (1.8)

since for large volume V, ao/’V and a//V almost commute. This second assump
tion is called the Bogoliubov approximation. Then, by imposing

= \o cl2 > 0 (1.9)

at zero-temperature, Bogoliubov gets the Landau-type excitation spectrum (figure
1.1).

1.3. A critical discussion of the Bogoliubov theory

His Weakly Imperfect Bose Gas (WIBG) arising from the truncation of a full inter
acting gas, was a starting point for this theory, see (1.4). Different questions on this
approach should be analyzed.

First, the assumption that we do have a Bose condensation in the Bogoliubov
WIBG must be proven, whereas, in the full Hamiltonian, this problem is still open.
A challenge to mathematical physics is to prove this fact at least for the trun

cated WIBG-model related to the Bogoliubov theory. The second hypothesis (1.8)
is also too straightforward [2]: it sounds as “approximation” of unbounded cre
ation/annihilation operators by some bounded c-numbers. Moreover, it seems to
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exclude all quantum fluctuations related to the condensed mode, which may be a
cause of indirect effective interactions between bosons in this mode as well as out
side of it. Attempts of mathematical justification of this procedure and its intimate

connection with representations of the Canonical Commutations Relations (CCR)
was the subject of several papers, see e.g. [28,39,40]. A very interesting analysis was

done by Ginibre [41], where he thermodynamically treated this problem for the full

Hamiltonian (1.1). In particular, Ginibre proves that the Bogoliubov approximation

has to be done with a fixed c as a function of the inverse temperature 3 and the

chemical potential ,u, which satisfies a variational principle (i.e., maximization of

the pressure) rather different from (1.9)!
Actually, neither the first, nor the two other hypotheses have been ever justified

rigorously for the WIBG by Bogoliubov. He stressed many times in [6, 7,42] that,

since the perturbation theory around the Perfect Bose Gas is highly singular, a

Bose-gas with any interaction, however weak, may be qualitatively rather different

from the non-interacting system.
Only very few rigorous results concerning his WIBG and ansätze were known un

til 1998-2000. One of the first important rigorous result concerning the Bogoliubov

WIBG was performed in 1992 in a very interesting analysis [1]. From thermody

namic estimations in the grandcanonical ensemble, the author have shown that the

assumption (1.9), which is crucial to get a gapless spectrum, is wrong, in the sense

that the theory is not rigorously consistent. Indeed, the condition (1.9) for cl2 > 0

involves a positive chemical potential where the pressure of the original Bogoliubov

Hamiltonian HfA0>0 (1.4) does not exist!
Then, the recent papers [11—14,43] expressed in 1998-2000 a rigorous analysis

of this Bogoliubov model (WIBG) in the sense that the grand-canonical thermody

namic behavior is finally given at all temperatures and densities. In particular, it

is shown that the Bogoliubov approximation (1.8) on the model HfA0>0 is in fact

true in terms of the thermodynamic behavior. However the thermodynamically rele

vant spectrum of the original Hamiltonian HfA0>0 always has a gap for any chemical

potential ,u in the existence domain of the pressure, i.e., the equality (1.9) is inexact.

In the canonical ensemble, Bogoliubov [6] suggests a different but similar way cor

responding to a canonical Bogoliubov theory of superfluidity, where the assumption

(1.9) disappears. Indeed, in this analysis, the (grandcanonical) Bogoliubov approxi

mation (1.8) is replaced by the following transformations (the canonical Bogoliubov

approximation):

N N1”2”N pl/2

-
— Id2, 0

—+ c2,N0aa0. (1.10)

Meantime, at zero-temperature he used the approximation

N0 NA 2
= c (1.11)

where p is the fixed full particle density in the canonical ensemble (/3, p). We should

be very doubtful concerning (1.11). The approximation (1.11), taken in terms of

operators, change the original Bogoliubov Hamiltonian HfA0>0 drastically, whereas

= cl2 in (1.11) imposes a completely condensed particle density. This last assump

tion is not true for liquid helium 4, where we recall that, experimentally (cf. [36,37]),
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an estimate of the fraction of condensate in liquid 4He at zero-temperature is only

9% and not 100%! Bogoliubov (and Zubarev) himself realized the difficulty with
his ansätze of 100% of condensate: his u-v transformation (see (2.3) below) im
plies a diminution of condensate because of repulsion between particles. Some dis
cussions corresponding to the problem of the condensate depletion can be found
in [7,8,44—48].

Actually, from the beginning, the Bogoliubov theory with his truncation is far
from being exact. The Bogoliubov model Hf,0>0 manifests, for high densities, a
coexistence of two Bose condensations in the grand-canonical ensemble [11—14]. The
first Bose condensation appears on the single mode k = 0 due to the nondiagonal
interaction Uj” cf. [11—13,43]. But it saturates for high densities and then coexists
with a conventional Bose-Einstein condensation on modes next to the zero-mode

(WkI = 2ir/L), see [14]. Then, for high densities, to be at least self-consistent in this
procedure, the terms in (1.1) involving the 6 modes kW = 2r/L should not have
been neglected in the truncation of the full interaction!

