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‘soliton’ backgrounds. When the fermions are isoscalars, the mechanism fails, while for
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1. Introduction

The idea that our world is a (fairly flat) 3-brane in a higher dimensional space has deep

roots in the 19th century [1]. It was introduced into physics in the context of cosmological

defects on one hand and the branes of M-theory on the other. In any case one has to

explain why the observed fermion masses are so much smaller than the mass scale given by

the transversal extension of the brane. On some parameter range one expects the branes

to approach classical configurations, such that a semiclassical description of matter on the
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brane is possible. Qualitative features like the appearance of low energy excitations on the

brane should be independent of the parameters at least locally, such that these semiclassical

descriptions may be relevant for realistic cases.

We study the extension of the original work of Rubakov and Shaposhnikov [2] localising

a fermion to the brane, in which a 5 dimensional model, i.e. one with codimension-1 is

employed. There [2, 3], the brane lagrangian is the φ4 (or sine-Gordon) system in 1

dimension, supporting the kink-soliton. We are concerned with the possibilty of extending

this mechanism to the case of arbitrary codimension-d ≥ 2. In general, fermions are

localised when their reduced Dirac equation in the d dimensions transversal to the brane

has zero modes. This always is the case when the index of the corresponding Dirac operator

is positive.

In case [2] the wave function of the fermion drops exponentially away from the brane.

Such backgrounds will be called solitonic. For them an explicit formula for the index is

known [4], and physically relevant specialisations are known both in odd and in even dimen-

sion [5, 6]. The index only depends on the behaviour of the scalar fields at infinity, gauge

fields are assumed to approach zero at infinity and do not influence the index in a direct

way. Nevertheless, the corresponding internal symmetries are crucial. In the backgrounds

of Yang-Mills or sigma model instantons, the fermionic fields have a power-law fall-off away

from the brane. In such cases the available index calculations depend on compactifications

at infinity, which allow an application of the Atiyah-Singer index theorem [7].

For solitonic backgrounds, non-zero indices occur in both even and odd dimensions,

whereas in the instanton case one needs even dimensions. Even when the index is zero or

negative, solutions of the reduced Dirac equation might exist. For fermions in instanton

backgrounds this can be excluded by vanishing theorems for the kernel of the correspond-

ing Dirac operator (the Weizenböck formula), but in other contexts little is known. In

particular, no general results for solitonic backgrounds seem to exist.

The index formulas require cumbersome if straightforward integrations, but often an

analytic approach is possible. When a background can be deformed into a superposition of

well separated configurations with spherical symmetry, the index is additive and only these

spherically symmetric situations have to be considered. For any of them the index is the

sum over the indices for fixed angular momentum, which are determined by the behaviour

of ordinary differential equations and easy to calculate. We consider some families of such

configurations. As new features we obtain that certain solutions are universal and apply

to any number of transversal dimensions, and in certain cases a vanishing theorem can be

established.

We have considered two alternative types of fermionic models in 4 + d dimensions. In

the first of these, (i), the Dirac spinor is isoscalar, such that the Dirac operator on the

codimension involves only unmodified partial derivatives and no gauge field. In the second

type, (ii), the Dirac spinor on the codimension is in general an isospinor under an internal

SO(d) group, i.e. it is a square matrix valued array. The Dirac operator features a covariant

derivative, but the index is determined for the case of a vanishing gauge field. Here we also

consider an exceptional d = 2 case when the covariant derivative is abelian and the Dirac

spinor is a two-component column.
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Like in [2, 3], our brane lagrangians in d dimensions support finite energy topologically

stable solutions, both of ‘instanton’ and of ‘soliton’ types. Our nomenclature here is the

following: consider the topological charge density %[ϕ], e.g. the Chern-Pontryagin (C-P)

density and its descendents when [ϕ] symbolises YM fields (in even dimensions) and YM-

Higgs fields, respectively, or, the degree of the map when [ϕ] stands for sigma model

fields. The scalar deansity %[ϕ] is essentially total divergence, in the sense that its variation

vanishes when it is subjected to arbitrary variations δϕ. (Indeed in the (C-P) case %[ϕ] is

precisely a total divergence %[ϕ] = ∂iΩi, Ωi being the Chern-Simons density.) When %[ϕ] is

subjected to spherical symmetry, which is the case for the fields [ϕ] at infinity, it reduces

always to a total derivative of some function σ, i.e.

∫

% ddx ∝

∫

dσ

dr
dr . (1.1)

We denote this function pertaining to the classical solutions ϕc by σc = σ[ϕc]. The pro-

files (2.13) and (2.14) stated below in section 2.1 specify our nomenclature of ‘instanton’ and

‘soliton’ types, respectively. Thus, finite energy topolologically stable solutions to Yang-

Mills (YM) or a sigma model systems in even d are typified by ‘instanton’ profiles, (2.13),

and solutions to sigma models in odd d, or to Higgs models, i.e. YM-Higgs (YMH) systems,

or Goldstone models, in both even and odd d, by ‘soliton’ profiles (2.14). By Goldstone

model, in turn, we mean the gauge decoupled version of a Higgs model, provided of course

that the soliton persists in the gauge decoupling limit of the YMH model in question. In

this context, the solutions of the symmetry breaking model(s) employed in [2, 3] are typified

by ‘soliton’, (2.14), profiles.

The main feature of the mechanism of [2, 3] is dimensional descent of a 4+d dimensional

fermionic model to 4 dimensional Minkowski space, the Dirac field on which is assumed

to be chiral and to be massless. For codimension-d ≥ 2, after the descent one is left

with a nontrivial Dirac equation on the codimension-d, which we have called the residual

Dirac equation. The crucial step is that of finding normalisable zero modes of this residual

Dirac equation. The asymptotic behaviour of the residual Dirac spinor is then responsible

for the decay of the Dirac field off the brane. Whether this decay is achieved, and if

so, is it power like or exponential, will depend on the 4 + d dimensional fermionic model

chosen.

It will turn out that the desired normalisable zero modes do not exist for models of

type (i) for any codimension d, and that such solutions exist for models of type (ii) for

all d.

