
1SST- O3 04

Calculation of the Invariant Measures at Weak Disorder
for the TwoLine Anderson Model

T. C. Dorlas
Dublin Institute for Advanced Studies
10 Burlington Road, Dublin 4, Ireland

Email: dorlas©stp.dias.ie

J. V. Pu1é
Department of Mathematical Physics

University College Dublin
Belfield, Dublin 4, Ireland

Email: Joe.Pule©ucd.ie

May 14, 2003

Abstract

We compute the invariant measures in the weak disorder limit, for the Anderson model on
two coupled chains. These measures live on a three-dimensional projective space, and we
use a total set of functions on this space to characterise the measures. It turns out that
at zero energy, there is a similar anomaly as first found by Kappus and Wegner for the
single chain, but that, in addition, the measures take a different form on different regions
of the spectrum.
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1 Introduction and formulation of the problem

In this paper we consider the invariant measure for the one-dimensional Anderson model on
two coupled chains. The Hamiltonian is given by H = H0 + AV, where

(Ho)(n, s) = (n + 1, s) + (n — 1, s) + (n, s ±1) (1.1)

and
(V5)(n, s) = v,8b(n, s) (1.2)

where s = 1, 2 and the v are i.i.d. random variables. In the case of a single chain, this
model has been studied extensively. In particular, it was proved by Goldsheid, Molchanov and
Pastur [1] that the spectrum is entirely pure-point and all corresponding eigenfunctions are
exponentially localised. This result was extended to the case of a strip (in particular the case
of two chains) by Lacroix [2, 3] using a method proposed by Pastur [4] and a generalisation of
Furstenberg’s theorem[5] due to Osseledec[6]. (For a comprehensive overview of the theory, see
the book by Carmona and Lacroix [7].)

To get insight into the behaviour for small disorder, Thouless [8] attempted to write down a
perturbation expansion in the disorder (i.e. in A) of the invariant measure in the case of a single
chain. In terms of the variable Z(n) = (n)/(n — 1) the Schrodinger equation at energy E
for this case can be written as

Z(n+1)=E—Av—

The invariant measure zif for this transformation is then defined by

ff(x)v(dx) = Eff(E - - )v(dx) (1.3)

for all bounded continuous functions f. The Liapunov exponent 7(.E) and the density of states
N(E) are related to this measure by

7(E) = Re’(E); N(E) = irIm’(E), (1.4)

where
(E) = flnxv,E(dx). (1.5)

Kappus and Wegner [9] subsequently discovered that the perturbation series proposed by Thou-
less is incorrect for the case E = 0. They called this an anomaly. In fact, the limiting measure
v is discontinuous at E = 0. The problem was further analysed by Derrida and Gardner
[10]. They found that the perturbation series is also anomalous at the values E = 2 cos
for integer p and q. Bovier and Klein [11] then completed their investigation and derived the
correct perturbation series in all cases. These series were subsequently shown to be asymptotic
by Campanino and Klein [12] by means of a very sophisticated analysis.

Here we consider the analogous problem for the case of two lines. We concentrate on the more
limited objective of proving the convergence of the measures as i —* 0 and determining the
limiting invariant measures. In the case of a single chain, this amounts to

C
dx ifE0;

1imii= x2—Ex+1 (1.6)
dx ifE=0.
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We prove in a much simpler fashion than [12] that these limits hold in the sense of weak
convergence of measures. (This result is of course much weaker than theirs.) We next generalise
our approach to the case of two coupled chains. It turns out that this case is considerably more
complicated. In particular, the limiting measure has a different appearance on different regions
of the unperturbed spectrum. An outline of our method has been published in [13].

The unperturbed (A = 0) spectrum for the Hamiltonian 1.1 has two branches:

E(k) = 2cosk± 1; k E [—ir,r].

These dispersion relations (2.3) are depicted in Figure 1. We can write the Schrodinger equation

E(k)

k

((n+’)N
-AA(

(n)
(n) ) - (n_i))’

(1.8)

Figure 1: The dispersion relation for two linked chains

(1.7)

for this case in transfer matrix form as follows:

‘(n+1,1) E—Av,1 —1 —1 0 (n,1)
‘7b(n + 1, 2) — —1 E — Av,2 0 —1 (n, 2)

(n,1) — 1 0 0 0 b(n—1,1)
‘(n,2) 0 1 0 0 (n—1,2)

This can be written more concisely as

with

A
= (C±AX —Ii) (1 = 2) (1.9)

where
IE —iN t—v,1 0

C—i jandX—i
—1 Ej \. 0 —v2

This formulation has the advantage that it generalises to an arbitrary number 1 of lines.

As in the case of a single line, the eigenvectors are defined up to a multiplicative constant,
so only quotients of the components are relevant. These are points of the projective 3-sphere

= P(R21). The equation for the invariant measure on R2’ reads:

f211
f(x)v(dx)

= f211
E (f([AAX])) v(dx),
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for all f C(RiP21—’). X is a random 1 x 1 matrix and {y] denotes the class in P(R21) containing
y. It is convenient to transform AA to a more suitable form, JA, say, so that the limit J0
limAo JA, is a the real Jordan form of A0. Let

SA0S’ = Jo, (1.10)

and
SAS’ JA. (1.11)

In terms of the image measures
(1.12)

where Sx = [Sx] the invariance equation reads

fR211
f(x) (dx)

=1211
(f([JAX])) (dx), (1.13)

for all f G(IRIP21’). It is convenient to parametrisem2’by 21—1 angles. Let be a compact
parametrisation space and t : R1P21’ — Q a parametrisation of P(R21). The parametrisation
for the two particular cases that we consider will be specified later . Defining

(1.14)

the invariance equation becomes

fg(w) of(dw) = fE (g(t[Jr1w]))
of(dw), (1.15)

or with the notation
(g)(w) = E (g(t[JAr’w])), (1.16)

f g(w) of(dw) = f(g)(w) of(dw). (1.17)

Now suppose that of tends to of weakly as A tends to 0 and JA tends to J0. Let

(g)(w) = (g(t[Jor’wJ)). (1.18)

We have by (1.17)

f (g
-

g) (w) of(dw) = f (g - g) (w) (of(dw) - of(dw)). (1.19)

Since II7II ugh,

f(g - g)(w) (of(dw) - of(dw)) 2hbgbhhJuo
-

,‘ 0, (1.20)

as A —* 0. If h7g — 7gIh —* 0, then

f ((g) - (g)) (w) of(dw) g - 0. (1.21)

Therefore

f g(w) of(dw) = f(g)(w) of(dw). (1.22)
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This invariance equation together with ergodicity is enough in many cases to determine ut’.
For the other cases we need the following result. We have, again by (1.17), for any positive
integer q,

A2 f (g - g) (w) u(dw) = -2 f (g - g) (w) ((dw) - u(dw)). (1.23)

[f AII7g
— gf is bounded then right hand side of (1.23) tends to 0 as A —* 0 and therefore

lim A2 f (g - g) (w) u(dw) =0. (1.24)

If in addition A2(7g — g) converges pointwise as A —* 0 to a function Fq,g C(), then

f Fq,g(W) u(dw) = 0. (1.25)

To be able to exploit (1.23) we shall need the following iteration result.

2 Iteration Formula

In this section we compute the lowest order terms in the expansion of a product of m inde
pendent random matrices of the form (1.9). Let C be an 1 x 1 matrix which can be written as
2 cos C where G is an 1 x 1 matrix. Let

sinrx
r(x,r) = . (2.1)

sin x

and T(r) = r(G, r). Note that

T(r) = 2cosG T(r — 1) — T(r —2) = 2T(r — 1) cosG — T(r —2), (2.2)

Let A be a 21 x 21 matrix defined by

— (C+AX —I — (2cosG+AX
23A o) i 0

where X1,X2,... are independent random 1 x 1 matrices with mean zero and let

B(m) = Hz1A. (2.4)

Then
B(m) = Bo(m) + AB1(m) + A2B2(m) (Xi, .. . , Xm) + 0(A3), (2.5)

where

B ( — (T(m +1) —T(m)
2 6—

T(m) —T(m— 1))’

B
m T(n) T(n) (X 0 (T(m—n+1) —T(m—n)

27
— 2 T(n — 1) T(n — 1) A 0 XAT(m — n + 1) —T(m — ) 1’

and 1E(B2(m)) = 0.

The proof is by induction. We want to show that

B(rn)i1 = T(m + 1) + A T(n)XT(m — n + 1) + A2(B2(m))11(X1,... , Xm) + 0(A3), (2.8)
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where E((B2(m))11)= 0. This relation is clearly true for m = 1.

B(m+ 1) = B(m)11(2cosG+ \Xm+i) + B(m)12

= 2T(m+ 1)cosG+2T(n)XT(m—n+ 1)cosG

+2)2(B2(m))i1cos 0+ AT(m + 1)Xm+i

+2 T(ri)XT(m — fl + — T(m)

—AT(n)XT(m — n) + 2(B2(m))12+ Q(3)

= (2T(m + 1) cos 0 — T(m))

+AT(n)X(2T(m — n +1) cosG — Tfrn — n))

+AT(m + 1)Xm+i +2(B2(m + 1))11(X1,.. . Xmi) + Q(3)

m+1

= T(m +2) + T(n)XT((m +1) - n +1)

+2(B2(m+ 1))11(X1.. . Xm) + Q(3).

where

(B2(m + 1))11(x1,.. . = 2(B2(m))11cos 0+ T(n)XT(m fl + 1)Xmi

+ (B2(m) ) i

which implies E((B2(m + 1))) = 0. The other entries of B(m + 1) are checked similarly.

3 The case of a single chain (1 = 1)

In this section we study the case 1 1, i.e. a single chain. In this case, the projective space
P(R2) is homeomorphic to the circle and there is an obvious parametrisation on Q = [0, ir),
identifying 0 and ir, defined by the map t: P(R2) —* Q given by

= [ cot’ (0, r) if x1 0, (3 1)
1.0 ifx1=0.

