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Abstract

Recent studies suggest that both the quantum Zeno (increase of the natural lifetime of an

unstable quantum state by repeated measurements) and anti-Zeno (decrease of the natural

lifetime) effects can be made manifest in the same system by simply changing the dissipative

decay rate associated with the environment. We present an exact calculation confirming this

expectation.
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The quantum Zeno effect (QZE) predicts that the lifetime of an excited state increases

by repeated measurements. It has been a subject of interest for many years [1, 2] and recent

reviews appear in [3] and [4]. More recently, it has been pointed out that a decrease in

lifetime, referred to as the Inverse or anti-Zeno effect (AZE) can also occur [5—7]. Whereas

there are claims that the QZE has been observed, to our knowledge there has been no

experimental verification yet of the AZE. On the other hand, the detailed calculations of

Pascazio and Facchi [5] and IKofman and Kurizki [6] lend strong credence to the possible

existence of the AZE. Since the calculations of [5] and [6] by their nature required various

assumptions (such as the Weisskopf-Wigner approximation), we consider it desirable to

present an exact calculation which should also delineate in a clear-cut manner the nature

and magnitude of the external environment that is necessary to achieve the transition from

QZE to AZE.

The system we analyze is the decay of a free particle that is placed initially in a Gaussian

state:

—1/4 1 r2’l
‘(x.O)= (2u) exp—, (1)

where u2 is the variance. The particle is regarded as part of a larger system of a particle

coupled to a reservoir and the complete system is initially in equilibrium at temperature

T. This was the scenario considered by Ford et al. [8] who used distribution functions

defined in accordance with the quantum theory of measurement to obtain exact results for

the spreading of the wave packet and for the probability at time t given by

P(i,t)
= 2w2(t)

exp{_)1)}.
(2)

Here

w2(t) = — [x(O).x(t)]2
s(t)

(3)

where o’2 is the initial variance. [x(O), x(t)] is the commutator,

s(t) = ({x(t) - (O)}2)
(1)



is the mean square displacement and is the contribution to the spreading due to

temperature-independent quantum effects. A measure of the decay rate R(t) is simply given

by the ratio of the probabilities at times t and 0. However, this ratio is clearly dependent on

.r so, from henceforth, we take x = 0 (corresponding to the maximum of the wave-packet)

and write

J)
= P(0,t)

P(0.0)
.2 ‘1/2

=
(5)

Hence, our calculation reduces to an evaluation of the width of the wave-packet at time t.

The quantities appearing in (3) and (4) are evaluated by use of the quantum Langevin

equation [9], which is a Heisenberg equation of motion for r(t). the dynamical variable

corresponding to the coordinate of a Brownian particle interacting with a linear passive

heat bath. For the case of a free particle, this equation for the stationary process has the

well known form,

m + f dt’(t — t’)±(t’) = F(t), (6)

where jt(t) is the memory function and F(t) is a fluctuating operator force with mean zero.

The solution of the quantum Langevin equation (6) can be written

i(t)
= J dt’G(t — t’)F(t’), (7)

where G(t), the Green function, can in turn be written

1 pD

G(t) = J dwc + i0jet (8)7r

in which a(z) (the Fourier transform of the Green function) is the response function. For
the free particle the response function has the general form

1, -

(9)—mz- —

in which (z) is the Fourier transform of the memory function,
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(z)
= / dt(t)et. Im{z} > 0. (10)

Using these results, we find that [9. 10] the mean square displacement is given by the

formula

Co

s(t)
= f dwIm{Q (w+i0)}coth(1 —coswt), (11)

while the commutator, which is temperature independent, is given by the formula

[x(0), x(t)] = f dwlm { (w + i0j } sinwt. (12)

These expressions are valid for arbitrary temperature and arbitrary dissipation. (Indeed,

with the appropriate expression for the response function, they are valid in the presence of an

external oscillator potential.) Here, we confine our attention to the case of zero temperature

and Ohmic dissipation, where (z) = m-’’. It then follows that

(t) = t2I(t), (13)irrn

where

[Co (1—cosy)
I(’yt) = / dy

2 2 (14)io y[y +(7t)
In addition, the commutator is given b

[(0). x(t)] = ihG(t) = (i — frt) (15)
rny

so that

2 — h2 (1 — e_t)2
16

— m22 4j2 ( )
Hence. we now have all the tools at our disposal in order to carry out an exact calculation

of P(x, t) and hence the rate R(t, ‘), where we have added the argument y to R in order

to emphasize the fact that this dependence will be the crucial element in our calculation.

Combining the various results given above, we may write explicitly

R(t, )
= 2 + ( : ) 2 { (1 — t) }2

+(7t)I(7t) /2 (17)4rn o rrm j
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Our goal will he to calculate R(t), the rate corresponding to n measurements on the

system at time intervals r = t/n, and then compare it to R(t. ). As we shall see. the result

depends crucially on the value of 7t.