To date, extension to higher codimensions (d ≥ 2) for this mechanism has been per-

formed for codimension-2, in a series of works started by Libanov and Troitsky [8, 9] in flat

space, and in the presence of gravity, in [10]. The models employed in both [8] and [10]

are of the type (ii), namely featuring a covariant derivative in the Dirac operator. In these

models [8, 10], what guarantees the existence of zero modes of the residual Dirac equation

in codimension-2, is the choice of such a Yukawa coupling in the 6 dimensional model that

leads to a residual Dirac equation which coincides with the particular Dirac equation on an

abelian-Higgs background for which Jackiw and Rossi [11] have constructed the zero modes
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explicitly. To follow this line of approach for codimensions-d ≥ 3, one is naturally led to

considering such 4+d dimensional fermionic models which result in d dimensional residual

Dirac equations for which we know there exist normalisable zero modes, or better still that

we can construct such solutions. Dirac equations in d dimensions in the background of a

YM ‘instanton’ or a YMH ‘soliton’ (or its associated Goldstone ‘soliton’) supporting such

zero modes are the natural candidates which will be proposed. Dirac equations in d di-

mensions will be solved in the appropriate ‘instanton’ or ‘soliton’ backgrounds, supported

respectively by a hierarchy of YM and YMH models in these dimensions.

The first in the hierarchy of YM models is the usual YM system in 4 dimensions, and its

extensions to all even dimensions as given in [12] support ‘instantons’ in these dimensions,

analogous to the 4 dimensional instanton [13]. It is these ‘instantons’ in d = 2n dimensions

that we will employ as backgrounds for the construction of the zero modes of the residual

Dirac equations, extending1 the d = 4 result of Jackiw and Rebbi [14] to arbitrary d.

The first in the hierarchy of non abelian YMH models is the Georgi-Glashow (Higgs)

model in d = 3, which supports the the usual monopole [16]. The zero modes of the Dirac

equation on this background was given long ago by Jackiw and Rebbi [17]. The extension

to arbitrary d is completely straightforward: The result of [17] follows directly from the

existence of monopoles [16] in the 3 dimensional Higgs model. The corresponding solitons

of Higgs models in arbitrary dimensions d have been systematically shown to exist, being

constructed numerically in [18]–[20]. The generalisation of the d = 3 result of [17] to ar-

bitary d then follows almost trivially. Moreover, the adaptation of the result of [17] to the

case of Goldstone model backgrounds also follows systematically, by employing the solitons

presented in [21]–[23].

In section 2 we present the 4+d dimensional models on the space with coordinates xM =

(xµ, xm), µ = 0, . . . , 3 labeling the Minkowski space and m = 1, 2, . . . , d the codimension,

and, we give the Ansatz separating the varaibles xµ and xm in the field equations. This

describes the dimensional descent. Both type (i) and type (ii) models, i.e. with Dirac

operators featuring both partial derivatives and covariant derivatives, are presented in this

section. The resulting residual Dirac equations in d dimensions will then be examined in

detail in the subsequent sections 3 and 4 respectively. In 3, it will be shown that for models

of type (i) the fermion cannot be localised to the brane for any d. In section 4 type (ii)

models will be analysed. In the subsection 4.1, zero modes of the residual Dirac equations

in even d ≥ 4 dimensional ‘instanton’ backgrounds of YM systems will be constructed,

resulting in the power localisation of the fermion to the brane. In the subsection 4.2, the

corresponding zero modes in all d ≥ 2 dimensional ‘soliton’ backgrounds of Higgs (or their

associated Goldstone) systems will be constructed, resulting in the exponential localisation

of the fermion to the brane. A summary of the results is given in section 5, and three

appendices have been supplied. Appndix A describes the (even) d = 2n dimensional YM

models and their ‘instantons’. Appendix B describes the d dimensional Higgs models and

their ‘solitons’, and appendix C describes the Goldstone counterparts of the latter.

1We restrict our considerations to Dirac equations on spherically symmetric backgrounds only and

exclude the multicentre backgrounds employed in [14], or even periodic backgrounds used in [15].
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2. The model(s) and residual Dirac equations

We will consider the following two types of fermionic actions, formally expressed as

SΨ =

∫

d4x ddx
(

¯̂
ΨΓ̂M∂M Ψ̂− µσ[ϕ]

¯̂
ΨΨ̂
)

(2.1)

SΨ =

∫

d4x ddx
(

¯̂
Ψ Γ̂MDM Ψ̂− µ

¯̂
ΨΞ[ϕ]Ψ̂

)

(2.2)

The first of these, (2.1), pertains to the type (i) family of models featuring partial derivatives

in the codimension. The components of the spinor field on the codimension-d, in (2.1), are

isoscalar. σ[ϕ] in (2.1) is a scalar function of the fields [ϕ] symbolising the scalar and/or

the YM field describing the brane lagrangian in the codimension-d. Specifically, it will

be defined as the leading term in the spherically symmetric restriction of the topological

current, e.g. the Chern-Simons term in the case of YM. Both ‘instanton’ and ‘soliton’

backgrounds can be accommodated in this scheme.

The second, (2.2), represents type (ii) models in which DM = (∂µ, Dm). The com-

ponents of the spinor field on the codimension-d, in (2.2), are isospinor except in the

case d = 2 case when they are isoscalar. These models subdivide further into two sub-

classes, ones with µ = 0, i.e. without a Yukawa term, and, those with µ 6= 0. The mod-

els (2.2) with µ = 0 accommodate only ‘instanton’ backgrounds, while those with µ 6= 0

accommodate only ‘soliton’ backgrounds, and in this case Ξ[ϕ] is a matrix valued function

of [ϕ].

The Dirac equations arising from (2.1) and (2.2) are, respectively

Γ̂M∂M Ψ̂ + µ σ[ϕc] Ψ̂ = 0 (2.3)

Γ̂MDM Ψ̂ + µ Ξ[ϕc] Ψ̂ = 0 , (2.4)

to be solved on the classical background ϕc(r) to be precised later. In the present work,

we anticipate the use of radially symmetric background solutions in terms of the radial

variable r = |xm| of the co-dimension, though a richer spectrum of such backgrounds arises

when this symmetry is relaxed.

Denoting the 4-dimensional (spacetime) coordinates by xµ and the coordinates of the

codimension by xm, we represent the 4+d dimensional gamma matrices Γ̂M = (Γ̂µ, Γ̂m) by

Γ̂µ = γµ ⊗
�
, Γ̂m = γ5 ⊗ Γm (2.5)

in terms of the 4-dimensional gamma matrices γµ and their chiral matrix γ5, and the

d-dimensional gamma matrices Γm.

Our separability Ansatz, which also effects the dimensional descent, is

Ψ̂(xµ, xm) = Ψ(xµ)⊗ ψ(xm) , (2.6)

and when applicable,

Ξ[ϕ(xm)] =
�
⊗ ξ[ϕ(xm)] . (2.7)

– 5 –
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In (2.7), the array ξ[ϕ(xm)] is a matrix valued array whose size will be determined by the

representaion in which the gauge connection in the covariant derivative Dm is. (In the

generic case this will be the Gamma matrix representation of SO(d).) Detailed definitions

of ξ for particular models to be considered, are given in section 2.2.