We put 0(Q) = {f I f e C([0, 7r]), f(0) = f(ir)}. Recall that E e [—2, 2] so that we can write
E = 2 cos c with E [0, rr)] and

(2cosci+)X —1
1 0

(3.2)

We first consider the case E +2. Then the real Jordan form of A0 is Ra, the rotation by o-:

Ra = ( coso sina
(3.3)

—srno- coso J
We have

= SA0S’ = Ra (3.4)
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where
S=(smno- 0

(35)
cosc —11

As a result
(7g)(6) = g((6 — o) mod ?r). (3.6)

If g C(2) has bounded first derivative, it follows from (6.14) that 7jg
—

Tjg —÷ 0, and
therefore for such g the invariance equation (1.22) for o holds. If c is not a rational multiple
of ir, the invariance equation (1.22) and ergodicity imply that is the uniform measure on
[0, ir). If c = p7r/q is a rational multiple of ii, we use the fact that 7 is the identity map, I.

If the random variables X are symmetric then = 0. Therefore, if the first three

derivatives of g are bounded, (6.14) of Appendix 2 gives

1
2(7g

- g) (g) J =0. (3.7)

If (_yqg) is continuous, equations (1.24) and (1.25) then yield

f (g)6) u(d6) =0. (3.8)

We now calculate (r’rg) with g(6) = e2ini8. Recall that

(2g) (6) = E (g(t[n1Jr’6])), (3.9)

where j = SAS’. Hence

(a?) g)(6) = (g(t[s (n1A) S1r16])) = E (g(t[SB(q)S’r’6])). (3.10)

We have
B(q) = Bo(q) + B1(q) +2B2(q)(X1,.. . ,Xq) + 0(A3), (3.11)

where Bo(q) = (—1)P12 and

B1(q)11 = —(—1)r(,n —

B1(q)12 =

B1(q)21 =

B1(q)22 = (—1)r(,n— 1)T(,n)X. (3.12)

We let

X
=

r(c, n — 1)r(, n)X, (3.13)

y = r(n)2x (3.14)

Z = r(,n — 1)2X. (3.15)
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Then

B1(q) (_i)P( ), (3.16)

and if a

E(X2) = E(YZ)
= (3— 2 sin2 a)q

(317)
8srn a

E(Y2) = = (3.18)
8sin a

E(XY) = E(ZX) = (3.19)

If a = then
i(X2) E(XY) = i(YZ) = E(XZ) = 0 (3.20)

and
IE(Y2) E(Z2) = 1. (3.21)

Let

p1(q) = SB1(q)S’ = (-1) ( z1 _Z2)
(3.22)

where Z1 = X — Ycosa, Z2 = Ysina, Z3 = (Z + Ycos2a — 2Xcosa)/sina.

If a then

E(Z) =E(Z)
= 8sin2a’

(3.23)

E(Z) = J(Z2Z3)
= 8sin2a’

(3.24)

E(Z1Z2)= E(Z1Z3)= 0. (3.25)

If a = then
E(Z) = iJ(Z1Z2)= E(Z2Z3)= IE(Z3Z1)= 0 (3.26)

and
= E(Z) = 1. (3.27)

Now
B(q) SB(q)S’ = (—1)I2 + \B1(q) +B2(q) + 0(A3). (3.28)

where E(B2(q)) = 0. If we put
I sine

x= I
cos

and x’ = (q)x, then

= (l)P{(i
—AZ1)sin—AZ2cos}+A2w1+0(A3) (3.29)

and
= (—1){AZ3sin + (1+ AZ1) cos ?} + A2w2 + 0(A3) (3.30)

where E(w) = 0. Writing
1’ sinO’

X=I , ,
‘\

cos6

so that 0’ = t[B(q)t0], we have

tanO’= =tan0+AU+A2V+O(A3), (3.31)
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where
U = —2tan8 Z1 —tan28Z3 — Z2 (3.32)

V = 2 tan 8 Z + tan3 8 Z + Z1Z2 + tan 8 Z2Z3 + 3 tan2 8 Z3Z1

+(—l) sec 28(wi cos8 - w2 sin 8). (3.33)

We then get

exp(2in8’)
=

___

exp(2in8){1+2i\nU cos2 8—2iriA2cos4 8(U2(tan 8 — in) —v sec 28)+O()3)}

Therefore

E (exp(2in8’)) =exp(2in8){1 — 2iA2[n cos4 8(JE(U2)(tan 8 — in) — IE(V) sec 28)] + Q)3)}, (3.34)

and thus
urn2E [exp(2in8’) — exp(2in8)] = exp(2in8){A1n+A11n2}, (3.35)

where

A1 = 2icos48(E(V) sec 28_ E(U2)tan8), (3.36)

A11 = —2E(U2)cos4 8. (3.37)

Ifa7-4 ,

E(U2)
= 3q sec 8

E(V)
= 3qtan8sec 28

(3.38)
8sin a 8sin a

and

1= 11= 24sin a
Ifa= ,

i(U2) = 1 + tan4 8, E(V) = tan3 8, (3.40)

and

A1 = 2i(cos8sin38—sin8cos38)= —isin48, (3.41)

A11 = —2(sin48 + cos4 8) = —(cos48 + 3). (3.42)

From (3.8) with g(8) = e2 we have

e2°{Ai(8) + nAii(8)}uó’(d8) = 0 (3.43)

for n 0. Recall that the set {e2 n e z} is total in the space C(Q). In the case when
a , (3.43) gives immediately

f e2°u(d8) = 0 (3.44)
[O,ir)

for n 0, and therefore cr01(d8) = . In the case when a = , that is E = 0, if X is a
symmetric random variable then o is symmetric about . It can be seen from the invariance
equation that if o is an invariant measure then so is its reflection about . By the uniqueness
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of the invariant measure for A 0 it follows that o is symmetric and therefore so is We
can integrate by parts in (3.43) to get

f e20Ai(6)u(d8) =
— f A1(O)u(d8) — 2inf2 e2 A1(8’)ug(d&’)dO.

[0,7r) [0,ir) —

(3.45)

Since o is symmetric about ,

f A1(O)x(d8) = 0, (3.46)
[0,ir)

and equation (3.45) gives

2if e2mn0f Ai(O’)u(d6’)d6=f e2A11(9)o(d&). (3.47)
[0,ir) [0,0) [0,ir)

Hence
= 2i A1(O’)o(dO’)dO + KdO, (3.48)

where K is a constant. Since A11(O) 0, this implies that o is absolutely continuous. If Po is
the density of o then

= 2if Ai(O’)po(8’)dO’+K. (3.49)
[0,0)

Thus Po is differentiable and

(cos4O+3)p(O) = 2sin4Opo(9). (3.50)

Integrating we get

P0(O) = C(cos48 + 3)-i. (3.51)

This corresponds to the equation (1.6) for E = 0.

Now suppose that E = 2. The case E = —2 is similar. Here the real Jordan form for A0

(1 r
0=0

i)
(3.52)

The matrix S is now given by
(0 iNS2

= —i)
(3.53)

Note that
iq_(l q
d0O 1

and therefore
(7g)(O) = g(O), (3.55)

where () is given by
1’ ifO=0

= q
cotO f 0 fl’

(3.56)
1+qcot0’

1

It follows that () —÷ as q —÷ oo.
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We now have
fg(8)u(d6) =lirnf(7g)(8)u(d8). (3.57)

Thus we have, for ri E

e2 (d8)
= f e2fl2&2 u(d8). (3.58)

Therefore o is concentrated on fl {O = -}, i.e. = /2.

To investigate whether there is an anomaly at E = 2 we need to transform the invariant
measure d8 to the coordinates given by the matrix S2. Calling the new angle coordinate 8’, the
transformation is given by

(sinfl
= S2S’

(sinfl
(359)

\cos8 J \cos8J

and
(0 1 ( coseca 0 ( cota —1

= 1 —i) cota = i—cos 1sin n

Hence
sin a cot 8’ + 1 — cos a

cot8 = . (3.61)
cos a — sin a cot 8’

and
d8’ sina

d sin28Icot28I+2(1_cosa)(1+cot8)
3.62

As a tends to 0, i.e. E —* 2, this measure tends to so there is no (zeroth-order) anomaly
atE=2.

4 The case of two coupled chains (1 = 2)

4.1 Parametrisation

In the case of two coupled chains (1 = 2), the matrix C in (1.9) is given by

If

then C = UDU* where
E+1 0

43
0 E-1 (.)

We can write D = 2 cos D0 with

Do=( ) (4.4)

where a and ,8 are defined by 2cosa = E+ 1 and 2cos/3 = E —1. Note that a and /3 are not
always real. It follows that C = UD0U* and T(r) = UT(Do)U*. Thus

T — 1 ( T(a, r) + T(/3, r) —r(a, r) + r(/3, r)
4(r) — 2 -r(a, r) + r(/3, r) r(a, r) + r(/3, r)
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The real Jordan form of A0 is always of the form

(‘Jio
(4.6)

It is therefore convenient to parametrise the projective space R3 so that the 1-2 plane and the
3-4 plane have the usual parametrisation.

We map the projective space IRP3 onto the set = U Q U Q where

= [0,2w) x [0,) x (0, ), = [0,) x {0}, c = [0,K) {} (4.7)

by the mapping t RIP3 —* 2 defined as follows.
If x + x 74 0 and x + x 74 0,

t(x) = (81,82,83) E Q(ij,!), (4.8)

where

cot’ 2 (0, r) if x1 > 0,
= cot + ir E (yr, 2ir) if xi <0, (4.9)

0 ifx1=Oandx2>0,
if1=0andx2<O.