The paper [43] is very useful to point out the origin of this second (conventional)
Bose condensation for the Bogoliubov Hamiltonian Hf0>0 (1.4). Indeed, the ap
parition of the second (conventional) Bose-Einstein condensation for the Bogoliubov
WIBG comes from the term of repulsion

0 * 2 0 (r2 ir — *
a0 = — tv0) , wiLl! = a0a0,

which implies the saturation of the first (non-conventional) Bose condensation by
excluding particles in the zero mode, since for any k 0 the similar terms of
repulsion

I’o *22 2 . *
5Ja ak (N — Nk), with Nk akak (1.13)

kEA*\{0}

in the full Hamiltonian (1.1) are neglected in the Bogoliubov truncation. All terms
(1.12)-(1.13) come from the Mean-Field (also called the “forward scattering”) inter
action UjYF (1.2). Consequently, keeping the interaction (1.2) or avoiding all these
terms for any k E A* seem to be necessary to avoid the appearance of a second Bose
condensation, which would be inconsistent with this truncation.

A deeper analysis of the Bogoliubov theory and its attempts of generalization,
including all recent studies [11—14,43,49] has been done from the point of view of
rigorous results in [2]. A constructive criticism of the Bogoliubov theory is performed
with more details in [3], which is the origin of our new approach explained in the
next section.

2. Our model for superfluidity

2.1. Setup of the appropriate model

Before we embark on a strong revision of the Bogoliubov theory, we want to make
precise the definition of the excitation spectrum of a system of particles. In particu
lar, which is the relevant ensemble of the two Boltzmann ensembles - the canonical
and grandcanonical one, in terms of physical excitation spectrum?

8



It is clear that the spectrum of excitations should be understood as the spectrum
of the corresponding Hamiltonian. Considering for example the Perfect Bose Gas,
this spectrum is given by {Ek}kE in the canonical ensemble, whereas in the grand-
canonical ensemble it equals {Ek

—

i.e. the spectrum has a gap for < 0.
Of course, the presence of this gap comes only from the Lagrange multiplier ,u
associated with the operator NA/V [50]. The excitation spectrum of the Perfect
Bose Gas is then {Ek}kER. The chemical potential a has no physical relevance in
terms of spectrum of excitations, i.e. the physical spectrum of excitations should be
seen only in the canonical ensemble.

An absence of gaps in the grand-canonical ensemble is only a specific case. For
example, it is only in the presence of the conventional Bose-Einstein condensation
that this property holds for the Perfect Bose Gas and then for the Mean-Field Bose

Gas or the Imperfect Bose Gas, see [31,51—57]. This fact can also not be generalized

to any Bose system having a Bose condensation, i.e. a gap on the spectrum in
the grand-canonical ensemble may appear even if no gap exists in the canonical

ensemble. For the Bogoliubov microscopic theory of superfluidity, the spectrum
in the two ensembles gives the same result . However, it is only because of the

drastic Bogoliubov assumption (1.9), that all effects of the chemical potential on

the spectrum are removed in the grand-canonical ensemble (,8, ,u).

Consequently, in terms of the spectrum of excitations, a Bose system should be

thermodynamically analyzed only in the canonical ensemble. Within this frame

work, considering the existence of a Bose condensation in the zero-kinetic energy

state, one should partially truncate the full interaction, i.e., without taking into

account the Mean-Field interaction since it is a constant in the canonical ensemble.

This procedure implies the non-diagonal Hamiltonian:

HfoTA+Ur+U, (2.1)

with (If and Uj’ defined by (1.5) and (1.6) respectively. Actually, without any Bose

condensation, the model should be equal to the Mean-Field model, i.e., the Perfect

Bose gas in the canonical ensemble. Whereas, in presence of Bose condensation,

the interaction UA should play a crucial role on the thermodynamics. Formally, the

Mean-Field interaction U1F does not change the “physical properties” of a Bose

system (cf. [3, 57, 58]) and the “physical” effect of the interaction potential should

express itself by the other terms of interaction, i.e., by the interaction UA.

The Bogoliubov procedures [4—8] always involved the truncation of the Mean-

Field interaction Up’. The interaction UfM’ (1.7) in the WIBG comes directly

from the Bogoliubov truncation of the Mean-Field interaction. Avoiding this inter

action term allows us to solve the problem of the second condensation explained in

the previous section.
By doing on Hf0 the usual Bogoliubov approximation (1.8) note that the new

Hamiltonian does not commilte with the particle number operator NA. Following

suggestions of Bogoliubov [6], we first use the new set of operators

= a (N0 +
j)_1/2

ak, = a (N0 + I)_1/2 a0, k e A*.

This set {<k}kEA*\{O} satisfies the Canonical Commutation Relations. Then, for Hf0

the next step corresponds to do the canonical Bogoliubov approximation (1.10). It
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implies a bilinear form in Bose-operators {k}kEA*\{O}

Hf0 (c) 6k + k
c2

[CkCk + k(k]
kEA*\{0} kEA*\{0}

+ k [c2k+2(kck]. (2.2)
kEA*\{0}

This Hamiltonian commutes with the particle number operator NA. After the canon
ical gauge transformation to boson operators

k e A*\ {0},

the model Hf0 (c) only depends on x c2. Then, the Bogoliubov canonical u-v

transformation diagonalizes it by using a new set of boson operators {bk, b}keA*\{O}
defined by

= Ukbk — vkbk, c = ukb — vkb_k. (2.3)

The real coefficients {Uk = u_k}kEA*\{0} and {Vk = v_k}kEA*\{O} satisfy:

2 2 X.Ak 2 2 6k
Uk —

V = 1, 2UkVk = , U + Vk =

____________

\/Ek (8k + 2xk) /Ek (6k + 2xk)

It follows that the Hamiltonian Hf (c 0) corresponds to the perfect Bose gas of
quasi-particles defined by

H (x c2) > (ei + 2x..\k)bbk
kEA\{0}

(v (8k + 2xAk) — (6k + xAk)). (2.4)
kEA* \{0}

In other words, if we consider that this “canonical Bogoliubov approximation” is true,
we directly get the well-known Bogoliubov gapless spectrum, i.e., the Landau-type
excitation spectrum of figure 1.1, for a Bose condensate density x = c2 > 0.