Using (2.5) and the separability Ansatz (2.6),(2.7), the Dirac equations (2.3) and (2.4)

yield, respectively

γµ∂µΨ⊗ ψ + γ5Ψ⊗ Γm∂mψ + µ σc Ψ⊗ ψ = 0 (2.8)

γµ∂µΨ⊗ ψ + γ5Ψ⊗ ΓmDmψ + µ Ψ⊗ ξc ψ = 0 , (2.9)

in which we have used the notation σc = σ[ϕc] and ξc = ξ[ϕc]. If we now invoke the

existence of the zero modes of the Dirac field in 4 dimensional spacetime

γµ∂µΨ = 0 ,

and require that the Dirac spinor is chiral, i.e. that

γ5Ψ = Ψ ,

then (2.8),(2.9) finally reduce to the residual Dirac equations in d dimensions

(Γm∂m + µ σc)ψ = 0 (2.10)

(ΓmDm + µ ξc)ψ = 0 . (2.11)

It is in order to mention at this point, that for the case of µ 6= 0 models (2.2), the covariant

derivative Dm in (2.11) will eventually be replaced by the partial derivative ∂m, since the

detailed analysis of (2.11) to be carried out subsequently is restricted only to Goldstone

models associated to the Higgs models described in appendix C, namely to the gauge

decoupled versions of the associated Higgs models described in the appendix B. We stress

that all our results are valid also for the Higgs model ‘soliton’ backgrounds, and the only

reason we eschew working with the latter is that the corresponding analysis of (2.11) yields

qualitatively the same results as in the Goldstone case, and the analysis in the latter case

is somewhat simpler.

We will seek solutions to (2.10),(2.11) satisfying

ψ′(0) <∞ , ||ψ|| <∞ . (2.12)

It will turn out that there exist no solutions of (2.10) satisfying (2.12) for any d, but will

find such solutions to (2.11) for all d.

2.1 Definitions of σ[ϕ]

σ[ϕ] are defined as the leading terms in the topological currents at infinity, i.e. when

the fields defining them are spherically symmetric. This subsection is subdivided in two

parts.
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In the first, we give the definition of σ[ϕ] for a topologically stable background sup-

ported by a O(d + 1) sigma model, as well as a background supported by a SO(d = 2n)

YM system in even, d = 2n, dimensions. The latter are the spherical-symmetrically re-

stricted Chern-Simons densities of SO(d = 2n) YM field, which turn out to be described

by essentially the same ‘instanton’ type profile

−1←−
r←0

σc −→
r→∞

1 , (2.13)

as in the case of even dimensional sigma models.

In the second we consider backgrounds supported by Higgs or Goldstone models, typ-

ified by ‘soliton’ profiles

0←−
r←0

σc −→
r→∞

1 , (2.14)

as in the case of odd dimensional sigma models. Detailed expositions of (2.13) and (2.14)

are given in the following two subsections.

2.1.1 σ[ϕ] for O(d+ 1) sigma model and SO(d = 2n) pure YM backgrounds

d dimensional O(d + 1) sigma models and their topologically stable solitons have been

discussed extensively elsewhere [24] so we do not elaborate on them here. Best known

amongst these is the d = 2 dimenesional scale invariant O(3) sigma model whose solitons,

namely the well known Belavin-Polyakov vortices [25], are evaluated in closed form. Here we

are concerned only with the topological boundary conditions the relevant solitons satisfy.

Moreover, as noted above, we will restrict to the case of radial (spherically symmetric)

solitons. So we state these, in terms of the d + 1 component scalar fields χa = (χm, χ4),

subject to the constraint |χa|2 = 1:

χm = sin f(r) x̂m , χd+1 = cos f(r) . (2.15)

In (2.15) x̂m = r−1xm is the unit vector in the codimension. The topological charges

stabilising the solitons of these models are the winding numbers, which take on unit values

provided that the solutions satisfy the asymptotic conditions2

lim
r→0

f(r) = 0 , lim
r→∞

f(r) = π . (2.16)

Our definition of the function σc = σ[f(r)] corresponding to the solution ϕc = f(r) of this

model, is that given by (1.1).

We list the functions σc(d) for this model, for the cases d = 2, d = 4 and d = 3, 5,

separately for even and odd d. Up to unimportant multiplicative constant depending on

the angular volumes, we find following [24],

σ(d = 2) ∝ cos f , σ(d = 4) ∝

(

cos f −
1

3
cos3 f

)

, . . . (2.17)

2The more usual alternative limr→0 f(r) = π , limr→∞ f(r) = 0 is not adopted, for the sake of making

contact with the usual asymptotics (2.22) for the corresponding YM fields.
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for even d = 2, 4 respectively, and

σ(d = 3) ∝ f −
1

2
sin 2f , σ(d = 5) ∝

(

3

2
f − sin 2f +

1

4
sin 4f

)

, . . . (2.18)

for odd d = 3, 5 respectively. We see that the ranges of these topological charge densities

are quite different for even and odd d.

(2.17) and (2.18) result, qualitatively, in the following profiles of σc

+1←−
r←0

σc −→
r→∞

−1 , for even d (2.19)

0←−
r←0

σc −→
r→∞

1 , for odd d . (2.20)

We next turn to the SO(d) YM system in even d-diemensions, for which the spherically

symmetric Ansatz, analogous to (2.15), is

Am =
1−w(r)

r
Σ(±)mn x̂n , Σ(±)mn = −

1

4

(

1± Γd+1
2

)

[Γm,Γn] . (2.21)

Analogously to (2.16), the ‘instanton’ boundary conditions that result in topologically

stable (anti)-selfdual solutions to the systems of YM hierarchies [12], are

lim
r→0

w(r) = +1 , lim
r→∞

w(r) = −1 , (2.22)

which coincides with (2.16) under the replacement

cos f(r)←→ w(r) , . . . (2.23)

Now in all even diemensions there exist Chern-Pontryagin charge densities, whose spher-

ically symmetric restrictions are the analogues of (2.17). Up to unimportant numerical

factors, these densities in dimensions d = 4 and d = 6 are

σ(d = 4) ∝

(

w −
1

3
w3
)

, σ(d = 6) ∝

(

w −
2

3
w3 +

1

5
w5
)

. (2.24)

Note that the first (d = 4) member of (2.24) coincides with the second (d = 4) member

of (2.17) under the replacement (2.23). This is a recurring coincidence. It is obvious now

that the profile of σc in this case coincides with (2.19).

2.1.2 σ[ϕ] for SO(d) Higgs/Goldstone model backgrounds

We now consider topologically stable backgrounds supported by d dimensional SO(d) Higgs

models [18]–[20] and their associated Goldstone models [21]–[23].