= {cot_1(07r) (4.10)

83 = cot’ ‘ E (0, ). (4.11)

Ifx+x = 0,
t(x) = (82,0) Qo, (4.12)

where
0{cot’(Oir) ifx374O, (413)

Ifx+x =0,

t(x) = (8k, ) Q, (4.14)

where
8{cot’E(0ir)

(4.15)

We give the induced topology on Q by describing the continuous functions C() on Q. For
f: Q —* C define = fI Q(o,), fo = f o and f = fI Q. Now, f is in C() if fo
and fiL are continuous and

limfo(82,0) = fo(O,O), (4.16)

urn f(8, —) = f(0, —), (4.17)
2 2

iimf(o,)(8l, 02, 03) = f(o,)(0, 02, 03), (4.18)

lirnf(o,)(0l,02,03)= fo(82,0), (4.19)

lim f(o,)(01,82,03) = f(0 mod K, ), (4.20)

1imf(o,)(0l,82,03)= f(o,)((8i +ir) mod 2ir,0,03). (4.21)
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Suppose f e C(Q). Then we can write f = f(l) + f(2) + f(3) where f(l), f(2), and f(3) C(Q)
are defined by

f)(81, 82, 83) f(0,1)(81, 82, 83) — fo(82, 0) cos83
— f(8 mod ir, sin 63, (4.22)

f’(82,0) = 0 (4.23)

f’(8i, = 0, (4.24)

(4.25)

f)(81,82,83) = f(8 mod lr,1)sino3, (4.26)

f2(82,0) = 0 (4.27)

f2(8i, = (4.28)

(4.29)

f)(81, 82, 83) fo(82, 0) cos 83, (4.30)

f3(82,0) = fo(82,0), (4.31)

f3(8i,) = 0. (4.32)

It is clear from the above decomposition that the union of the following three sets is total in
C():

{ e 1O1+fl202) sin 2ri3831c2(O2L) I Ti, Ti2 E Z Ti3 E N, Ti1 + 2 even}, (4.33)

{e2nh61sin 83 lc(0) +e2’8’lç. ri1 E z}, (4.34)

{e22O2 cos83 1O() +e2262lç I 2 E z}. (4.35)

In fact, it will be more convenient to use as a total set the union of the following three sets
with r E N0:

{ei1611262)cos 2Ti383sin22831cZ) ri, ri2 E Z, Ti3 E N, Ti1 + 2 even}, (4.36)

{e2’0 sin2(T+1) 83 lc2(0) +e2fh81 lc. I n’ E z}, (4.37)

{e26 cos21 83 lQ() +e2ifl282 lç Ti2 E (4.38)

This is because, as we shall see in Appendix 2, if g is an element of this total set then it satisfies

Jim ,jr

— (i)
= 0. (4.39)

4.2 General Scheme

We shall assume that the X7’s are diagonal, that is,

x
_1) 0

440n 0 x2) (. )
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Let
(m) = SB(m)S’. (4.41)

Then
B(m) = Bo(rn) + \Bi(m) +)2B2(m)(Xi, . . . , Xm) + Q(A3), (4.42)

where
Bo(m) = J’, (4.43)

Bi(m) = SBi(m)S, (4.44)

and E(2(m)) = 0. p1(m) can be expressed in the form

m m

(4.45)

where = (X) ± X2)).

Let
(7mg)(81,82, 83) = g(8m) 8m) 8m)) (4.46)

sin 8 sin 83
cos81sin83

(447)
sin 82 C05 83
cos 82 cos 83

and x’ = (m)x. Then

(m). (m)sin 8 sin 83
(m) (m)

xl
— ) m) + Y + + Q(3), (4.48)

sin 82 cos 83
(m) (m)cos 82 cos 83

where IE(w) = 0 and

m m

yj = (Cn(rn)Tei,x) +g (Dn(m)Tei,x). (4.49)

1E(y) = 0 and

m m
E(yy) = ( (Cn(m)Tei,x)(Gn(m)Tei,x) +(Dm(m)Tei,x)(Dn(m)Tei,x)), (4.50)

where {ei, e2, e3,e4} is the usual orthonormal basis in R4. Writing

sin 8 sin 8

‘=
cos8sin8

(451
sin8cos8
cos 8 cos

we have

tan8 = = tan 81m) + U1 + A2V1 + Q(3), (4.52)

where
(m) . (m)

— Yi cos 8
— Y2 sin

U’l —

2 •cos 8 sin 83
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and
(m)

= y1y2cos01 _ysin8(m)
(m) 2 (m) +W1 (4.54)

COS 8 sin 83

with E(W1) = 0. Next we have

(m)tan82 = = tan 82 + \U2 + A2V2 + Q3), (4.55)
14

where
(m) . (m)

iJ3 COS 82 —

I4 sin 02
U2

= (m) (m)
(4.56)

cos2 82 COS 83

and
(m) 0(m)

=
— 34 COS 0 y sin 2 + W2, (4.57)

(m) 2 (m)cos 82 C05 83

with ii(W2) = 0. Thirdly,

+ \U3 + A2V3 + 0(A3), (4.58)tan8’
((x)2+(x)2 (m)

(X)2+()2)
=to3

where

(m) . (m) (m) . (m) . (m) (m)
cos 83 (y sin 81 + Y2 COS 81 ) — sin 83 (y sin 82 + ‘4 cos °2 ) (459)U3=

cos28m)

and
(m) 2 2 (m) . (m) (m)

= ycos281 +y2sin 81 —Lyly2sinO1 cos81
(m) (m)2 sin 83 COS 83

2 (m) 2 (m) . (m) (m)
(m) y(o sin 82 — 1) + y(3 COS 82 — 1) +6Y3Y4 sin 82 C05 82

+ sin 83
2 cos3 83

(m) (m) (m) . (m) (m) . (m) (m) . (m)
y2y4cos01 cos82 +y1y3sin81 sin82 +y2y3cos81 sin82 +yiy4cos82 sin81

2 (m)cos 83
(4.60)

where E(W3) = 0. For k = 1, 2, 3, therefore,

exp(inkO)
= (1_itan8

1 +

itan8)
(m)1 2(m

= exp(inkOk )1+iAnkUkcos 8k
)+jflkA2VkCOS28m)

4(m)
—iflkA2CO5 8k

(tan8m)
—

ZTik) } +0(A3).

Hence

(rn) (m) (rn.)
exp(i(rti8 + n28 +n383)) = exp(i(n81 + n202 + n383 ))

x{’+i[nu
2 (rn) 2 (m)

1 cos 8 +n2U2S2
0(m)

+n3U3cos 83

+A2[Bin1 + B2n2 + B3n3 + B11n+ B22n+ B33n

+B12n1n2+B23n2n3+B31n3n11} + 0(A3). (4.61)
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where
Bk = (VkCOS28m) — U,tan8m) O548m)), (4.62)

Bkk = _UCO548m), (4.63)

and for k 1,
Bkl = _UkU,CO52Om)CO528m). (4.64)

Taking expectations we get

E (exp(i(ni8 +n28 + n8))) = exp(i(ni8m) +n28+fl38m)))

x{1 +2[A1n1+ A2n2 + A3n3 + A11n+ A22n+ A33n

+A12n1n2+A23n2n3+A31n3n1]}+ Q(3), (4.65)

where Ak = TE(Bk) and Aki = E(Bkj). The right-hand side of this equation can be written as:

a a a 82 82 82

{ iA1 — iA2 — iA3 A11 — A22 — A33
88(m) 88(m) 88(m) 88(m)2 88(m)2

—A12 (m(m) —A23 — A31
88(m)ae(m) } exp(i(ni8m) +

g(m)
+

+0(A3). (4.66)

4.3 The case E E (—1,1)

If —1 < E < 1 we can choose (0, ) and /3 (i-, r) satisfying 2 cos ci = E + 1 and
2cos/3 = B —1. The real Jordan form of I1 is

(Ra 0
=

. 0 R
(4.67)

where
= (cos cv — sin cv , (4.68)

sincv coscv )
1 —1 —coscv coscv

S
— 0 0 sin cv — sin cv

4 69
— —cos4l —cos,8 1 1

—sin/3 —sin/3 0 0

and
1 cotcv 0 —cosec/3

s_i =
1

— cot cv 0 — cosec (4 70
2 0 cosec cv 1 — cot /3

0 —coseccv 1 —cot/3

Note that
(7g)(81,82, 83) = g((81 — cv) mod 2K, (82

—

/3) mod K, 83) (4.71)

and therefore

8m)
= (8 — mcv) mod 2K, 8m)

= (82 — m/3) mod K, 8m) = 83. (4.72)
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Consider the total set

{f1,m2,m3Ii, 2 E Z, Ti3 E N, n1 + n2 even} U {g Ti1 E z} U {h2 ri2 z}, (4.73)

where

frzi,ri2,n3(81,82, 83) = e1:fh812o2) cos 2Ti383sin2 2831Q, (474)

g1(8i,8) =e2721O1 j2 83 lQ(0) +e2m191i. (4.75)

and
h2(82,83) =e2282cos2 83 1(Oir) +e212O2 Lao. (4.76)

If g is in this total set then it satisfies (4.39) with r = 0, that is,

limITg—TogII =0, (4.77)

and therefore
(4.78)

that is, o is invariant under rotations of 81 and 82 by c and /3 respectively. This is all we can
say unless one of a/?r or /3/7r are irrational. Consider the case when both o/ir and /3/ir are
irrational. Because of the relation between and /3, (Ti1c1 + Ti2/3)/lr is also irrational for any
Ti1, Ti2 z. The standard ergodic argument then shows that uj is Lebesgue with respect to 81
and 82, that is, on o(d81,d82,d83) = d81d82&(d83), on , u(d81) = c5 d81 and on

o, o(d8) = S0d82.