2.2. A polemical discussion of this new approach

The main problem of the previous attempts (Bogoliubov et al, see for example
[1,4—8, 59, 60]) is to assume, a priori, the Bose condensation by directly doing the
Bogoliubov approximation with an arbitrary choice of c2, without exactly solving it
in terms of the thermodynamic behavior. In particular, the “canonical Bogoliubov
approximation” (1.10) applied on Hf0 has to be proven. For example, Bogoliubov
made the wrong assumption of 100% of Bose condensate at zero-temperature in the
canonical ensemble, but what is our value of x = c2 after the approximation (1.10)?

Actually, these questions are solved in [15] since the canonical thermodynamic
behavior of the nondiagonal Hamiltonian Hf0 is rigorously performed. In particular,
it is shown that the “canonical Bogoliubov approximation” (1.10) is true in the
following sense: the thermodynamics of Hf0 corresponds, at the thermodynamic
level, to the perfect Bose gas (2.4) of quasi-particles for k e A*\ {0} with a Bose
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condensate density (j3, p) on k = 0 (cf. theorems 3.1 and 3.2). In fact we prove
[15] that the model Hf0 solves, in the canonical ensemble, the problems of the

previous Bogoliubov theory and implies a new microscopic theory of superfluidity

at all temperatures explained in the next Section 3.

2.3. Additional remarks

As it is explained in Section 1.3, the first important problem of the Bogoliubov theory

was highlighted by Angelescu, Verbeure and Zagrebnov in 1992 [1]. It concerns the

instability for positive chemical potential ,a > 0 of the Bogoliubov Hamiltonian

Hf.\0>o. Therefore, a “minimal” stabilization of the Bogoliubov Hamiltonian is to

add the “forward scattering” interactions between particles above zero-mode, i.e.,

to save during the truncation the Mean-Field interaction UfF (1.2). This quite

interesting approach was first developed in the papers [1, 59, 60] and leads to the

model
izrSB — TTMF

called the AVZ-Hamiltonian or the superstable Bogoliubov model. In the canonical

ensemble, the two models Hf0 and H0 are equivalent, i.e. their Gibbs states are

equal for all (,8,p).
Their main object was of course to correct the instability for positive chemical

potentials of the Bogoliubov Hamiltonian Hf0 but also to find a gapless Bogoliubov

spectrum in the grandcanonical ensemble. In [1], they use a Bogoliubov approxi

mation partially applied on H0, i.e., they save the Mean-Field interaction Uj

(1.2), whereas in [60], the authors use a “generalized” Bogoliubov approximation.

This “generalized” Bogoliubov approximation corresponds to partially change the

operators {ao/’V, a/’V} by a suitable function {b (c) ,b(c)} in (2.5) except in

the Mean-Field interaction Uf’F’. Then, they prove a Bose condensation in zero-

mode via second-order phase transition and a linear asymptotic of the elementary

excitation spectrum in condensed phase for Ik — 0, see also discussions in Section

3.4 of [2].
In [61] it is shown that the two procedures [1,60] are inexact, in the sense that

they are equivalent to some drastic modifications of the original Hamiltonian H0.

For example, as Bogoliubov did, they were forced in [1] to add some additional

assumptions to find a gapless spectrum. As it is explained in Section 2.1, it was

unlikely that the exact solution of H0, in the grandcanonical ensemble, had a gap-

less spectrum even in the presence of Bose condensation. In fact, we prove [61] that,

on the thermodynamic level, the spectrum always has a gap in the grandcanonical

ensemble.
Actually, as the review [2] explains in the “outline” section, we should be dis

couraged ‘from performing sloppy manipulations with Bose condensations, quantum

fluctuations and different kinds of ansãtze “. The analysis performed in [61] provides

another strong warning in doing it.

11



3. A new theory of superfluidity at all temperatures [15]

To fix the notations, we recall that 4? = (kBT) > 0 is here the inverse temperature
and p> 0 the fixed full particle density, whereas n = [pV] defined as the integer of
pV, is the number of particles in the canonical ensemble.

3.1. Rigorous thermodynamics in the canonical ensemble

The aim of this section is to examine the Hamiltonian Hf0 (2.1) in the canoni
cal ensemble specified by (,8, p). It is essential here to note that in the canonical
ensemble the conditions relating to the interaction potential so (x) may be relaxed
as follows. The model is independent of the Fourier transformation of so (x) for
k = 0, which may be infinite for some specific interaction potentials. However, the
(effective coupling) constant

9oo ()3 f dk <0, (3.1)

R3

and ço (0) have to exist. In particular, the Fourier transformation Ao(rmin) of so (x)

for the mode k = 0 which drastically depends on rmjn (specially when rmjn ‘, 0+),

see (1.3), has no influence on the canonical thermodynamic behavior of Hf0.
Now we give all promised properties of the Hamiltonian Hf0 in the canonical en
semble.