The topologiocal charges of these models are described by scalar fields φm , m =

1, 2, . . . , d, in d dimensions. Apart from the various kinetic terms, Goldstone models are

distinguished by a symmetry breaking self-interaction potential, leading to the important

asymptotic condition

lim
r→∞

|φm|2 = η2 (2.25)

– 8 –
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in which η is the VEV with inverse dimensions of length. Here again, we restrict to the

radially symmetric fields

φm = η h(r) x̂m , (2.26)

and for the special case of d = 2 dimensions, the radially symmetric vorticity n field is

φm = η h(r)nm , nm = (cosnφ, sinnφ) . (2.27)

The topological charges stabilising the solitons of these models are the winding numbers,

which take on the unit value for the following asymptotic conditions

lim
r→0

h(r) = 0 , lim
r→∞

h(r) = 1 . (2.28)

The function σc is now expressed in terms of the classical soliton profile h(r). One difference

from the sigma models of the previous subsection however is, that the d = 1 case for

Goldstone models, unlike the sigma models, does not trivialise but coincides, for example,

with the ϕ4 model. Another difference is that the winding number density for the radial

fields (2.26) does not take qualitatively different expressions for even and odd d, as in (2.17)–

(2.18).

In both even and odd d-dimensional Higgs and Goldstone models, the leading term in

the winding number density turns out to be proportional to

h(r)d ⇒ σc
def
= η−d|φm|d ≡ η−dφd (2.29)

and since in the following we will need only the asymptotic values and not detailed be-

haviours of σc(r), we omit the d-th power of h(r) in (2.29) and simply state the topologically

meaningful asymptotic behaviour

0
r←0
←− σc

r→∞
−→ 1 , for all d . (2.30)

2.2 Definitions of Ξ[ϕ]

Unlike the quantities σ[ϕ] presented in the previous subsection, which are isoscalar, the

quantities ξ[ϕ] in (2.7) are matrices with isotopic indices. In models employing sigma

model or YM ‘instanton’ backgrounds in even codimension-d, µ = 0 so that Ξ[ϕ] is defined

only for models employing ‘soliton’ backgrounds with µ 6= 0. With odd d sigma model

backgrounds in turn, there is no useful efinition for ξ[ϕ]. The reason is simple, and hinges

on the requirement that the residual Dirac equation (2.11), like (2.10), should develop a

mass term asymptotically in the codimension.

Let us examine the Yukawa term in (2.11) in the asymptotic region, which is subject to

spherical symmetry. Consider the matrix valued function ξ[ϕ] in (2.7) in terms of the two

alternative codimension fields χa = (χm, χd+1), pertaining to the O(d + 1) sigma model,

and φm, to the Higgs or Goldstone model. The only natural forms for matrix valued ξ

in the gamma matrix represenation in isospace are proportional to the following matrix

valued quantities

ξ ∝ Γm χ
m , ξ ∝ Γm φ

m , (2.31)
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respectively. Inspecting the spherically symmetric Ansätze (2.15), (2.26) and the asymp-

totics (2.16), (2.28) required, one sees that the only Yukawa term which leads to a nonva-

nishing mass term is the second member of (2.31). Henceforth, models of type (2.2) with

µ > 0 will be restricted to Higgs or Goldstone model ‘soliton’ type backgrounds only, with

the corresponding Yukawa term determined by the second member of (2.31). The type (ii)

models considered are typified by the definitions of the quantity ξ. There will be two such

choices.

The first applies in the case where the gauge connection in the covariant derivative is

abelian, which is the case only for d = 2, e.g. in the background of the usual abelian Higgs

model. In this case, it is possible to take the Dirac field to be an isoscalar, and our choice

for ξ is

ξ = σ1σmφ
m = φ1

�
+ iφ2σ3 , m = 1, 2 , (2.32)

which is (Euclidean) Lorentz invariant.

The second concerns the case of generic codimension-d, where the SO(d) connection is

non abelian, our choice for ξ is

ξ =
�
⊗ Γmφ

m , (2.33)

where the matrix
�
is labeled by the spinor indices and the matrix Γmφ

m is labeled by

the isospinor indices. While (2.33) is defined for non abelian backgrounds, i.e. for d ≥ 3,

it applies also to the d = 2 case formally. In that case, we express the abelian gauge

connection, say am, in formally antihemitean form

Am =
i

2
am σ3 (2.34)

acting on the matrix valued Higgs field Φ = φmσm. The covariant derivative in (2.11) for

the d = 2 case of the generic model is then defined by the connection (2.34).

3. Type (i) models with isoscalar ψ(xm)

We will show that type (i) models with action (2.1), on backgrounds with either type of

profile (2.13) and (2.14) of the function σc, do not support solutions satisfying condition

(2.12), for any codimension d. This section is divided into four subsections. In 3.1–3.3 we

analyse the residual Dirac equation (2.10) for d = 2, d = 3 and arbitrary d respectively.

This yields a set of coupled ordinary differential equations, which are of the same form

for all d. Then in 3.4 we show that these equations do not have solutions satisfying the

required property (2.12).

3.1 Codimension d = 2

The 2 component residual spinor ψ(xm) is subjeted to radial symmetry

ψ =

(

f1 e
imφ

f2 e
im′φ

)

, (3.1)
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with m and m′, both integers. Denoting m,m′ instead by l, l′, for uniformity of notation

for all d, the variables r and φ in equation (2.10) separate for l ′ = l + 1, resulting in the

pair of coupled first order equations

f ′1 −
l

r
f1 + σc f2 = 0 (3.2a)

f ′2 +
l + 1

r
f2 + σc f1 = 0 . (3.2b)

3.2 Codimension d = 3

The residual 2 component spinor ψ(xm) transforms as a spin- 12 spinor under 3 dimensional

rotations, and to achieve a separation of variables we employ the spinor harmonics [26]

Ω
(±)
lm to expand ψ

ψ = f1(r)Ω
(+)
lm + f2(r)Ω

(−)
l′m . (3.3)

The spinor harmonics are defined as

Ω
(±)
lm = C(l, 1, l±1)

m− 1
2
,+ 1

2
mYl,m− 1

2
(θ, φ)χ+ 1

2
+C(l, 1, l±1)

m+ 1
2
,− 1

2
mYl,m+ 1

2
(θ, φ)χ− 1

2
(3.4)

in which Yl,m(θ, φ) are the spherical harmonics and χ± 1
2
are the constant valued 2 compo-

nent eigenvectors for spin- 12

χ+ 1
2
=

(

1

0

)

, χ− 1
2
=

(

0

1

)

. (3.5)

Evaluating the Clebsch-Gordan coefficients in (3.4) and substituting (3.5), we have

Ω
(+)
lm =





√

l+m+ 1
2

2l+1 Yl,m− 1
2
(θ, φ)

√

l−m+ 1
2

2l+1 Yl,m+ 1
2
(θ, φ)



 , Ω
(−)
lm =





−

√

l−m+ 1
2

2l+1 Yl,m+ 1
2
(θ, φ)

√

l+m+ 1
2

2l+1 Yl,m− 1
2
(θ, φ) .