The ergodic argument goes like this:

/f — i(n1a+n2/3)/4 E\ / E\ — iriic/ E\
— e \Jni,n2,m3,O‘ \Ynj,°0 — e \gn1,u0/‘

and
(h2,o) =e2(h2,o). (4.80)

Therefore u) = 0 if Ti1 0 and Ti2 0, (g1,3, = 0 if Ti1 0 and (h2,3,u) = 0
if Ti2 0. Define

(d83)
=

(4.81)

and

= o(Q) and óo = (4.82)

If on o,1), &(d81,d82,d83) = d81d82o(d83), on , o(d81)= 81d81 and on Q0, o(d82)=

60d82, then

(fni,n2,n3,)= (gn1,) = (gn1,u), (4.83)

and
“E\_/j E

\“n2,g0 / \Ibn2, 00

Therefore ô = o.

A similar argument applies if only one of Q/7r or /3/ir is irrational, Suppose for example, that
a/ir is irrational and /3/ir = p/q where p and q are integers. Then, replacing 7 with 7 in
the above argument, we can see that o is Lebesgue with respect to 01, that is, on
u(dO1,dO2,do3) = d81(do2,do3) and on ,u01(d81)= 6z d81.
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In this case the matrices C(m) and D(m) in (4.45) are given by

o

C(m) = —2 1
+R_(n_l)+(m_n)Jz)

(4.85)
si (_n-m_n+ia

+R_n+(m_n+l)yUz) 0

and

D(m) = 2
((R_m +R_(2n_2_m)aJz)

1

0 ), (4.86)
0 +R(2n_.m)Jz)

where
= (_1 ). (4.87)

The expressions for the sums in (4.77),

m m
(Cn(m)Tei, x) (Cn(rn)Tej, x) and Z(Dn(m)Tei, x) (Dm(m)Tej, 2), (4.88)

are given in Appendix 1.

4..1 The special case E = 0

Now we take E = 0 so that c = and /3 = . In this case we choose m = 6. This is
the smallest natural number so that when n1 + n2 is an even integer, m(ni + n2/3) is an
integral multiple of 2ir. Note that in this case both mc and md are also integral multiple of
2ir. Using (4.50), and Appendix 1 we can calculate the expectations of UkUI and Vk and then
using these together with (4.62), (4.63) and (4.64) we can obtain the expectations Ak = Ji(Bk)
and Aki = E(Bkl). Let = 26 + 262 + . Then

2 3—cos263(1+coszb)
E( )— 4 2 ‘ (.8)

2 cos 6 sin 63

E(V1) = ({_3sin6i — /cos61+ 2/cos262 cos 61 + 2sin62cos62cos01

+2sin61cos2 62 — 2sin61Vsin62cos62}cos263 + 6sin6i)/(4cos3 61 sin2 63).

(4.90)

Next we have
2 — sin2 63(1 + cos

EU2) — 4.91
2 cos4 62 cos2 63

and

E(V2) = ({_3sin62— cos62+ 2vcos2 61 cos 62 + 2sin61cos61 cos62

+2 sin 62 cos2 61 — 2sin62/äsin61cos 6} sin2 63 + 6 sin 62)/(4 cos3 62 cos2 63).

(4.92)

Thirdly,
= 3 — cos — 4 cos cos 263 + cos2 263 + 3 cos b cos2 263,

(493)
8 sin 63 cos 63
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and
= 3 + cos2 283— cosb + 3coscos2283

(49)
4 cos4 8

We also need the expectations E(U1U2),E(U2U3)and E(U3U1). They are

2—cos
(4.95)

cos2 8 cos2 82

sin83sin(—1 + 3cos283)
]E(U2U3)= — (4.96)

2 cos3 83 COS2 82

and
sin(—2 + 3cos283)

E(U3U1)=
— 2cos281cos83sin83

(4.97)

A1 = icot283sin, (4.98)

A2 = itan283sinb, (4.99)

A3 = _i(cot283(1+3cos)sin2283+2cot283(cos—2)), (4.100)

A11 = (cot283(cos_2) —3), (4.101)

A22 = (tan283(cos —2) —3), (4.102)

A12 = cos — 2, (4.103)

—1 + 2 cos 283 + 3 cos2 283
A31 = sin’/ (4.104)

4sin283
1 + 2 cos 283 — 3 cos2 283

A23 = sin7L (4.105)
4sin283

A33 = ((1 + 3 cos) sin2 283 —4 — 2 cos). (4.106)

The behaviour of these quantities near 83 = 0 and near 83 = is given in the table below with
the notation 6 = — 83.
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83=0 83=

i sin ‘5
0A1

28

i sin ‘ij5
A2 0

262

cos’b—2 cos’b—2
A3 -i

483 46

A11
cos—2 3 3

48 4 4

3 cosb—2 3
A22 -- --

4 462 4

A12 cos—2 cosb—2

sin
A31 0

--

— sin /)A23 0
26

A33
cos ‘/ + 2 cos 7/P’ + 2

4 4

By writing cos 2n383sin2 283 as a linear combination of terms of the form exp(ir83), we can
deduce from (4.65) and (4.66) that

urn [exp(i(ni8 +n28)) cos 2n38sin2’28 — exp(i(n181+n282))cos 2n383sin2S 283]

a a . 0 32 32 32 32

= {—zAi- —zA2-—zA3-—A11 —A22 —A33 —A12
(1U2 -‘‘2 (IL’3

—A23 — A31 } exp(i(n81+n282))cos 2n383sin2 28g. (4.107)
382383 38308k

Note that if s 3/2, the right-hand side of the last equation is continuous in the topology
of ft Its restriction to Q0 U is zero. Moreover, we shall see in Appendix 2 that if s1 3
and s2 3 then the first three derivatives of ei(MO)2S1 g cos2s2 8 with respect to ) are
bounded and (1.24) holds. Now cos 2n383 is a polynomial in cos 283 and therefore a polynomial
in sin2 83. Thus we have for s 3

32 32

—A23 — A31 } exp(i(ri8 +n282))cos 2n383sin28283o(d81,d82,d93)
382083 083381

=0. (4.108)

32 32

32 32 32 32

{—iAi_ — iA2-— iA3— — A11 — A22 — A33 —A123838
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If we assume that c is absolutely continuous on with density p we get:

3 3 3 32 32 32

p(81, 82,83){—zAi— — zA2— — zA3— — A11-— A22 — A33
U’t/j (JV2 (1113 (11)3

—A123838 —A233838 — A31 } exp(i(n18+n282))cos 2m383sin2283d81d82d83

= 0. (4.109)

Integrating by parts, assuming that lim0127,.p(81, 82, 83) = p(O, 82, 83) and 1im92p(81, 82, 83) =

P((81 + ir) mod 2ir, 0,83), we get

2

exp(i(n181+n282))co5 2ri383sin2s283{iA1+i-A2+ i—A3—A11A3

—A22 — A33 A12 — A23 — A31}p(81,82,83)d81d82d83
2 3 12 23 31

= 0. (4.110)

Therefore, since the set of functions {e1O1+n282)cos 2n383sin2s 283 Ti, Ti2 E Z, n3 E N, Ti1 -I

n2 even} is total in the subspace of C() consisting of those functions which are zero outside

3 3 3 32 32

{z-A1+ z-A2+ z-A3- A11 -

(J111 (1112 (1113

32 32 32 32

—-—A33 — A12 — A23 — A31}p(81,82,83)= 0. (4.111)
3 1 2 2 3 3 1

Next we consider the measure on Q and Q0. In the same manner as above we have with

g(83) = sin2 83 cos 83,

lim A2E [g(8) - g(83)] = {-iA3--A33}g(83). (4.112)

Here g(83) has been chosen so that the right-hand side of (4.112) is continuous in the topology
of Q, its restriction to is zero and its restriction to 2o is 2. So, using the results of Appendix
2 again, we have

2(Q0)+ f p(8’, 82,83){—iA3—A33}g(83)d81d82d83= 0. (4.113)
3 3

and hence

2u(Qo) =

— L p(01, 82,83){—iA3--—A331}g(83)d81d82d83

=

—

p(8’, 82,83){—iA1-—iA2— iA3ã_ — A11 —

—A33 —A123838 —A233838 —A313838 }g(83)d81d82d83. (4.114)
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Integrating (4.114) by parts as above we get

2uo) =
— f g(83){i---Ai + i-—A2+ i——A3 —A11-—A3— --A22

681 2 3 1 2

32 32 32 32

—A33 —

6838
A12 —

38 38
A23 -

38 38
A31}p(81,82,83)d81d82d83

= 0. (4.115)

by (4.111). We therefore have
= 0. (4.116)

The same argument holds for Q

Now we return to the equation for p. If p = pQ4, 83), (4.111) becomes

3 3 32 32 32

{2iã-(A1+A2)+i-—A3— 4-(A11+A22+A12) A33
— 2ã&ã (A23+A31)}p(, 83) = 0,

(4.117)
where

A1+A2=isin(2cot2283+1), (4.118)

A23 + A31 = sin ‘/‘ cot 283, (4.119)

9 — 3 cos — 5 cos2 283 + cos2 283 cos
A11 + A22 + A12 — 2 n ‘ (4.120)

2sin 2u3

A33 = ((1 +3 cos ) sin2 283 —4— 2 cos ), (4.121)

A3 =_i(cot283(1+3cosJ)sin2283+2cot283(cos—2)). (4.122)

If 283 = q and p = p(, q)

3 3 32 32 32

{i(Ai +A2)+i-A3—2ã(A11 +A22+A12)— 2-A33 —233,(A23 +A31)}p(’i, g5) = 0,

(4.123)
where

A1+A2=isinb(2cot25+1), (4.124)

A23 + A31 = sin b cot q5, (4.125)

9 — 3 cos — 5 cos2 q + cos2 g cos
A11 + A22 + A12 = — 2 (4.126)

2sin q

A33=((1+3cos)sin2_4_2cos), (4.127)

(4.128)

With p(, qS) = sin q SQb, 5) we can write this differential equation as

32

—16 sin q cos sin 33,L,S(’,

+2sin2(cos2 + 3cos2cos — cos + 3)3(, )



The invariant measures at weak disorder for the two-line Anderson model 23

+(8cos2cos — 24cos + 72 40cos2)S(,)

—8sin(—7 + 5 cos2 )

+2cossin(—17cos + 5cos2 + 15cos2cos 1)S(,)

(4.129)

The last equation can be simplified to

32

—8 sin 2q sin i S(, ç)

—(cos2—

+(4cos cos 2q — 20 cos + 52 — 20 cos 2q)SQ’, q)

—4sin(—9 + 5cos2)S(, )

+ sin 2(15 coscos 2 + 3— 19 cos + Scos 2)S(, )
(4.130)

This equation can also be written in terms of the variables u = cos 2 and v = cos as follows:

2
82

2(1 —u)(1 —u )(3uv+u+7)—S(u,v)

32

—16(1 — u2)(1 — v2)83S(u, v)

32

+4(1 —v2)(uv — Sn — 5v + 13)—S(u, v)

—(1 — u)(mu2 + 21u2v+ 22u — 2uv — 19v + 3)S(u, v)

+(2Ouv — 52v — 36 — 24uv2 + 20u + 56v2)S(u, v)

—(1—u)(3u+9uv—9v+1)S(u,v) = 0. (4.131)

Unfortunately, we have not been able to solve this equation, nor prove that it has a unique
positive solution.