1. Let ff0 (5, p) be the corresponding free-energy density defined for a fixed particle
density p> 0 by

1 / B (n=[pV])\

ff0 (5, p) — in Tr ç\{e’Ao } ). (3.2)

Recall that the “canonical Bogoliubov approximation” (1.10) implies the model
Hf 0 (c) (2.2). Here, for technical considerations, we use the operator Hf0 (c) cor
responding in Hf0 (c) to replace again the operators {k}kEA*\{0} by {ak}kEA\{0}

The Hamiltonian Hf0 (c) is well-defined on the boson Fock space

+00

$
ni=0

(n)of the symmetrized n-particle Hilbert spaces B,ko for non-zero momentum bosons.
The Bogoliubov canonical u-v transformation gives also for k C A*\ {0} the perfect
Bose gas (2.4) of quasi-particles for a Bose condensate (k = 0) density x. Even if
Hf0 (c) does not commute anymore with aak, we consider its (infinite volume)

k0

free-energy density defined by

1 B (ni[p1V])

f (5, x) lirn — lnTr1) ({eHAo} ), (3.3)
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for any 3> 0, Pi > 0 and x = c2 0. The (infinite volume) pressure of this gas of
quasi-particles is

B 1 _((C)_( E aZak+x

p0 (3,a,x) tim lnTre \

= sup {a{p1 +z] — f(,p1,x)}
p’>0

ax
+ f {

in (i_ eo)
‘+

(f,o - Ee0)
}
d3.4)

for a 0 with

fk,o = a + X;\k, E0 = vk — a) (k — a + 2xAk). (3.5)

Then we get our first main result:

Theorem 3.1. The thermodynamic limit f0’3 (3, p) exists for any fi> 0 and p> 0.

(i) Moreover, the Hamiltonian Hf0 (2.1) is equivalent, at the thermodynamic level,

to the perfect Bose gas (2.4) of quasi-particles for k e A*\ {O} with a density x =

(3, p) solution of the variational problem:

f (,p) =inf {f(,p- x,x)} = {f(,p- x,x)}
x=x(3,p)<p

(ii) More explicitly the free-energy density f (,8, p) equals:

f (, p) = sup { ap - p (, a, ) } a () p - p (, a () ,).
o<0

with = (3,p). Note that f013 (/3,p1,x) (3.3) may have been directly defined as

the Legendre transformation ofpj (3, a, x).

The solution a () of the variational problem (ii) in the previous theorem is the

unique solution of the Bogoliubov density equation:

p=p(3,a,) forp>0. (3.6)

Here

B

_____

I f,o

Po (/3,a,x) x) =x+ j B
d k

+

R3:o
[eko — i]

(3.7)
(2r)3 J 2Ee0 [fk,o + E0]

Moreover, there is a particle density p, (j3) such that the solution (3, p) = 0 for

p PC () whereas for > PC (3), 0 < p) < p (even for 3 — +oo). For

a fixed particle density p, there is also a critical inverse temperature 8C (p). An

illustration of /C (p) is performed in figure 3.1. Note that 8f (j3, p) = a () and

13



Figure 3.1: Illustration of the critical inverse temperature 5 (p) as a function of
p. The dotted line corresponds to the phase diagram of the Perfect Bose Gas. The
difference with the Perfect Bose Gas is always greater or equal to zero. It may be
zero for all 5> 0.

8f(5,p) <Oforp74p(5) or55(p).
For p < p (5), remark also that the thermodynamic behavior of H0 corresponds
to the Perfect Bose Gas (excitation spectrum Ek).

2. Now we give our main result for the thermodynamic behavior of Hf0 in the
canonical ensemble (3, p). In the following theorem, ()HB (5, p) represents the

(finite volume) canonical Gibbs state associated with Hf0.

Theorem 3.2. (i) A non-conventional Bose condensation induced by the non-diagonal
interaction UfD for high particle densities, or low temperatures:

/aao\
(5 (5 f =Oforpp(5) or55(p).

\ V /Hf0
‘P1 — P1

—

> 0 for > (5) or 5 > 5 (p).

(ii) No Bose condensation (of any type I, II or III [62—64]) outside the zero-mode
for any particle densities or temperatures:

VkEA*\{0},
lKk)

limlirn (aak)HB(5,p)=O
{keA* 0< Ilk II6}

(iii) A particle density outside the zero-mode equal to:

li
kEA*\{0}

(aak)H0

= { (2) E0 [e — ]
d3k} L==a)



1 p

+ 3/ d3k
(2R) 2Ee0 [fk,o + B0]

x=,c=o)

Here fk,o and E0 are defined by (3.5) for a chemical potential given by the solution
c () of the variational problem (ii) in the previous theorem.

(iv) There is no discontinuity of the particle densities (density in the zero-mode
(i) or outside the zero-mode (iii)).

(v) For p < p (3) or 3 /C (p) one has the Bose statistics for a corresponding

chemical potential c (0) < 0:

Vk e A*: Ik) 6 > 0, urn (akak)HB
= ek(0)) —

But for p> PC (/3) or 3 > /C (p), i.e. in the presence of a Bose condensation, we get

another one, which we call the Bogoliubov statistics, for a corresponding chemical

potential c
(%)

<0:

1i (aak)H (/3, { (eo
— i) + 2Ee0 (fk,o+ Ee0) } L=()

for any k A* such that kII 6> 0.

The illustrations of the particle densities inside and outside the zero-mode are

given in figures 3.2 and 3.3 respectively.