 (3.6)

The result of acting with the gradient operator on the spherical harmonics can be system-

atically calculated applying the Clebsch-Gordan series [26]. Applying this to the residual

Dirac equation (2.10) with the Ansatz (3.3), and setting l ′ = l + 1, we have

(

f ′1 −
l

r
f1 + σc f2

)

Ω
(−)
l+1,m +

(

f ′2 +
l + 2

r
f2 + σc f1

)

Ω
(+)
l,m = 0 (3.7)

resulting in

f ′1 −
l

r
f1 = −σcf2 (3.8a)

f ′2 +
l + 2

r
f2 = −σcf1 . (3.8b)

The similarity of (3.8a)–(3.8b) with (3.2a)–(3.2b) is manifest and holds for arbitrary codi-

mension, as we shall see immediately below.
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3.3 Arbitrary codimension d

To generalise to arbitrary codimension d, we need some preparation. Let pk = −i∂k,

σij = i[Γi,Γj]/2, i, j = 1, . . . d, and

A =
1

2

n
∑

i,j=1

σij(xipj − xjpi) .

Squaring yields A2 = (n− 2)A+ L2, where

L2 =
∑

i<j

(xipj − xjpi)
2 .

It is well known that the eigenvalues of L2 are l(l+ d− 2), l = 0, 1, . . . . The corresponding

possible eigenvalues of A are −l and l+ d− 2, but by inspection only 0 for l = 0. Thus the

list of A eigenvalues is 0,−1,−2, . . . plus d− 1, d, d + 1 . . ..

In analogy to the case d = 3 we introduce the spinor harmonics Ω
(+)
lM , Ω

(−)
lM , where

L2Ω
(±)
lM = l(l + d− 2)Ω

(±)
lM ,

AΩ
(+)
lM = −lΩ

(+)
lM .

The index M stands collectively for eigenvalues of angular momentum operators which

commute with A. Determining the spinor harmonics explicitly is more complicated than

for d = 3, but not necessary for our purpose.

The operator Γmx̂m transforms eigenspaces for −l and (d−1+ l) into each other, since

A(Γmxm) = (Γmxm)(d− 1−A) ,

as can be checked easily by multiplying the gamma matrices and using obvious symmetries.

Thus we can put

Ω
(−)
l′M = Γmx̂m Ω

(+)
lM ,

where (d− 2 + l′) = (d− 1 + l), thus l′ = l + 1 as for d = 2, 3. Conversely we have

Γmx̂m Ω
(−)
l′M = Ω

(+)
lM .

Another multiplication of gamma matrices yields the Dirac operator in the form

iΓmpm = Γmx̂m
d

dr
+

1

r
Γmx̂mA .

With

ψ = f1(r)Ω
(−)
l+1,M + f2(r)Ω

(+)
lM

the Dirac equation takes the form

f ′1 −
l

r
f1 + σcf2 = 0 (3.9a)

f ′2 +
l + d− 1

r
f2 + σcf1 = 0 . (3.9b)

We see that both (3.2) and (3.8) for d = 2 and d = 3 are of the same form as (3.9) for

arbitrary d.
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3.4 Nonexistence

The presentation here is adapted to both sigma model as well as to Goldstone model

backgrounds, namely for both ‘inatanton’, (2.13), and ‘soliton’, (2.14), profiles of σc(r).

Let us analyse the d = 2 equation (3.2), noting that the same conclusions hold for the

arbitrary case (3.9).

In the r ¿ 1 region, the solutions of equations (3.2a,3.2b) which are differentiable at

the origin, have the asymptotic forms

f1 ≈ Arl
(

1 +
σc(0)

2

4(l + 1)
r2
)

f2 ≈ −
Aσc(0)

2(l + 1)
rl+1

(

1 +
σc(0)

2

4(l + 2)
r2
)

.

In particular, f2(0) = 0 and f1(0) is finite for all possible values of l. At infinity, both f1
and f2 decay exponentially.

Now the equations (3.2) yield

−f1f
′
1 + f2f

′
2 +

1

r

[

lf21 + (l + 1)f 22
]

= 0 .

Integrating over r and using the said boundary conditions, one finds

1

2
f1(0)

2 +

∫ ∞

0

1

r

[

lf21 + (l + 1)f 22
]

dr = 0 ,

which clearly is impossible. There are therefore no solutions of (2.11) satisfying (2.12) in

both the backrounds (2.13) and (2.14), and in any d.

4. Type (ii) models

Type (ii) models with action (2.2) separate in two main subclasses, namely those with

µ = 0, presented in the first subsection 4.1, and those with µ > 0, presented in the second

subsection 4.2. The quantity Ξ[ϕ(xm)], defined in section 2.2, will be specified further in

two cases. The first of these is a particular model with codimension-d = 2 leading to the

recovery of the result of [8, 9], presented in subsection 4.2.1, while the second is for the

generic codimension-d ≥ 2 models, presented in subsection 4.2.2.

µ = 0 models of type (ii) are defined exclusively in even codimension-d(= 2n), since

YM ‘instanton’ backgrounds exist only in even dimensions.3 µ > 0 models of type (ii) are

defined for all codimension-d, in Higgs or Goldstone ‘soliton’ backgrounds. In the latter case

we shall eschew the Higgs backgrounds in favour of the corresponding associated Goldstone

backgrounds in which the gauge field is suppressed.

3It is also possible for grassmannian sigma models, in which case the Dirac operator Dm in (2.2) features a

composite connection in terms of the grassmannian field. Once we know this is a possibility, it is superfluous

to present it in detail here.
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4.1 Type (ii) models with µ = 0: even d ≥ 4 isospinor ψ(xm)

Here, the solitons in whose background the residual Dirac equation (2.11) is to be solved are

restricted to the ‘instantons’ of d = 2n dimensional YM models described in appendix A.

To solve equation (2.11) with µ = 0 in the spherically symmetric background for the YM

connection (2.21), we subject the isospinor ψ(xm) to spherical symmetry

ψ = f1(r)
�
+ f2(r)Σ

(±)
m x̂m . (4.1)

Substituting (4.1) and the radial Ansatz (2.21) for the YM connection into the residual

Dirac equation (2.11), with µ = 0, we find the familiar [14] solutions

f1 = r−
1
2
(d−1)e

1
2
(d−1)

∫

w
r
dr (4.2a)

f2 = r−
1
2
(d−1)e−

1
2
(d−1)

∫

w
r
dr . (4.2b)

Adopting the asymptotics (2.22), it is easy to see that f1(r) satisfies the required condi-

tion (2.12), while f2(r) does not and must be rejected4. It also follows from (2.22) that the

relevant solution, e.g. f1(r) has a power decay at infinity.