4.3.2 The case E e (—1, 1) with both /r and /3/ir irrational

In this section we consider the case when both a/ic and /3/ic are irrational. We know that
in this case o is Lebesgue with respect to 0 and 62, that is, on u0E(d61,dO2,do3) =

d61d62&(d03),on Q, uoE(dOi) = Sid81 and on Q0, (d62) = S0d02. Here a is rotation
invariant in both 0 and 02. Therefore we can choose m = 1. Also we need only to consider
functions of 03 to determine the limiting measure.

Since a and /3 are arbitrary, the expressions for E(U) and i(V3) are very long. However we
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only need the integrated expressions with respect to 0 and 02 . These are much simpler:

12ir 1ir K2 (1 + 4 cos — 3 cos2 5 — 4 cos 5 cos2
i , d01d82J(V3)= I 2 + 2Jo Jo v(1 + cos çb)3/2sin 03 \ sin 43 sin

(4.132)

and

12ir fir
2 — 2ir2 (3 + 4 cos 4 + cos2 3 — 4 cos + cos2 ç

i i d8ld02E(U3,
— 2 2 + 2

J0 .‘o (1+cos4) \\ sin 3 sin c

Recall that
E (exp(iri30)) = exp(in303){1+X2[A3n3+A33n]} + 0(A3), (4.134)

where A3 = E(B3) and A33 = E(B33). Therefore

2ir rir

j J d01d612 JE(exp(in30)) = exp(in383){1 +).2[C3n3+C33n]} + Q(,\3), (4.135)
0 0

where c3
= 12ir fir

A3 d81d62 and
= f2ir fir

A33 d61d02 and therefore

-2
(f2ir

f d81d02 (E (exp(in38)) — exp(in303))) = n3 exp(in383)(C3 +C33n3).
(4.136)

It follows that for any 9(03) which is a finite linear combination of terms of the form
exp(in383),

(f2ir[deldg2(E(g(0))) —9(03)) = —g”(03)C33—ig’(83)C3. (4.137)

IfA2I7g
— II is bounded and if the right-hand side of (4.137) is continuous on [0, ir/2] then

we have from (1.24)

f (g”(03)C33 + ig’(03)C3)(d03)+ (g”(83)C33+
(o,) 3=o

+irS (g”(03)C33 +i9’(83)C3)/2= 0. (4.138)

In terms of q/ = 203 we have

K2 ((1— cos)(5cos — cos2+ 2) (1 + cos)(5cos+ cos2 — 2)
C3 = — 2 + 2 cosec g5,

8 sina sin/3
(4.139)

K2 (3 + 4 cos + cos2 q 3 — 4 cos + cos2
C33 = 2 +

. 2 (4.140)
16\ sin/3 since

In Appendix 2 we show that if g(03) = f(sin2 03) and the first three derivatives of f are bounded,
then (1.24) holds. Now, if 9(03) is a linear combination of terms of the form cos 2n303 then it
is a polynomial in cos 203 and therefore a polynomial in sin2 03. Let

g(03)
= 4(n31_2)

cos 2(ri3 — 2)03 +
4(n3+2)

cos 2(n3 + 2)03 — cos 2n303, (4.141)

forn3L0andn3±2.Forn3=+2wetake

g(03) = ± (cos803— cos403). (4.142)
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Then
g’(83) = 2 sin 2n383sin2 283 (4.143)

and (4.138) becomes for n3 L 0,

f [2n3C33cos 2n383sin2 283 + (i03 sin2 283 + 4C33 sin 283 cos 283) sin2n383]x(d83)= 0.
(o,)

(4.144)
We can integrate by parts to get:

f (ici3 sin2 283 + 4C33 sin 283 cos 283) sin 2n383 (d03)
(o,)

= —2n3
O)

(iC38sin28 + 4C33(8) sin 28 cos 28) (d8)) cos 2n383d83.

(4.145)

Therefore

f C33 cos 2n383sin2 283 (d83)
(o,)

= L,) (iC38sin2 28 + 4C33(8) sin 28 cos 28) (d8)) cos 2n383d83.

(4.146)

Since the set {cos 2n383 n3 N0} is total in C([0, i]),

C33 sin2 283 (d83)
= (f (iC3(8) sh2 28 + 4C33(8) sin 28 cos 28) (d8)) d83 + Kd83,

(o,)
(4.147)

where K is a constant. C33 sin2 283 never vanishes on (0, ), therefore i is absolutely contin
uous and if its density is p,

sin2 283p(83)
= f (i3(8) sin2 28 + 433(8) sin 28 cos 28) p(8)d8 + K. (4.148)

It follows that p is differentiable and

(C33sin2283p(83)) = (iC3(83)sin2 283 + 4C33(83)sin 283 cos 283) p(8) (4.149)

or

(C33p(83)) iC3p(83)= 0. (4.150)
d3

We shall solve this equation below, but first, as in the case E = 0, let g(8) = sin2 83 cos4 83.
Then (4.138) becomes, for a3 0,

f2 (g”(83)C33+ ig’(83)C3)p(83)d83
= j2° (4.151)

Since p satisfies the differential equation (4.150) the left-hand side of the last equation vanishes
and therefore S = 0. Similarly ö = 0.
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We now proceed to solve the differential equation (4.150). If p =

iC3p() — 2(C33p()) =0. (4.152)

Simplifying and putting p(g5) = R(b) sin q, we get

((1 cosq)(3-cosq) + (1+cos)(cos+3) dR(5)

sin2c sin2j3 ) dçb

+2sin
(1 eos - 1 ±cosj

R() = 0. (4.153)
sino sm/3

With R(çb) = S(cos q) and t = cos this becomes

((1—t)(3-t) (1+t)(t+3) dS(t) (i-t i+t -

+ I — () (. )
sin c sin /9 j dt sin c sin /3

or

((1 — t)(3 — t) sin2 /9 + (1+ t)(3 + t) 2 ) dS(t) — 2 ((1 — t) sin2 /3— (1+ t) sin2) 3(t) = 0.

(4.155)

— t)(3 — t) sill2 /3 + (1 + t)(3 + t) sin2 €) s(t)] — 2 (cos2 /3 — cos2) S(t) = 0. (4.156)

d ((1 — t)(3 — t) sin2 /3 + (1+ t)(3 + t) sin2 ) 3(t) 2
(cos2 /3 — cos

3(t) — 0 (4 157)
dt sin2 /3 + sin2 o sin2 /3 + sin2 cl) —

Let
((1 - t)(3 - t) /3 + (1± t)(3 + t)

= (t - t+)(t - t) (4.158)
sin /3 + sin c

and
U(t) = (t — t+)(t — t_)S(t) (4.159)

then
dU(t)

2
(cos2 /3— cos2 U(t)

— 0 (4 160)
dt sin2 /3+ sin2 c) (t — t+)(t — t) —

Recall that cos2 /3 = cos2 a only if E = 0 and therefore t and t_ are not pure imaginary. From
now on it is easier to work in terms of E.

dU(t)
— ( 4E U(t)

4 161
dt - 3_E2) (t-t+)(t-t)’ (. )

where t and t are the solutions of t2 — + 3 = 0, that is

4E /34E2 — 3E4 — 27

= 3 — 3 — . (4.162)

Note that
U(—E,t) = U(E, —t) (4.163)

and therefore we only need look at the case E> 0. Let E0 = (1%/Is — 2)/i/ 0.927. In the
case when E = E0, t = t_ = a where a = 4E0/(3 — E) and then

C IaN
3(t)

= (a — t)2
exp

a — (4.164)
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(Note that a> 1.7.)
4E /34E2 — 3E4—27

and b =In the case E0 <E < 1, t = a ± b where a
= (3 — E2 3 —

C (a+b_t”\
S(t) —

________ ______

(a_t)2_b2 a—b—t)

Inthecase0<E<E0,
4E

t = a + ib where a
— E2

and b =
/3E4 — 34E2 + 27

and
3 —

Figure 2: 83 p(93)

b ‘\

(a_t))
(4.166)

E - 0 S(t) —* (4.167)
t3 + 3

E —÷ 1 S(t)
“ (1 t)2

(4.168)

The former clearly does not satisfy the equation (4.130), which means that there is an anomaly
at E = 0. The second even diverges at t = 1 and the corresponding p(&3) also diverges at
83 = 0. This of course means that the constant C needs to be scaled and the resulting measure
is Lebesgue measure on This is due to the fact that the coordinates are singular at this
point, however, and we need a more careful analysis. For small c we can write a 2(1 — 2e)

and

(4.165)

Notice the limiting cases

S(t)=
C 7a

(a — t)2 + b2
exp tan

E>E

/ \\ E=E0

/1

10

L5

p(83)