The only quantity left requiring explicit evaluation is ILyt) given by (14). In order to

obtain more physical insight into the nature of the results obtained, we will first evaluate

R analytically for 1)0th small and large values of 7t. which we will demonstrate correspond

to the QZE and AZE. respectively. However, in order to determine for what value of ‘t

the transition between the two regimes occur. it will he necessary to carry out a numerical

evaluation of 1(7). First, we turn to the analytic calculation.

(a) 7t << 1

Then. from (16),

h
(18)1rn-o

which corresponds to the usual dynamical wave packet spreading in the absence of a dissi

pative environment. In addition, (13) reduces to [11]

3
s(t) = t {_log(7t) + — },

(19),rn

where 7E = 0.577 is Euler’s constant.

Using these results in (3) leads to

w(t) = u2 + (L’2)t2. (20)

where

(v2) = + {— log(7t) + 0.92}. (21)1m o 7rm.

Since for most reasonable scenarios (v2)t2 <<u2.we may expand w2(t) in a power series in

t2 to get

R(t) =

___

/ (‘2)t2
— 2o —

— —) . (22)



Assuming oq < s(t) we also have

w(t)

= (log + 7E (29)
TI J

Provided n is not too large we can therefore write

h, r i’t
R(t)l—

2 . (30)
lrma7L \flJ

Thus we see that R(t) is much less than R(t), which is a manifestation of the AZE.

The conclusion is that the QZE is characterized by small 7t values whereas the AZE is

characterized by large ‘t values. As a check on the analytic results given for I(7t) in (14),

we carried out a numerical evaluation of the integral and obtained excellent agreement.

In order to obtain the value of t for which the transition occurs. as well as delineating

more accurately the analytic results obtained above, we now turn to a numerical evaluation

of the exact expression for R(t,’y) given in (17). Thus, in Figs I and 2, we plot R.(t)
=

corresponding to n = 20 measurements, and compare it to R(t), for t values ranging from

0-1 and 0-40, respectively, and taking
‘

= 10. We note that R(t) is initially larger than

R(t), corresponding to the QZE hut it becomes smaller (corresponding to the AZE) for large

7t values. The value of 7t where the transition from QZE to AZE takes place is in the region

where on the one hand 7t > 1 but on the other hand 7T < 1. From Fig. 2, we see that this

corresponds to a 7t value of 7.

It is also of interest to return to our analytic treatment to compute the transition value

of 7t. It can be approximated by equating w(t) obtained from (19)-(21) to w2(i) obtained

from (27) to get

h t2 /t 3
(log7t+7E). (31)

rnirn n 2 7t7

Hence

(7t)2 [— log(7t) + log n + 0.92] = 2n [log(7t) + 0.577]. (:32)

Thus. for ii = 20 the solution for the transition point is given by 7t 7.28, which is close

to the numerically determined value. (The approximation is better for smaller values of o,

i.e. for smaller values of —s.) We also remark that, for large n. (32) leads to



= + ), (33)
logn

where = log 2 ± 2’E — 4 = 0.348. Inserting n = 20 gives 7.06. in good agreement with the

numerical result.

In conclusion, we have presented an exact calculation of the decay rate of a free particle

that is placed initially in a Gaussian state and which is coupled to a reservoir so that

the complete system in initially in equilibrium at zero temperature. The results obtained

demonstrate that repeated measurements made on the system lead to a QZE effect scenario

for small 7t values while evolving into an AZE effect scenario for large 7t values, confirming

similar results obtained in [5] and [6].
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FIG. 1: Decay rates in the case 7t >> 1. The heavy drawn line

corresponds to the decay rate with n = 20 intermediate measure

ments; the light drawn line is the decay rate without intermediate

measurements. Both in the presence of dissipation. Without dis

sipation the corresponding rates are the heavy dashed line and the

dotted line respectively. Notice that in the dissipative case, the rate

with intermediate measurements is smaller than that without: this

is the AZE. In the case without dissipation, the Zeno effect holds.

[T] Permanent address: Department of Physics and Astronomy, Louisiana State University, Baton

Rouge, LA 70803-4001.

[1] A. Beskow, J. Nilsson: Arkiv für Fysik 34, 561 (1967); L, A. Khaffin: JETP Letters 8, 65

(1968).

[2] B. Misra, E.C.G. Sudarshan: J. Math. Phys. 18, 756 (1977).

[31 D. Home and M.A.B. Whitaker, Ann. Phys. (N.Y.) 258, 237 (1997).

[4] P. Facchi and S. Pascazio in “Irreversible Quantum Dynamics”, ed. by R. Benatti and R. F.

Floreanini, Lecture Notes in Physics, Vol. 622, p. 141 (Springer, Berlin, 2003).

[5] S. Pascazio and P. Facchi, Acta Phys. Slovaca 49, 557 (1999); P. Facchi and S. Pascazio, Phys.

0 10 20 30

9



R(t)

t

time
FIG. 2: Detail of the dissipative rates of the previous figure for

short times. Clearly, for t < 0.7, the Zeno effect applies.
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