4.2 Type (ii) models with µ 6= 0

In this case, the separability Ansatz (2.7), and the resulting Yukawa terms like (2.31), will

be specified in the two distinct cases of a particular d = 2 model featuring a column-valued

Dirac spinor on the codimension, and the generic d ≥ 3 models with SO(d) isospinor Dirac

fields, which form square matrix arrays. These cases will be presented in the following two

subsections, 4.2.1 and 4.2.2.

In both 4.2.1 and 4.2.2, the essential procedure is to so select the separability An-

satz (2.7), such that the resulting residual Dirac equation (2.11) turns out to be a known

problem leading to normaisable zero modes satisfying (2.12).

The analysis of the residual Dirac equation (2.11) for these models will be restricted

to ‘soliton’ backgrounds of the associated Goldstone models, cf. appendix C, rather than

the corresponding backgrounds of the Higgs models, cf. appendix B. The former are the

gauge decoupled versions of the latter and the results of these analyses are qualitatively

the same. Accordingly, (2.11) is effectively replaced in what follows by

(Γm∂m + µ ξc)ψ = 0 . (4.3)

i.e. with ∂m replacing the Dm in (2.11).

4.2.1 Type (ii) model with µ 6= 0 : d = 2

For d = 2 the use of a doublet (φ1, φ2) with a scalar and a pseudoscalar component yields an

interesting special situation. We consider U(1) gauge fields, such that in this model ψ(xm)

does not carry an isotopic index. Specifying the separability Ansatz (2.7) with (2.32),

namely by

ξ = σ1σmφ
m = φ1 + iσ3φ

2 ,

4When instead the alternative asymptotics pointed out in footnote 2 is adopted, then f2(r) satisfies (2.12)

and it is f1(r) that must be rejected.
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we end up essentially with the model of [8, 11]. The most interesting feature of this

model is the presence of fermionic zero modes for abelian backgrounds with any vortic-

ity n.

With (2.32) in the residual Dirac equation (2.11), one proceeds to solve the latter in

the background of the d = 2 Higgs ‘soliton’, namely the usual Nielsen-Oleson vortex or

another (p ≥ 2) member of the hierarchy in appendix B, e.g. the vortex of the system (B.8).

Alternatively, as in effect we will, one can solve (2.11) in the background of the d = 2

Goldstone ‘soliton’ of the p = 2 member of the hierarchy in appendix C, namely the vortex

of the system (C.3), i.e. the one resulting from the gauge decoupling of the system (B.8).

We restrict the subsequent analysis to that of (2.11) in the associated Goldstone ‘soliton’

background.

Substituting (2.32) with φm given by (2.27) and the radially symmetric Ansatz (3.1)

for ψ, in (2.11) for d = 2, the latter separates for m′ = m + 1, and reduces to the pair of

coupled first order equations

f ′1 −
m

r
f1 + η h f2 = 0 (4.4a)

f ′2 +
n+m+ 1

r
f2 + η h f1 = 0 . (4.4b)

The Dirac equations in [11, 8, 10] reduce to Eqns. (4.4a),(4.4b), reproducing the d = 2

result of [8, 10], for completeness.

4.2.2 Type (ii) models with µ 6= 0 : d ≥ 2 isospinor ψ(xm)

The situation here is similar to the case of ‘instanton’ backgrounds considered in 4.1 and

likewise the isospinor Dirac field subject to spherical symmetry is

ψ = f1(r)
�
+ f2(r) Γmx̂m . (4.5)

Note here that in (4.5) we have Γm in all d dimensions, while in (4.1) we have chiral

matrices Σ
(±)
m in d = 2n, even, dimensions.

The separability Ansatz in these cases is specified by (2.33), namely

ξ =
�
⊗ Γmφ

m .

The residual Dirac equation (4.3) in the Goldstone ‘soliton’ background now separates5

and yields the following pair of first order equations

f ′1 + ηh f1 = 0 (4.6a)

f ′2 +
d− 1

r
f2 + ηh f2 = 0 , (4.6b)

leading to

f1 = e−η
∫

h dr (4.7a)

f2 =
1

rd−1
e−η

∫

h dr . (4.7b)

5Note here that for the case d = 2, where the abelian Higgs (or Goldstone) background (2.27) is radial for

all vorticity n, this separation can take place only for the unit vorticity n = 1 background. This contrasts

with the model of [11, 8] presented above in 4.2.1.
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Given the asymptotics of h(r), (2.28), and the behaviour of h(r) near the origin to be

h(r) ≈ b r , (4.8)

it follws that both f1 and f2 vanish asymptotically in the r À 1 region as required, but

only f1 converges in the r ¿ 1 region while f2 diverges and must be rejected. The result

is one normalisable zero mode, f1(r). It follows from (2.28) that the solution f1(r) has an

exponential decay at infinity.

The corresponding result, for (2.11) in the Higgs ‘soliton’ background, can be readily

found using the Ansatz (2.21), with the matrices Σ
(±)
m there replaced by Γm, viz. (B.4) in

appedix B. The result is qualitatively the same, with the zero mode f1(r) still localised

exponentially, except that the energy density of the YMH background brane is power

localised rather than that of the Goldstone background brane analysed here, which is

exponentially localised.

Instead of one such zero mode, it is possible to construct a family of such solutions by

relaxing the constraint of spherical symmetry. In particular, imposing only axial symmetry

characterised by a vortex number n, a family of such solutions labeled by n can be found.

We do not present the details here.

5. Summary

We have addressed the problem of extending the mechanism of confining a fermion to the

brane in a 4+1 dimensional model, proposed in [2], to the case of 4+d dimensional models,

for arbitrary d.

In the model of [2, 3], the confinement mechanism relies on the fact that a scalar field

model in the 1 dimensional extra coordinate, i.e. the codimension-1, supports topologically

stable ‘soliton’ solutions. This scalar field enters the 5 dimensional fermionic model through

a Yukawa interaction term and results in the Dirac equation of the system developing a

mass term asymptotically in the codimension, which is responsible for the confinement.

To extend this mechanism to higher dimensions, it seems [3] natural to employ some

field theoretic model on the codimension-d > 1 that supports topologically stable finite

energy solutions. We considered candidates for such models which support either ‘soliton’

or ‘instanton’ like solutions. Our nomenclature throughout was that ‘solitons’ are supported

by Higgs or Goldstone models, most notably featuring dimensionful scalar fields whose

self-interaction potential leads to symmetry breaking. ‘Instantons’ on the other hand are

supported by purely YM models or by sigma models, in even dimensions.