05

0.2 04 0.6 0.8 1.0 1.2 1.4
93

itI2

and

C

C
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and b 1 — 8c, so that S(t) 1+4E—t)2’
replacing a/2b by 1. The normalisation constant C

must be proportional to e, so the density is

CE sin 203p3)rJ
1+4E—cos2O3

(4.169)

To compare this measure with the invariant measure at E = 1 we need to change coordinates.
The corresponding transformation is given by SS’, where S is the matrix (4.200) and S is
the matrix (4.69. For E = 1 — e we have

1 f—l/2 0 —1
1 —1 f-i/2 0 —1

4 170
2 0

—1/2
j

0 _1/2 1 1

Thus

0 -1

l)

(4.171)

and hence if we denote the original coordinates by 8 and the new coordinates by 8’,

cot8 = — cot(82 — ir/4), (4.172)

cot8 —iJtan81 (4.173)

and

cot2 8 (sin2 Oi + e’ cos2 8) tan2 83. (4.174)

It follows that dO2 = d8 and

1 cos2 8 ,

________________

dO1 = — dO2
= 2 4.175

sin 8 cos2 8 + E sm

and
d8

= (sin2 01 + e’ cos2 o)1/2 d0
(4.176)

sin 83 cos 83

We also have

sin2 O + ‘ cos2 01
= 1

2 (4.177)
cos2 O + E sin

Denoting
X = cos2 8 + €sin2 8 (4.178)

we have
i 1/2

dO3 = X’2cos2 83 =
dO3 X

(4.179)
sin O sin O 1 + 2X cot2 8

Similarly, transforming the density, we have

2\/cotOX’/2
sin 203 = (4.180)

1 + 2Xcot2O

and
4Xcot20

1—cos2O3= , (4.181)
1 + 2X cot2 O
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so that
2\/X’/2cot 8(l + 2X cot2 8)

p(8) = (4.182)
[4X cot2 8 + 4c(1 + 2X cot2 8)j2

We thus get

Ce/ cot 8 d8d8d8
p(83)d81d82d83 = (4.183)

4 [cot2 9 cos2 8 + e(1 + cot2 8(1 + cos2 8))J2

Gc/ sin 8 cos 8 d8 d8’ dEY2 3 (4.184)
= 4 [cos2 8 cos28 + c(sin28 + cos2 8(1 + cos2

In the limit c —* 0 this tends to

= S(8 - r)sin8d8d8. (4.185)

4.3.3 The case E (—1, 1) with ci/r rational and /3/ir irrational

In this section we consider the case when a/or is rational and ,i3/r is irrational. We know
that in this case o is Lebesgue with respect to 82, that is, on !2(o,, of(d81,d82,d83) =

d82à(d81,d83), and on 2o, o(d82) = 0d82. Since we need to consider only functions of 8
and 83 to determine the limiting measure we choose m so that mc is an integral multiple of ir.
The quantities that we need are:

f d821E(U) = 2mr2
sin2 c cos2 83 + 3 sin2 /3 sin2

(4.186)
o cos4 8 sin2 c sin2 3 sin2 83

(sin2 c cos2 83 + 3 sin2 /3 sin2 83
J d82E(V1)= 2 sin81m

cos3 8 sin2 sin2 /3 sin2 83
(4.187)

1 (1 +cosçb)(1 +3cos)sin2+(5+cosq5)(1 — cosç)sin2/3
/ d82E(l/) = —rm . (4.188)

.io 2 sin2 c sin2 /3 sin q cos2 83

1 (3+4cosq5+cos2g5)sin2+(3 4cos+cos2q5)sin2/3
/ d82E(U) = —irm (4.189)

2 sin2 o sin2 /3 cos4 83

rir

/ d02ii(U3U1)= 0. (4.190)
Jo

Starting from

iE(exp(i(n18+n38))) = exp(i(n181+n383))exp(—irnn1c)

x{1 + A2[A1n1+ A3n3 + A11n+ A33n+A3in3rii]}

where Ak = E(Bk) and Aki = IE(Bkl), we get

/ d82E(exp(i(n18+n38))) = exp(i(n181+n383))exp(—imn1)
Jo

x{1 +2[Cini + C3n3 + C11n+ C33n+C31n3n1]}

+0(A3),
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where Ck = fd82Ak and Ckl = fd82Akl. Therefore

lim -2 ([do2 E (exp(i(n18+n38)) — exp(i(n181+n383))exp(_imni)))

= exp(i(n181+n383))exp(—imn1c)[C1n1+ C3ri3 + C11n + C33n+C31n3ri1]

and

urn 2 ([do2 E (exp(2i(n1O+n383)) exp(2i(n181+
0

= 2exp(2i(n181+n383))[C1n1+ C3ri3 + 2C11ri + 2C33n+ 2C31n3ri1].

(4.191)

It turns out that C1 and C31 are both zero and C3 and C33 are ‘irm times their values in the
previous case. There remains C11 which is given below. Note that it is independent of 81.

2(1 + cos g) sin2 c + 3(1 — cos q5) sin2 /3
C11 = —2m7r 2 2 (4.192)

(1 — cos sin sin /3

For suitable functions g such that
32 32

ä(01,83)C33 + iã_(81,83)C3 +(81,83)C11 (4.193)

is continuous we have as in previous cases.

L,27t)X(O,)
((8183)C33 + i-(81,83)C3 + (81,83)C11) (d81,do3)

+ 03)C33 + i(81,83)C3 + (81,83)C11)

+ f 83)C33 + i-(8i,83)C3 + (81,03)C11)
8

/JO(d8l) = 0.

(4.194)

Note that

((81o3)C33+ i-(8i,83)C3+(0183)C11) (4.195)

is independent of 81. If we assume that o is absolutely continuous on with density
p by choosing g’s whose restriction to Q U is zero and integrating by parts, we get with
5(8, 83) = f[o7) p(O1, 82,83)d82:

(C33 — i—C3+ öC11) (81, 83) = 0. (4.196)

As in the previous two cases we can show that of vanishes on o U . If g is independent of

81 and o(d83)= f[O2)o(d81,do3), then (4.194) becomes

]0,)
(o3C33+i(83)C3) (d83)

132g ag
+ lröo

+ + i_(83)C3)
837t/2

= 0 (4.197)

and therefore ö coincides with u0E in the previous case.
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4.4 The case E = ±1

Suppose that E = 1; the case E = —1 is similar. Here the real Jordan form for A0 is

= SA0S’
= ( ) (4.198)

where

= ( ). (4.199)

The matrix S is then given by

(4.200)

Note that

=( ) (4.201)

and therefore 8, 4q) and 8 are given by

= (8 ) mod 2ir, (4.202)

Ii if82=0,
cot q) = q

cot 82 •f
(4.203)

1+qcot9’ 2

and
cot 8q) = cot 83(1 + q sin 82 cos 82 + q2 cos 82). (4.204)

Therefore 8 - as q — . j
8q = 0 or , then 8 = 6. If 82 = , then 0 = 83,

otherwise 6(q)
—* 0.

We have
fg(w)u(dw) = lirnf(4g)(w)u(dw). (4.205)

By using the functions (4.33) in (4.205), we get for n1, ri2 Z, n3 N, n1 + n2 even,

eh1O1282)sin 2n383u(d81d82d83)= f eu181262)sin 2n383u(d8id82d63).
0(0,)fl{82}

(4.206)
Thus u on Qo,) is concentrated on Qo,) fl {8 = }. Then by using the functions (4.35) in
(4.205), we get, for n2 E

e22°2u(d82)
= f (4.207)
(20n{82=}

Therefore o is concentrated on U Q0) fl {82 = U

Since
(74g)(81,, 83) = g((81,, 83) (4.208)
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(8) o(d8) = 0.

sin 8 sin 83
cos 81 sin 83

cos 83
0

Then we get from (4.65) with n2 = 0 and m = 4

sin 8 sin 8
cos 8 sin 8
sin 8 cos
cos 8 cos

(4.209)

(4.210)

(4.211)

iE (exp(i(n18+ 71383))) = exp(i(n181+ 71383))

x{1 +A2{Aini + A3n3 + A11n + A33n

To calculate the A’s we need:

+A31n3ni]} + Q(3) (4.212)

— 0 0 1 41
C1(4)

(0

0 1 4\

— 0 0 0 01’
1 02 2

0 0 —1 _21
C3(4)

( 0 0 —1 —2\

= —1 1 0 0 I’
1 1 0 o)—

( —.
1 1

1 1

D1(4) — —
00
00

/1 1 0 0\

D3(4)_(

:i 0— 0 0 2 41’
0 0 1 2)

/0 0
0

C4(4)= I
12 2
1

2

1 3
—1 —3
0 0’
0 0

(—
— 0 0\1 1

0
D2(4)=

0 1 31’
0 0 1 3)

/ 1 _ 0 0\21 1 0
D4(4)=l g 0 3 31

0 0 1 1)

Using (4.50) we get from these, with = 281 and q = 283,

E(yiy2)

E(y1y3)

E(y2y3)

— 5+3cosq5
= ]E(y22) = E(y) —

________

= —sin(1—cos)

4

= —(sin81+3cos81)sin

= (3 sin 8 + cos 8) sin

= (35+21cos+3(1 —cos)sin).

L
we have

It is sufficient to calculate

and let

/ 82
Let

x’=E(4)x= (
0 0

1

and

—1 —1
1 1
0 0
0 0

00
00
00’
14

(4.213)

(4.214)

(4.215)

(4.216)

E(y) (4.217)
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These give

A, = cosbsin, (4.218)

A3
= i{4(5COs+3)

+ 13sin+ 15cossin+2(2 —cos)sinsin2
16 sinçb

—8 cos q sin q cos + 3(1 — cos ) sin sin}, (4.219)

A,,
= (3 — sin2) — 2

, (4.220)
4 1—cosg

A3, = (cossin —6— 2sin), (4.221)

and

A33 = _((2 sin2 +3 sin +8 cos — 15) cos2 + (2 — 6 sin b) cos

+(3sin — 8cos —2 sin2 + 45)). (4.222)

As in the previous cases we then get for suitable g’s

— iA3_— A,1g— A33
—A313:38 }g(8,,83)u(d8,d83)= 0.