Remark 3.3. For p> PC (3), there is a non-conventional Bose condensation whereas

no Bose condensation (of any type I, II, or III [62—64]) appears outside the zero-

mode at all densities p> 0 (theorem 3.2). In contrast to the Bogoliubov theory (see

for example [3]), this one is self-consistent with the corresponding truncation of the

full Hamiltonian in the canonical ensemble.

3.2. Conclusions

1. In order to obtain a microscopic theory of superfluidity we have to get a Landau-

type excitation spectrum (cf. figure 1.1 [9,10]) as Bogoliubov did [4—8] for a suitable

choice of c—numbers.
As Landau’s predictions [9, 10], at high densities p> PC (i3) (or sufficiently low

temperatures, cf. figure 3.1) the Bose gas Hf0 is equivalent to a “gas of collective

elementary excitations” or “quasi-particles” (2.4) for k e A*\ {0} with a density

(/3, p) of Bose condensate on Ic = 0, cf. theorems 3.1 and 3.2. Consequently, as

stated in Section 2.1, the spectrum of excitations, which is macroscopically relevant,

equals the Bogoliubov spectrum at inverse temperatures /3> 0 and particle densities

p>O:

EB (/3 — f 6k =h2k2/2m for 3 (p) or p PC (/3) (3 8)
k ‘P —

k (Ek + 2Ak) for /3 > /3 (p) or p> PC (/3)
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Figure 3.2: Illustration of the non-conventional Bose condensate density (/3, p) as
a function of p. The dashed dotted line corresponds to a zero-temperature, i.e., for

/3 — +oo. The straight line is x = p. Note that (/3, p) is originally defined as the
solution of a variational problem (see theorem 3.1).

see (2.4). The collective excitation spectrum E, (/3, p) has no gap for any densities
or temperatures as expected in Section 2.1. The main difficulties are to find the
solution (,t3, p) of the variational problem (i) of theorem 3.1, i.e., to obtain the
thermodynamic properties of the Hamiltonian Hf0 in the canonical ensemble.
Note that we do not rigorously know the exact spectrum of Hf0 even in infinite
volume, since our analysis is only based on its thermodynamic properties.

To find the exact Landau-type excitation spectrum from (3.8), i.e. to get the
“phonons” part and the “rotons” one, we can reason along the standard lines of
Bogoliubov microscopic theory of superfluidity, see [2, 4—8]. Note that, for this
approach, we have to assume some specific conditions relating to the two-body
interaction potential ç (x). In particular, )j%, is spherically-symmetric, i.e. Ak =

Additionally, as Bogoliubov did, it is necessary to assume the absolute integrability
of x2ç0 (x) E L’ (IF) in order to have a Taylor expansion for small Then, the
Bogoliubov spectrum Ee (/3, p) is a Landau-type excitation spectrum for p> 1°C (3)
or 3 > /C (p) and an illustration is given by figure 3.4.

Remark 3.4. The famous Landau’s criterion of superfluidity of 1941 [9, 10] gives
the following critical velocity:

. { Ee (/3) } = ()
1/2

{min (Ek + 2A)
}1/2

— — f 0 ,for /3 /3 (p) or p p (/3).
= vo/3,p1 —

>0, for/3 > /3(p) or > PC(/3).
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Figure 3.3: Illustration of the particle density outside the zero-mode (p — (8, p))

as a function of p. Note that for p < p (3), (/3, p) = 0. The dashed dotted line is

the Bogoliubov condensate density for 3 —* +oo, i.e., at zero-temperature.

2. Then, the thermodynamics of the theoretical Bose gas Hf0 is qualitatively quite

similar to the one of the liquid 4He:

• for small densities p p (3) or high temperatures T = (kB/3)’ TC

(kB/3C (p))’ the thermodynamic behavior corresponds to the Perfect Bose Gas,

• for high densities p> PC (3) or small temperatures T <TC (even with T —* 0,

i.e., /3 —* +oo), the spectrum of excitations becomes a Landau-type excitation

spectrum and meantime a non-conventional Bose condensation appears via a

second order transition with the (continuous) density 0 < (/3, p) <p (figure

3.2),

• a coexistence of particles inside and outside the Bose condensate (figure 3.3),

even at zero-temperature as it is experimentally found in [36,37]:

±coA V
keA*\{0}

(aak)H0‘

= { (2 I 2Ee0 [fk,0 + Ee0]
d3k}

Vk e A*\ {0}, limlirn (aak)HB ‘

= { 2E [f+ Ee0] } L=)
(3.9)

Quantitatively, the critical density PC (/3) is approximately given by PC Cd)
pPBG (/3) (cf. figure 3.1), with PBG (3) defined as the critical density for the Perfect

Bose Gas. The theoretical temperature of the phase transition TC always verifies

17



Figure 3.4: The Bogoliubov spectrum Ej (8, p) for 3 > ,8 (p) or p > p (3). Each
wave-length k corresponds to a momentum Ilk.

T T° = 3.14 K (critical temperature evaluated for a Perfect Gas of helium
particles) but is quite close to TBG:

T 3.14 K.

(In fact we are not able to prove an exact equality at very high densities [15,61]).
The experimental transition of the normal liquid 4He (He I) to superfluid phase 4He
II takes place at a lower temperature TA = 2.17 K (along the vapor pressure curve),
which is not so far from the one of the model Hf0. However, note that the Henshaw
Woods spectrum (experimental Landau-type excitation spectrum) does not change
drastically when the temperature crosses TA, whereas there is no superfluidity for
these temperatures.