We proposed two types of models, in both of which the separation of the Minkowski

space coordinates xµ from the codimension-d coordinates xm was effected by an Ansatz,

which also resulted in the dimensional descent of the Dirac equation in 4 + d dimensions,

to one in d dimensions, which we referred to as the residual Dirac equation. The solutions

of the latter were what described the localisation of the fermion to the brane.

The first type, (i), of models was characterised by a Dirac operator, which featured a

partial derivative in all components of the differential operator. Consequently, the residual

Dirac spinors were isoscalars. The information on the topologically stable solutions on

– 16 –



J
H
E
P
0
4
(
2
0
0
4
)
0
7
5

whose background the residual Dirac equation was solved, was encoded in a scalar coeffi-

cient in the Yukawa term. This quantity was a descendent of the topological invariant of

the background system. It was found that the residual Dirac equation of these models did

not support normalisable zero modes.

The second type, (ii), of models was characterised by a Dirac operator, which featured

a partial derivative in the minkowskian components of the differential operator and a

covariant derivative for the components on the codimension. Consequently, the residual

Dirac spinors were isospinors for d ≥ 3 when the gauge group was non abelian, and only

in the d = 2 case when the gauge group was abelian it was isoscalar. Type (ii) models

did result in normalisable zero modes for the residual Dirac equations, provided that the

Yukawa term was chosen appropriately, and in the case of pure YM ‘instanton’ backgrounds

this meant its absence. When ‘instanton’ backgrounds were employed localisation to the

brane featured a power of r, while employing ‘soliton’ backgrounds of Higgs or Goldstone

models resulted in exponential localisation.

A nontrivial aspect of our results is that in the models presented in sections 4.2, the

Higgs models, i.e. the YMH systems, can be contracted down to the associated Goldstone

models by elimination of the gauge fields, cf. appendix C. Whether this additional feature

in constructing such models is of any physical advantage is not obvious, but we note that

the energy density of the Higgs model brane system is power localised, while that in the

Goldstone case is exponentially localised. Also, in some of the work of [8], a Goldstone

model has been employed, albeit a model with divergent energy.
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A. Yang-Mills models in d = 2n dimensions

In all even d = 2n dimensions, it is possible to construct Yang-Mills (YM) models which

support ‘instanton’ like solutions, which are topologically stable and their energy inte-

grals are finite. The fundamental relation that ensures the existence of ‘instanton’ in this

hierarchy [12] of YM systems are the inequalities stating the lower bounds on the energy in-

tegrals, given by the appropriate topological charges, namely the Chern-Pontryagin (C-P)

numbers.

Using the convenient notation for the 2p-form p-fold totally antisymmetrised product

of the curvature 2-form F ≡ F (2),

F (2p)µ1µ2...µ2p = F[µ1µ2
Fµ3µ3 . . . Fµ2p−1µ2p] , totally antisymmetrised in [µ1µ2 . . . µ2p] ,

(A.1)

the simplest such inequality for a 2(p+ q) dimensional YM system states

Tr

(

|F (2q)|2 + κ2(p−q)
(2q)!

(2p)!
|F (2p)|2

)

≥ 2κp−q TrF ∧ F ∧ · · · ∧ F , p+ q times , (A.2)
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where κ is a constant with the dimensions of length (if p > q). The left hand side defines

the energy density of the YM system and the right hand side is proportinal to the (p+q)-th

C-P density.

In the special case where p = q, the 4p dimensional YM systems are scale invariant

and the inequality (A.2) can be saturated. If the gauge group is chosen to be SO(4p) and

the gauge fields are in the chiral representations thereof then instanton solutions can be

evaluated explicitly in the spherically symmetric cases, but these do not interest us here.

What is relevant in the present context is the family of YM models in 4p dimensions

from which the d(< 4p) dimensional Higgs models described in appendix B below are

constructed. Also relevant are the 2(p + q) = 2n dimensional models defined by (A.2),

in any even dimension, whose solutions [27] provide the ‘instanton’ backgrounds used in

section 4.1. Solutions to both these types of YM models, scale invariant or otherwise, are

‘instantons’ in the sense that at infinity the gauge connection is pure gauge satisfying

Am −→
r→∞

g−1∂mg , (A.3)

such that in the spherically symmetric case (2.21) the ‘instanton’ profile (2.22) obtains.

B. Higgs models in d dimensions

In this appendix, we describe the Higgs models [18]–[20] in d dimensions which support

finite energy topologically invariant soliton solutions.

In any given dimension d, a hierarchy of Higgs models supporting solitons can be

systematically constructed by subjecting the p-th member of the Yang-Mills hierarchy [12],

cf. appendix A, in dimension 4p > d, to dimensional reduction down to d dimensions.

The descent mechanism essentially consists of the imposition of a symmetry, which results

in the breaking of the gauge group of the original 4p dimensional YM system, and at

the same time the components of the gauge connection on the extra 4p − d dimensions

appear as Higgs fields in the residual d dimensional system, namely in a Higgs model. By

choosing the gauge group of the 4p dimensional system suitably, the gauge group of the 4p

dimensional YM system breaks down to SO(d), yielding the required d dimensional SO(d)

Higgs model [18]–[20]. For simplicity we will restrict to the scale invariant YM systems for

the present purpose.

Now the action density of the 4p dimensional scale invariant YM system is bounded

from below by the 2p-th Chern-Pontryagin (C-P) density. It turns out that under the de-

scent mechanism described in the previous paragraph, this topological lower bound trans-

lates to a new lower bound on the energy density of the residual d dimensional Higgs model.

The lower bound is given by the residual C-P density, which now depends on the residual

gauge group, not necessarily SO(d). Such lower bounds might be described as Bogomol’nyi

bounds. That this residual C-P density is a topological charge density follows from the fact

that it can be shown to be a total divergence [28], whose resulting surface integral turns out

to be finite subject to the usual symmetry breaking asymptotics of the Higgs field provided

that the residual gauge connection also exhibits the requisite asymptotics.
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In the particular case of interest, namely when the residual gauge group is arranged

to be SO(d), the Higgs multiplet is

Φ = Γm φ
m , (B.1)

where the index m = 1, 2, . . . , d labels also the coordinates xm, in the same notation as

above. The symmetry breaking condition of the Higgs field can then be stated as

|φ|2 = φmφm −→
r→∞

η2 , (B.2)

where η is the VEV, related to the compactification scale used in the dimensional descent

from 4p dimensions. For d ≥ 3, i.e. when the residual gauge group is non abelian, the

Higgs field points along the unit vector x̂m in the r À 1 asymptotic region, i.e. on the d−1

sphere. In this region the gauge group breaks down to SO(d− 1) and the connection field

decays as r−1. In the Dirac gauge, where the Higgs field in the r À 1 asymptotic region

points along the d-th direction, the connection develops a semi-infinite line singularity in

the xd direction, which is an artefact of this gauge. This analogy with the familiar case of

the monopole [16] in the d = 3 case is complete and the residual SO(d) connection behaves

as

Am −→
r→∞

1

2
g−1∂mg , (B.3)

namely as half a pure-gauge, rather than as one pure-gauge like an instanton. It is for this

reason that above, we have called the finite energy topologically stable solutions of Higgs

models ‘solitons’, in contrast with the corresponding solutions of even dimensional sigma

models and YM systems, as ‘instantons’.