(4.223)

If we assume that o restricted to fl {8 = is absolutely continuous with density p,
then choosing g’s whose restriction to Q0uQ is zero and such that the integrand is continuous,
by integrating by parts we can show that p satisfies the differential equation

3 3 32 32 32

{i_A, +i-A3— -A,, — A33 — 38

38
A31}p(8,,83)= 0. (4.224)

Near 83 = 0, A3 behaves like i8’ + 0(83) and A33 behaves like —1 + O(8). While near 83 =

A3 = —i(4( — 83))’ + O(Q — 83)) and

A33 = —(3sin + 7) + O(( — 8)2) (4.225)

Therefore, by choosing g(83) = sin2 83 cos4 83 we see that the measure oj is zero on Q0 and by
choosing g(83) = sin4 83 cos2 83

(9-i-3sin’z/’)o-(d8,) = 0. (4.226)

Since the integrand is positive, the measure o is zero on also.

To sum up, in this case o, is concentrated on and its density satisfies the differential
equation (4.224).

The differential equation (4.224) does not appear to have a 8,-independent solution, and in
particular p(8,, 83) = sin 83 is not a solution, so that there is an anomaly at E = 1 on the
left-hand side. In the next section we will see that there is also an anomaly on the right-hand
side.
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4.5 The case E E (—3, —1) U (1,3)

Suppose that 1 <E < 3. The case —3 <E < —1 is similar. We can choose 3 e (0, -) but we
cannot choose to be real number, in fact if we put = i7, ‘y > 0, we get 2 cosh ‘y = E + 1
and 2 cos = E — 1. Then

Jo= (j (4.227)

where
= (exp(-) 0

(4228)
0 exp(7))

1 —cos/3 —cos/3
0 0 sin/3 sin/3

(4229
—exp(—’y) exp(—7) 1 —1

expQy) —exp(7) —1 1

and
1 cot 4i cosech cosech

— 1 1 cot /3 — cosech
—

cosech
4 230

— 2 0 cosec /3 e’ cosech y cosech
0 cosec — cosech — e cosech

We have
8q)

= (8 — q/3) mod 2ir, (4.231)

cot 8q)
= cot227 (4.232)

and
cot 8 = cot83(e_27sin2 82 + 27cos2 82). (4.233)

Therefore as q —* cc, 8 converges to 0 or . We have

fg(w)u(dw) = lirnf(g)(w)u(dw). (4.234)

By using the functions (4.33) in (4.234), we get for n1, ri2 E Z, n E N, n1 + n2 even,

f e181282)sin2n383c(d81d82d83)= 0 (4.235)

since sin2n38 converges to 0. Thus u(Qo,) = 0.

If 83 = 0 or , then 8 = 83. If 82 = , then 8 = , otherwise 8 — 0. So by using the
functions (4.35) in (4.234), we get for ri2 E Z

e22O2j(d82)
= u(Qo fl {82 }) + (o fl {82 = })e1Th2. (4.236)

Therefore of on is concentrated on (o fl {82 = 0 or }) U Q.

We have

C(m) = —2
(Vmm)

Un(m))
(4.237)

and

D(m) = 2
(Rm +R_(2n_2-m)Jz)

Wn(m))
(4.238)
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We need the explicit form of U(m), V(m) and W(m) only for n = m = 1. Note that the first
entry in D(m) is as in Section 4.3 with replaced by ,8.

n n 1 — 1
“ 2sinh-y 2sinh7

0 0 0 1

C1(1) = 4 2sinh7 (4.239)
—e —e7cot/3 0 0
—en’ —ecot/3 0 0

1 cot/3 0 0
o o 0 0

D1(1) = J 0 e e (4.240)
2sinh-y 2sinh-y

0 0 — e7 e7
2sinh-y 2sinh7

From (1.24) we have

lim -2 (Tg g)(1)(d81)+ urn A2 f O}
(Tg — g) (82)u(dO2)= 0. (4.241)

If we let g(93) = sin2 cos4 then

=0=g . (4.242)
(c20n{82=o})uc (c20n{82=o})uc2

Thus

fQ + LOfl{82=O}
)2)J(d62)=0. (4.243)

A longish calculation using the above information and (4.65) with ri1 = = 0 and m = 1,
shows that the first term is 0 and that the second term is equal to

16(e2 — 1) 2E(ç { = 0}) + 8(1 — e 27) 2E(ç0 fl {8 =

Therefore of(Qo) = 0 and o on is concentrated on Q.

It is clear that is invariant under rotation by 3. Thus if 3/ir is irrational this measure

must be the Lebesg measure. If // = p/q where p and q are positive integers then we have

L ( 2g)()JE(de)
= 0. (4.244)

Let
sin 81

cos81)
(4.245)

and let x’ = B(2q)x. As in (4.65) with n2 = = 0 and rn = 2q we have

E(exp(in18)) = exp(ini8i){1 +A2[Aini + + Q(3). (4.246)

Using Appendix 1 and (4.50) we get

E(y) = KDei,
2 = 2q(1 +2cos28)

(4.247)
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2q 4q sin 8 cos
E(y1y2)= Kei, x) (De2,x = (4.248)

/ sin243ri=1

1 2q 2q(1+2sin281)
(4.249)E(y) = (De, x)2 =

________

ri=1 sin2 13
One can then check that when 83 =

3q
and A11 (4.250)

= sin213

Therefore from 4.244 for n1 0

= 0. (4.251)

Thus is Lebesgue measure.

Summing up, we have that o is concentrated on and on that it is Lebesgue measure.

4.6 The cases E = ±3

Finally we come to the case E = ±3. It is sufficient to study the case E = 3. Here cos c = 2
and 13 = 0.

0 )
, (4.252)

where

= ( ) (4.253)

and

j(2-/

0
0 2+i/}

(4.254)

1 1 00
1 1 —1 —1

(4.255)
(2—/) 2/ 1 -1
2+ —(2±/) —1 1

We have
if81=0,

cot 0(q)

— { (4.256)1 cot8i
1+qcot8i’

if 81 0

cot gq)
= cot 82(2 +

/)2q (4.257)

and
(2 — /)2q sin2 82 + (2 + /)2q cos2 82)

cot 8 = cot 83 ( 1 + q2 cos2 81 + 2q sin 81 cos 81
(4.258)

Therefore as q —* 8 —* 0 or . We have

fg(w)u(dw) = lim I (g)(w)u(dw). (4.259)
q—oo Jc2
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By using the functions (4.33) in (4.259), we get for n1, n2 E Z, ri3 N, n1 + ri2 even,

ei161282)sin2n383o(d81d82d83)= 0. (4.260)

Thus = 0.

Now 0q)
= e if 83 = 0 or . 8 = 8 if 82 = 0 or , otherwise 8 —÷ 0 as q -—-* oo. Therefore by

the same argument as in Section 4.4, u on is concentrated on (2 fl {8 = 0 or 02 = }) U

Similarly, since 8 —* as q —÷ oc, we can argue that c on is concentrated on (o fl {0
0or82=fl)U(Qrfl{8i =fl).
Using the notation of Section 4.2 we have

0 01 1
22v

i-i ri 1 1

C1(1)
= U U

2/i 2/i , (4.261)
—(2—’) 0 0 0
2+/ 0 0 0

10 0 0
10 0 0

D1(1)
= 0 0 2—v’ . (4.262)

2/ 2/

0 0 2+/ 2+/
2r3 2

From (1.24) we have

urn 2 f (g — g) (8i)(d0i) + Jim -2 f (g — g) (82)u(d82)= 0.
A40 firfl{z2L} AO Qon{82=O or

(4.263)
If we let g(83) = sin2 03 cos4 83, then

=0=g . (4.264)
!20uc22r

2 2

Thus

fl{Oi=1}
()(ei)J(doi) +

LOfl{82=O or
()(o2)J(do2)= 0. (4.265)

From the above information and (4.65) with n1 = = 0 and m = 1, we can check that the
first term is 0 and that the second term is equal to o(Qo fl {0 = 0 or })/12. Therefore
o(2o fl {8 = 0 or }) = 0 and u01 is concentrated on !2ir fl {0 =

Thus o is concentrated on Q and on that it is the atomic measure at 8 =

The limiting measure at E = 1 has to be transformed via the matrix

1 cot3 0 0
1

cos3—1 0 0
—1 S1fl/3

S3 S
= 0 0 —2+/+e7 —2++e (4.266)

2sinh7 2sinh-y

0 0 2+v-—e 2+v—e
2sinhy 2sinh’-y

This matrix transforms the point (1, 0,0, 0) to (1, 1, 0, 0), so that the transformed measure is
concentrated on R/2 ii {8 = ir/4}.
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5 Appendix 1 The expectation of the terms YiYj

Case i = 1,j = 1.

sinO3\ im

2
2i

(Dei, x)2 = j <mcos(2ma — 20k) + 2m

sin 2ma
+cos(2a — 28k)

sin2cv

+4cos(ma — 0i)cos(a
— O)srnma}

(5.1)
sin a

\2

(cei, = 2
(cos03)

{

sinm(a — /3)
cos[(m-1)(a+/3)-202]

sin/3 sin(a—/3)

sinm(a + /3)
+cos{(m 1)(a — /3) + 262]

sin(a+/3)
sin ma

+2cos((m 1)a)
sin a

sin m/3
+2cos[(m 1)/3 2021

sin/3
+ 2m} (5.2)

Case i = 1,j = 2.