Remark 3.5. This means that there is a temperature TA > T such that the exper
imental “quasi-particle” system still exists for T <TA even if Landau ‘s criterion of
superfluidity (remark 3.4) experimentally fails at these temperatures TA <T < TA.

3. To resume, this analysis is not a complete theory of “real superfluidity”. In
particular, the Bogoliubov phonon-maxon-roton dispersion branch is only a part of
the spectrum of the full quantum-mechanical Hamiltonian of the helium system.
Therefore, this theory fails in being a complete description of all thermodynamics
of liquid helium. For example, at temperatures TA <T <Ta, a Bose condensation
still exists in Hf but not for liquid helium even if the system of “quasi-particles”

resists in liquid helium for TA <T < TA (remark 3.5).
On the other hand, the understanding of superfluidity represents one of the most

challenging problems in modern physics. In theoretical physics, quantum phase
transitions are intrinsically complex even at equilibrium, involving the subtleties of
quantum mechanics acting in concert with statistical mechanics. At equilibrium, via
“thermodynamic” analysis this situation enables us to focus almost exclusively on
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the comparatively simple but effective model Hf0 that shares this low-temperature
physics despite providing a simplified caricature of the underlying atomic physics.

Note that, in contrast to Bogoliubov’s last approach and with the caveat that the
full interacting Hamiltonian is truncated, the analysis performed here is rigorous by

involving for the first time [15] a complete thermodynamic analysis of a non-trivial
continuous gas in the canonical ensemble. This unique truncation hypothesis is still

not proven, but we show that the theory is, at least, self-consistent (remark 3.3).

4. Superfluidity theory reconsidered: new implications

4.1. Two complementary Bose systems: Cooper pairs and gas of quasi-

partides

In the case of homogeneous systems, the previous analysis provides a new (canon

ical) theory of superfluidity with a gapless spectrum at all particle densities and

temperatures, leading us to a deeper understanding of the Bose condensation phe

nomenon in liquid helium. At any temperatures T = (kB/)’ 0 below the critical

temperature TC or above a critical density p> (3), the corresponding Bose gas is

a mixture of particles inside and outside the Bose condensate (see theorem 3.2 and

figures 3.2 and 3.3). Even at zero-temperature, two Bose systems coexist: the Bose

condensate and a second one, which is denoted here as the Bogoliubov condensate,

cf. (3.9), whereas at all densities p> 0 there is no Bose condensation (of any type

I, II, or III [62—64]) outside the zero-mode. In the regime T <TC or o > i C8),
the system follows the Bogoliubov statistics (v) of theorem 3.2, whereas in the ab

sence of the Bose condensation, i.e., for T TC or p PC (3), the (standard) Bose

statistics holds.
1. The origin of the Bogoliubov statistics and also of (3.9) is a phenomenon of

interaction. Actually, it has been known since [43] that the collection of particles

outside the zero-mode imposes, through the non-diagonal interaction U, a glue-

like attraction between particles in the zero-mode.

Figure 4.1: Non-diagonal-interaction vertices corresponding to Uj.

A natural way to see this phenomenon is to remark that the non-diagonal interaction

Uj\m (see figure 4.1) implies an effective interaction term gA,00 for bosons with k = 0,

see figure 4.2. Evaluated via a Fröhlich transformation in the second order [43] (see

also the review [2]), 9A,00 is strictly negative. The corresponding thermodynamic

limit
hng,oo = oo <0,
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see (3.1), amazingly plays a crucial role in the rigorous thermodynamic analysis of
Hf0 (see [15] or in [61]: proof of theorem 2.3). It is also essential in the rigorous
study of the Weakly Imperfect Bose Gas, i.e. the Bogoliubov Hamiltonian Hf,>0,
see [2,11—13].

Figure 4.2: Effective interaction for the zero-mode induced by the non-diagonal in
teraction U}

The Bose condensate with the density (3, p) and the remaining system with the
density {p — > O}, i.e., the Bogoliubov condensate, only exist via this glue-like
attraction oo (figure 4.2). In fact, the particles inside the condensate pair up via
the Bogoliubov condensate to form “Cooper pairs “. This Bose condensation consti
tuted by Cooper pairs is then non-conventional [2,12,14,43,65,66], i.e. turned on by
the Bose statistics but completely transformed by the non-diagonal interaction UjfD.

2. The coherency due to the presence of the Bose condensation is not enough to
make the Perfect Bose Gas superfluid, see discussions in [4—6]. The spectrum of
elementary excitations has to be collective. In this theory, the particles outside the
Bose condensate (the Bogoliubov condensate) follow the Bogoliubov statistics (v) of
theorem 3.2 and also represent a system of “quasi-particles” with the Landau-type
excitation spectrum. Therefore, following Landau’s criterion of superfluidity [9, 10]
(remark 3.4), the Bogoliubov condensate here is superfluid due to phenomena of
interactions which change, in the presence of the Bose condensate, the behavior of
individual particles into an ideal Bose gas of “quasi-particles” with the given spec
trum E1 (3, p). Indeed, through the Bose condensate, the non-diagonal interaction
Uj combined with the diagonal interaction Uf creates quasi-particles from two
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particles respectively of modes k and —k (k 0). Formally, this can be seen via
the Bogoliubov u-v transformation applied to {Hf0 (c)}112 cf. (2.3). This gas

of quasi-particles, i.e. the Bogoliubov condensate, exists if arid only if the non-
conventional Bose condensate exists too.