In terms of the spehrically symmetric Ansatz, which is (2.21) with Σ
(±)
mn now replaced

by Γmn

Am =
1− w(r)

r
Γmnx̂n , (B.4)

the asyptotics of the function w(r) corresponding to (B.3) are

lim
r→0

w(r) = +1 , lim
r→∞

w(r) = 0 . (B.5)

The only exception to the property (B.3) is the d = 2 Higgs model, in which case the

boundary of the space is not sufficiently large to accommodate a Dirac gauge.

The most familiar Higgs models which can be construced in this scheme descend from

the usual SU(2) YM system in 4 dimensions, i.e. from the first (p = 1) member of the

YM hierarchy [12], down to d = 3 and d = 2 respectively. In d = 3 one finds the SO(3)

Georgi-Glashow model in the Prasad-Sommerfield limit, and in d = 2, the familiar abelian

Higgs model. To illustrate this scheme further we have to proceed to p ≥ 2, and for the

sake of ease of presentation, we restict to the first two nontrivial examples. These are the

SO(d) Higgs models arising from (p = 2, d = 3) and (p = 2, d = 2).
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The d = 3, SO(3) Higgs model [19] is defined by the lagrangian L which is bounded

from below by the topological charge density %,

L = Tr
(

{F[ij , Dk]Φ}
2 + 6λ3({S, Fij}+ [DiΦ, DjΦ])

2 ,+27λ2{S,DiΦ}
2 + 54λ1S

4
)

(B.6)

% = 36εijk∂k Tr

[

φ

(

3η4−2η2Φ2+
3

5
Φ4
)

Fij−2η
2ΦDiΦDjΦ−

2

5
Φ2(2ΦDiΦ−DiΦΦ)DjΦ

]

,

(B.7)

in which Φ is given by (B.1), S = η2 − Φ2, and the manifestly total divergence form of %

is displayed in (B.7). Solutions to this system, were constructed in [19].

The d = 2, SO(2) or U(1) Higgs model [20] is defined by the lagrangian L which is

bounded from below by the topological charge density %,

L = λ2[(η
2 − |ϕ|2)Fij + iD[iϕ

∗Dj]ϕ]
2 + 24λ1(η

2 − |ϕ|2)2|Diϕ|
2 + 18λ0(η

2 − |ϕ|2)4 (B.8)

% = εij ∂i

[

η6Aj − 3i

(

η4 − η2|ϕ|2 +
1

3
(|ϕ|2)2

)

ϕDjϕ
∗

]

, (B.9)

where we have used the complex valued Higgs field ϕ = φ1+ iφ2, and again the topological

density % is displayed in manifestly total divergence form.

It is easy to see that the leading terms making a nonvanishing contribution to the

integrals of the topological charge densities (B.7) and (B.9), respectively, are the magnetic

charge of the monopole and the winding number of the Nielsen-Oleson vortex.

C. Goldstone models associated to the Higgs models in d dimensions

In this appendix we define what we have referred to in the above as the Goldstone models

associated [21, 22, 23] to the Higgs models in d dimensions described in appendix B above,

which also support soliton solutions.

The aspect of (B.6) and (B.8) that concerns us here is that both possess gauge decou-

pling limits, which is a consequence of the fact that when the gauge fields are removed [21]

from these densities, the remaining density still satisfies the Derrick scaling requirement.

Indeed, in [20] this gauge decoupling was demonstrated concretely for the numerically

constructed solutions: specifically, the Goldstone ‘soliton’ in [23] is obtained by gauge de-

coupling the ‘soliton’ in [20]. This feature is in stark contrast with the same procedure for

the usual d = 3 and d = 2 Higgs models arrived at from p = 1 YM, i.e. the Georgi-Glashow

model and the abelian Higgs model, in which cases the solitons do not persist after gauge

decoupling.

It is thus possible [21] to find Goldstone models associated to each d dimensional SO(d)

Higgs model descended from all p ≥ 2 members of the YM hierarchy. We demonstrate this

prescription in the two examples considered explicitly in appendix B.

In the (p = 2, d = 3) model, eliminating the gauge field in (B.6),(B.7) we find the

lagrangian and topological charge density of the associated (p = 2, d = 3) Goldstone model

L = Tr
(

6λ3[∂iΦ, ∂jΦ]
2 + 27λ2η

4(η2 − Φ2)2∂iΦ
2 + 54λ1(η

2 − Φ2)4
)

(C.1)

% = 36εijk∂kTr

[

−2η2Φ∂iΦ∂jΦ−
2

5
Φ2(2Φ∂iΦ− ∂iΦΦ)∂jΦ

]

. (C.2)
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Note that covariant derivatives in (B.6) are replaced by partial derivatives in (C.1). This

is the rationale behind the corresponding replacement of Dm in (2.11) by ∂m in (4.3).

The system described by (C.1) is related to that considered in [22], except that in the

latter, we have selected specific values of the couplings λ(i), and also replaced the symmetry

breaking potential in (C.1) by other postitive definite (and symmetry breaking) potentials,

without compromising the existence of the solutions. Note that in the asymptotic region,

(C.2) is equivalent to the winding number density.

In the (p = 2, d = 2) model, eliminating the gauge field in (B.8),(B.9) we find the

lagrangian and topological charge density of the associated (p = 2, d = 2) Goldstone model

L = λ2|∂[iϕ
∗∂j]ϕ|

2 + 24λ1(η
2 − |ϕ|2)2|∂iϕ|

2 + 18λ0(η
2 − |ϕ|2)4 (C.3)

% = −3iεij ∂j

[(

η4 − η2|ϕ|2 +
1

3
(|ϕ|2)2

)

ϕ∂jϕ
∗

]

, (C.4)

which is the system investigated in [23], except that in the latter two specific symmetry

breaking potentials in addition to that in (C.3) were employed in the numerical construction

of the solutions.

The above described procedure of constructing the associated Goldstone model for any

SO(d) Higgs model characterised by any (p, d), can be carried out.
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