(Dei,x) KD2,x)
= 2(sinO3\ I

imsin(2ma—261)\\ 5111 a j

—sin(2a
— 26)sin2ma

sin2a

+2 sin((m — 1))
sin ma

(5.3)
sina J

IcosO3
2

____

sinm(a — /3)KCei, ) KCe2,) = 2
sin/3) { sin[(m — 1)(a + /3) — 262]

sin(a
—

/3)n= 1

sinm(a + /3)
+sin[(m — 1)(cv

—

/3) + 262]
sin(a + 43)

+2sin((m l)a)5mal (5.4)
sina J

Case i = 1,j = 3.
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m m

> (Dei, x) KDe3, x) = (C’ei, ) (Ce3,)
rt=1 n=i

= 2sin83 cos83 I
nc sin 43 tmcos[m(a + 43) 8i 821

+m cos[m(c — /3) — 8i + 82]

sinm( + 3)
+cosQ—43—81—82)

sin(ci+43)
sin rn(ci — /3)

8i + 82)
sin(a —[3)

sin mo
+2 cos(m/3 82) cos(c — 8)

sin o
sin ‘m/3

+2cos(m—81)cos(43+82)
. }

(5.5)
sin /3

Case i = 1,j = 4.

m m

(Dei, x) (De4,x) = (Cei, x) KCe4, x)
n=i n=i

= 2sinO3 cos83 I
sin sin/3

jm5in[m( + 13) — Oi — 821

—m sin(m(c — 43) — 8 + 82)
sin m(o + 3)

—sin(c—43—81—82)
sin(ci+/3)

sin m(o —13)
+sin(+/3—81+82)

sin(ci—/3)
sin mo

+2 cos(c — 8) sin(m43
— 82)

sin o
sinm/3}

(5.6)+2 cos(ma — 8) sin(/3 + 82)
sin

Case i = 2,j = 2.

22 sin
(De2,x) = —2

8
{mcos(2m — 28k) — 2m

(sin c)

sin 2ma
+cos(2o—281)

sin 2c

+4 sin(ma — 0) sin(
—8)sinm

(57)
sina J

Icos03
2

____

sinm(a —/3)
(Ce2,x) = _2.43) {cos((m_1)(a+43)_282)

srn(a—/3)m=i
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sin m(c + /3)
+cos[(m —

—

3) + 282]
sin(c + /3)

sin ma
+2cos((m — 1)a)

sina
sinm/32}

(5.8)—2cos[(m — 1)/3 — 282]
sin /3

Case i = 2,j = 3.

m m

> (De2,x) (De3,x) = > x) (Ge3,
n=1 n=1

— 2sin83 cos83 I
sina sin/3 tmnsin[m(a + 3)

—
— 82]

+m sin[m(a /3) 8 + 82]
sin m(a + /3)

—sin(a—/3—81—82)
sin(a+/3)

sin mri(a
—

/3)
— sin(a +/3—8 + 82)

sin(a — /3)
sin ma

—2sin(a—81)cos(m/3 —82)
sin a

sin m/3
+2 sin(ma — 8) cos(/3 + 82)

sin/3
(5.9)

Case i = 2,j = 4.

m

(De2,x) KDe4,x) = YZ(Ge2,x) (C’e4,x)
n=1

= 2sin 83 COS 83{
cos[m(a + /3) —

8 — 8]
sina sin/3

—meos[m(a — /3) — 8 + 82]
sinm(a + /3)

+cos(a — /3 — 8 —82)
sin(a+/3)

sinm(a — /3)
—cos(a+/3—81+82)

sin(a—/3)
sin ma

+2sin(a — 8) sin(m/3
— 82)

sin a
sin m/3

—2sin(ma—81)sin(/3+82) } (5.10)
sin /3

Case i = 3,j = 3.
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\2(m cos03\ I
(De, x)2 = 2 J rn cos(2mfl — 202) + 2m

(5ll/3J

+ cos(2/3 + 202)
2m/3

sin 2/3

sin rn3
+4cos(m5—02)cos(/3+02) (5.11)

sin 03 \ I sin m(c — /3)
2(Ce3,x)2 = j cos[(m + 1)( + /3) — 20ij

(sini sin( — /3)

sinm(a + /3)
+cos[(rn + 1)(c

—
3) — 20ij

sin(o+/3)

+2 cos[(m + 1) — 201]
Sifi m

sin c
sin m/3

+2 cos[( + 1)/3]
sin

+ 2m} (5.12)
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Case i = 3,j = 4.

/ 2
(CO583’\ I

(De, x) (De4,) = 2 J m sm(2rn/3 — 282)
n=1 Sifl/3J

+ sin(25 + 282)
sin 2m5
sin25

sin rn/3 ‘1
+2sin((m+ 1)13) (5.13)

(ce, x) (Ce4,x) = 2
(sin

32 f sinm( —5)srn[(m + 1)(c + /3) — 28k]
\\SflJ 1 sin(ci — /3)

sinm(a + /3)
- sin[(rn + 1)(a - /3) - 28w]

sin(c + /3)

+2sin((m+ l)/3)nm1 (5.14)
Sifl/3 J

Case i = 4,j = 4.

/cos83
2

(De4, = —2
sin 5)

{mcos(2m5 — 282) — 2m

sin 2m43
+cos(2/3+282)

sin 2/3

sin m/3
—4sin(m/3 — 82) sin(/3 + 82) . (5.15)

sin/3 J

2m

Z (Ce4,)2 = 2
(sin 83) { sin m(o — /3)

cos[(m + 1)( + 5) — 28ij
\sino sin(c—5)

sin m(o + /3)
+cos[(m+ 1)(a — /3) —

28k]
sin( + /3)

sin mo
—2 cos[(m + 1)c — 28k]

sin

+2cos[(m+
1)/3]sinm5

(5.16)
sin/3

6 Appendix 2 Continuity etc

If M is an n x n matrix with det M = +1 then

xIIIMxII> (6.1)
—

n!IIMII(mlY
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This follows from the inequality

IIl1II(n1)
11M’II <n! = n’IIMI’ (6.2)

detMl

which gives

lixil = IM’MxIt 11M’ W IIMxII <n! IIMII’ jMxII. (6.3)

Let M(\) be a 2 x 2 matrix with det M\) = ±1. Let

fA(x) = tan1 (6.4)

where x’ = M(A)x and let M
8M

Then

3 M(’)(A)x A M()x

= IM(A)x112
(6.5)

and so

0 IIM’P)xII
fA(x) < (6.6)

- IM(A)x11

Similarly

32 IIM(2)()xW I1’v[’CA)xII2
(6.7)< +2

— II1’I(\)xII IIM(\)x112
and

33 I II]\43CA)xII Ii1’1’))xII Il142))xII II1’1’()xIi3
(6.8)fA(x)I < IIM()xII IIM()xII2

+10
IIM(A)x113

In general

3k I IIM(nl) ()xII IIM(T ()xII
fA(x)I < (6.9)

I IIM(A)xII
1<r <Ic

and therefore

13k

Cr1 rn2hhII]t1)(A)II . .
. (6.10)

32D(Th)
Now we take M() = flD where D = SAS’. Note that = 0 and if the

random variables X1’s are bounded then there exists a constant C such that both IIDlI and
3D

are bounded by C for all n and all ) [—1, 1]. Therefore (6.10) gives for any k E N,
3A

<Ck. (6.11)
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If h = g o fA, where the first k derivatives of g are bounded, then we also have

<Kk. (6J2)

Since Tg = E(hA o t’), this gives

(:‘) K,,. (6.13)

By using the Mean-Value Theorem we then see that if the first r+1 derivatives of g are bounded,
then we also have

fl

—

(zg) = 0 (6.14)

Now let M(\) be a 4 x 4 matrix with detM(A) = ±1 and let

,2 ,2
X1 +X2

AX

where x’ = Mjx, that is

PM\ 2

A X
= IM()xII2

where Px = (x1,X2, 0,0) or in the notation of Section 4.2, fA(x) = sin2(O). Then

3 (PM(’)()X. PM()x)IM()xW2- (M(’)(A)x . M()x)IPM(A)xII2
fA(x)

= IIM()xII4
(6.17)

and so

a IIAI()XII IIf(’)XII
fA(X) <2

IIMXII2
. (6.18)

In general

IIM(nl) (A)XII ... IIM ()xII (6.19)
r1+r2+...+rm=k

1<r <k

and therefore

Cr1,...,rn(4 IIM(T1)()II
... IMIIIIM()II3 (6.20)

r1+r2+...±rn=k
1< r1 <k

Again if we take M) = fJD we get for any k E N,

<Ck. (6.21)

If hA = 1 o fA, where the first k derivatives of 1 are bounded, then we also have

<Kk. (6.22)
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If g(8) = l(sin2 83) then 7g = IE(h,, o t’) and we get

/8k \
K,. (6.23)

By using the Mean-Value Theorem we then see that if the first r+1 derivatives of 1 are bounded,
then we also have

—

(zg) = 0 (6.24)

Now we want to consider functions of the form ez1\7 sin2 8. First let

tA(x) = tan’ (), (6.25)

that is tA(X) = 8. Then as in (6.9)

Cr, ,...,rj (6.26)
X

1<r <k

Let SA(x) = exp(iN tA(x))(fA(x)) where fA is as in (6.16), that is, S.(x) =
jj2S

consists of a finite linear combination of terms with 1 = 0,.. . , Ic, of the form

exp(iN tA(x))(fA(x)) (fP1)(x) . .
f(Pfl)()) (t’(x) . .

. t(x)) (6.27)

withp1+...+p=l,n<landq1+...+qm=k—l,m<k—l.Ifweuse(6.26)toget

an upper bound for It1)(x). .
. t”x)j we see that the highest power of IIPM(A)xII in the

denominator of the upper bound is k —1. From (6.16) we see that the term in 6.27 is bounded
if s — n (k — l)/2 and therefore if s (k + l)/2 it is bounded for all m. Thus if s k,

is bounded.

Clearly the same argument works for eiM cos2s8 and for sin2S1 8 cos2s2 8 if s k
and 2 > Ic.
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