3. Also for high densities p> 0 we have

urn {p—(3,p)}=O, (4.1)
p—*+oo

cf. theorem 3.2, figure 3.2. Actually, the non-diagonal interaction U) implies an

effective repulsion term

gpq 1i gA,pq = (p) ( + 0, (4.2)

inside each quasi-particle [2,43], i.e. inside each couple of particles respectively with

modes q and —q (q 0) (figure 4.3). The larger the Bose condensate density p),

Figure 4.3: Effective interaction outside the zero-mode induced by the non-diagonal

interaction Uj

the stronger the effective repulsion term gpq The raise of the non-conventional Bose

condensate progressively destroys the Bogoliubov one, see (4.1). The Bose and Bo

goliubov condensates still remain in competition with each other.

4. Note that the Bose condensation becomes non-conventional with the formation

of Cooper pairs via the term of attraction goo, i.e. because of quantum fluctuations,

21



see figures 4.2 and 4.3. The importance of quantum fluctuations in helium systems
corresponds also to the qualitative explanation for a liquid state at such extreme
temperatures [31].

4.2. A polemical discussion of the Landau’s criterion of superfluidity

Let us examine other interpretations of the Bose system Hf0 in relation with the
liquid 4He. In fact, we give here two interpretations of the Bose gas Hf0 obtained by
following or not Landau’s criterion of superfluidity [9,10] (remark 3.4). As explained
above, note that the model Hf0 is a caricature and may contain only a small part of
the physical properties of real liquid helium. The sole purpose of these discussions
is to give some new directions in light of the Bose gas Hf0. At the end, note that
we explain that this theory may be a starting point for a rigorous explanation of the
two-fluid model of Tisza and London.

1. It is known [19, 20] that below the critical temperature T) of the )-transition,
two fluids (4He II phase) coexist: the normal fluid and the superfluid liquid. Later
justified within the framework of phenomenological Landau’s theory [9, 10, 26], the
picture suggested by Tisza and London was to interpret the condensate of frozen in
momentum space bosons with p = 0 as a “superfluid component”, and the rest of
particles as a “normal component” which is the carrier of the total entropy of the
system. Experimentally, a Bose condensate was discovered in 4He II. The apparition
of this Bose condensate transition and the one of the superfluid liquid are strongly
correlated to each other. Indeed, from [6769] if ‘y3 is the fraction of superfluid liquid
and 7o the one of the condensate, one has

(T) (TA — T) o (T), for T —* T, (4.3)

see figure 4.4. However, even for zero-temperature the superfluid liquid is not in a

Figure 4.4: The fractions, of superfluid liquid and ‘‘o of the Bose condensate, as
a function of the temperature T for 4He

full Bose condensate phase which is in contradiction with the assumption of Tisza
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and London.

2. Following Landau ‘s criterion of superfluidity [9, 10], the theory based on Hf

might be understood as a microscopic theory of the superfluid liquid. Within this

framework, it allows us to understand the close connection between the Bose conden

sate with density (3, p) and the Bogoliubov one with density {p — 5> 0}. These

two systems may compose together the superfluid liquid, which coexists with the

normal liquid for non-zero temperature at any positive velocity.

Note that Landau’s criterion of superfluidity [9, 10] confronts an initial problem

expressed by remark 3.5 and also a second one: the application of this criterion to

the Henshaw-Woods spectrum gives for the critical velocity v0 60 rn/s (remark

3.4), whereas superfluidity in capillaries disappears when velocity is of the order of

few cm/s. Moreover, it depends sensitively on the diameter of the channel.

The attempts to explain these “misfittings” are concentrated around the idea that

the Landau-type spectrum experimentally discovered by Henshaw and Woods is

only a part of a plethora of other types of “elementary” excitations not covered by

the Bogoliubov theory, see [37,69].
Within the framework of the model Hf0, we have seen in Section 4.1 that the

Bose condensate has to exist in order to have the superfluidity property via the

Bogoliubov condensate. Indeed, as soon as the non-conventional Bose condensate

disappears, the collective phenomenon involved in the formation of the superfluid

gas (Bogoliubov condensate) also vanishes. The introduction of a velocity in an

inhomogeneous gas (in capillaries) may change the individual spectrum Ek by in

creasing it. Then, the effective attraction g00 ((3.1), figure 4.2) becomes smaller, i.e.

the non-conventional Bose condensate and the (superfluid) Bogoliubov one may be

destroyed for velocities sufficiently large but smaller than v0 (remark 3.4). Note that

the non-conventional Bose condensate constituted of Cooper pairs may be changed

into a conventional Bose-Einstein condensation as it exists for the Perfect Bose Gas.

An experimental study of the spectrum of excitations and also of the Bose conden

sation phenomenon should be interesting at different velocities.

Actually, the collective behavior of this system should be quite delicate to save.

A velocity may destroy the Cooper pairs and the quasi-particles. The important

point is the following: the bigger the density of non-conventional Bose condensate,

the stronger the robustness of Cooper pairs and quasi-particles to any perturba

tions.
At temperatures T < T>, even if the Bose condensate exists, its density may be

not sufficiently important to keep the collective behavior for any positive velocities:

some quasi-particles and Cooper pairs may be destroyed and a fraction of normal

fluid appears. At temperatures T, <T <T (remark 3.5) the thermic fluctuations

become sufficiently strong to destroy the non-conventional Bose condensate. Con

sequently, even if the quasi-particle gas resists in liquid helium for TA < T < TA

(remark 3.5), it is quite unstable and any perturbation of the quasi-particles (like

any positive velocity) may quickly destroy the collective system and switch it to a

standard liquid where no superfluidity exists.

3. Note that this last conjecture may seem a little naive since the value TA is very

specific. Actually, the previous discussions are just phenomenological interpreta
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tions. Therefore, to conclude we examine another interpretation of the Bose gas
Hf0 without taking into account Landau ‘s criterion of superfluidity [9, 10], which is
a phenomenological explanation of superfluidity.

If ‘-ye (T) (T — T) at temperatures T = (kB,8)1 —÷ T is the fraction of
Bose condensate for a fixed density p > 0, then via theorem 3.2, the fraction
y (T) = 1

—
p,jp satisfies:

(T) (T — T)’ (T), for T T, (4.4)

where

p = p (T) =

1 f dk . (4.5)
(2r) Ej [eEkoh’T

— i] j x,c=c)

The relation (4.4) is strangely similar to (4.3), see figure 4.4. The fraction ‘y (T)
may be considered as the superfluid fraction of the Bose gas Hf

.
Therefore, at a

fixed density p> 0, the superfluid density equals

1 1 x2)2 1
p5 (T) = x + 3 f n B r

k
B 1 d3k(2r) ‘k,0 [fk,0 + 1k,oJ ) x==()

whereas p (4.5) is the density of normal fluid which is the carrier of the total entropy
of the system. Note that urn p = 0 and within this framework there is 100% of

T—*0+

superfluid liquid at zero-temperature with a density > = (3, ,o) = (T). See
(i) of theorem 3.2 to see the Bose condensate density at a fixed density p> 0.
In fact, this conjecture may be analyzed via the corresponding Hamiltonian with an
external velocity field as it has been recently performed with dilute trapped Bose
gases at zero-temperature [70]. This analysis is reserved for another paper.

4.3. Superfluidity of Fermi systems

The superfluidity of a Fermi system, i.e. the 3He liquid, was discovered in 1972
for sufficiently low temperatures [21, 22]. All the previous theories concern Bose
systems. However, it is remarkable to see that, via the effective coupling constant

oo <0 (figure 4.2), the non-diagonal interaction Uj of the model Hf implies an
attraction between particles in the zero-mode.
By analogy, it is well-known that the phenomenon of superconductivity comes from
the effective electron-electron interaction in the BCS theory which results from the
electron-phonon (non-diagonal) interaction in the second order of perturbation the
ory, see e.g. [71,72]. Thus, in a superconductor, electrons can pair up in the metal
crystal via phonons to form Cooper pairs which can then condense into a super
conducting state. This phenomenon corresponds also to the explanation given for
the existence of superfluidity in 3He [73—75]. Indeed, by cooling the liquid to a low
enough temperature, 3He atoms can pair up, making it a boson, and therefore su
perfluidity can be achieved.
In the Bose gas Hf0, the effective attraction characterized by 9oo <0 plays exactly
the same role on bosons by creating Cooper pairs and may also work for Fermi
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systems. Therefore, it should be interesting to study a similar Hamiltonian within
the framework of Fermi systems.

Of course, the main difference comes from the Fermi statistics. In particular,
the critical density pPBG (/3) for the Perfect Bose Gas does not exist for the Perfect

Fermi Gas. For the Bose system Hf0, the corresponding kinetic part only turns on
the Bose condensation phenomenon via the Bose statistics. Indeed, the correspond
ing “chemical potential” ci (i), as solution of the variational problem for a Bose

condensate density (/3, p), becomes zero when we reach the critical density as for

the Perfect Bose Gas, but switches again to strictly negative values for i> 0 (in [61]:

proof of theorem 2.3). As soon as the Bose condensate appears, the non-diagonal

interaction UjfD becomes sufficiently important to drastically change all thermody

namic properties of the system by instantly switching the usual Perfect Bose gas to

a gas of quasi-particles: the Bose-Einstein condensation becomes non-conventional

in correlation with the creation of the Bogoliubov condensate and the formation of

Cooper pairs (Section 4.1).
Whereas the non-diagonal interaction Uj’- is not strong enough to imply alone the

Bose-condensation at the critical temperature or density of the Perfect Bose Gas, for

very small temperatures it strongly dominates all thermodynamics of the system.

The non-diagonal interaction U} obviously has a strong impact on the system (see

for example the divergence of the grandcanonical pressure of Hf [15]). It would

have implied the non-conventional Bose condensation without the Bose statistics at

sufficiently low temperatures or high densities.

In particular, if the Fermi statistics now holds, a similar non-diagonal interaction

characterizing by an effective attraction oo (3.1) (figure 4.2) drastically opposes the

repulsion from the Pauli exclusion principle and would finally become strong enough

at sufficiently low temperatures to imply alone the non-conventional Bose condensa

tion (Cooper pairs) and the superfluid gas of quasi-particles explained above. This

means of course that the critical temperature for the corresponding Fermi system

should be quite lower than that of the Bose model Hf
.

Experimentally, the critical

temperature of 3He is very low in comparison with that of 4He (2.17 K) : it is only

two milli Kelvin for 3He [21,22].
We reserve this analysis on Fermi systems for another paper. To conclude, notice

also that the 3He liquid forms, at sufficiently low temperatures, several superfluid

phases (A&B), which are much richer properties than those of the superfluid 4He.

For a complete review of properties of 3He at low temperatures, see [76, 77].
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