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Abstract

We compute the invariant measures in the weak disorder limit, for the Anderson model on
two coupled chains. These measures live on a three-dimensional projective space, and we
use a total set of functions on this space to characterise the measures. It turns out that
at zero energy, there is a similar anomaly as first found by Kappus and Wegner for the
single chain, but that, in addition, the measures take a different form on different regions
of the spectrum.
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1 Introduction and formulation of the problem

In this paper we consider the invariant measure for the one-dimensional Anderson model on
two coupled chains. The Hamiltonian is given by H = Hy + AV, where

(Hotp)(n,s) =9v(n+1,5)+9v(n—1,8) +¥(n,s £1) (1.1)

and

(Vo)(n, s) = vasth(n, s) (1.2)
where s = 1,2 and the v, are i.i.d. random variables. In the case of a single chain, this
model has been studied extensively. In particular, it was proved by Goldsheid, Molchanov and
Pastur [1] that the spectrum is entirely pure-point and all corresponding eigenfunctions are
exponentially localised. This result was extended to the case of a strip (in particular the case
of two chains) by Lacroix [2, 3] using a method proposed by Pastur [4] and a generalisation of
Fiirstenberg’s theorem|[5] due to Osseledec[6]. (For a comprehensive overview of the theory, see
the book by Carmona and Lacroix [7].)

To get insight into the behaviour for small disorder, Thouless [8] attempted to write down a
perturbation expansion in the disorder (i.e. in A) of the invariant measure in the case of a single
chain. In terms of the variable Z(n) = 1(n)/¢(n — 1) the Schrodinger equation at energy F
for this case can be written as

1
Z(n-l—l)—E——)\vn——Z—(-n—)

The invariant measure v¥ for this transformation is then defined by

[ $@pE) = [ (B~ 2o~ )uf(dn) (13)

for all bounded continuous functions f. The Liapunov exponent v(E) and the density of states
N(E) are related to this measure by

W(E) = Red(E); N(E) = rim7(E), (1.4)

where
AE) = / Inz vy 5 (d). (1.5)

Kappus and Wegner [9] subsequently discovered that the perturbation series proposed by Thou-
less is incorrect for the case £ = 0. They called this an anomaly. In fact, the limiting measure
v¥ is discontinuous at £ = 0. The problem was further analysed by Derrida and Gardner
[10]. They found that the perturbation series is also anomalous at the values E = 2cos §7r
for integer p and g. Bovier and Klein [11] then completed their investigation and derived the
correct perturbation series in all cases. These series were subsequently shown to be asymptotic
by Campanino and Klein [12] by means of a very sophisticated analysis.

Here we consider the analogous problem for the case of two lines. We concentrate on the more
limited objective of proving the convergence of the measures as 7 — 0 and determining the
limiting invariant measures. In the case of a single chain, this amounts to

c .
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We prove in a much simpler fashion than [12] that these limits hold in the sense of weak
convergence of measures. (This result is of course much weaker than theirs.) We next generalise
our approach to the case of two coupled chains. It turns out that this case is considerably more
complicated. In particular, the limiting measure has a different appearance on different regions
of the unperturbed spectrum. An outline of our method has been published in [13].

The unperturbed (A = 0) spectrum for the Hamiltonian 1.1 has two branches:
E(k) =2cosk £ 1, k€ [—m, .

These dispersion relations (2.3) are depicted in Figure 1. We can write the Schrodinger equation

E(k)

Figure 1: The dispersion relation for two linked chains

for this case in transfer matrix form as follows:

P(n+1,1) E — Mvp -1 -1 0 P(n,1)

win+1,2)| | -1 E-)us 0 -1 ¥(n,2) an
¥(n, 1) - 1 0 0 0 W(n—1,1) '
w(n, 2) 0 1 0 0/ \yn-12

This can be written more concisely as

(") =2 () (L9

with O X /
_ + —1 _
Ay = ( R ) (1=2) (1.9)
where 5 ) 0
. - _ _Un,l
C’-(_l E) andX—-( 0 —Un,2>.

This formulation has the advantage that it generalises to an arbitrary number [ of lines.

As in the case of a single line, the eigenvectors are defined up to a multiplicative constant,
so only quotients of the components are relevant. These are points of the projective 3-sphere
RP?~1 = P(R?). The equation for the invariant measure £ on RP?~! reads:

s F@WE@D) = [ B (F(Ara])) 7 (),
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for all f € C(RP?*1!). X is a random [ x [ matrix and [y] denotes the class in P(R%) containing
y. It is convenient to transform A, to a more suitable form, J, say, so that the limit Jy =
limy_g Jy, is a the real Jordan form of Ay. Let

SA()S—I = Jo, (110)
and
SANS™t = Jy. (1.11)
In terms of the image measures
7P =P oS (1.12)
where Sz = [Sz| the invariance equation reads
Jepas @ PE () = [ E(f([na])) 75 (da), (1.13)

for all f € C(RP%~1). It is convenient to parametrise RP?~! by 21—1 angles. Let § be a compact
parametrisation space and t : RP?~1 — ) a parametrisation of P(R?). The parametrisation
for the two particular cases that we consider will be specified later . Defining

of =pFot !, (1.14)
the invariance equation becomes
| @) of(dw) = [ & (gl w])) of (dw), (1.15)
or with the notation
(Tr9) () = E (g(t[Jxt"w])), (1.16)
| 9@)of (@) = [ (Trg)(w) o (dw). (1.17)

Now suppose that o tends to of weakly as A tends to 0 and J, tends to Jy. Let

(Tog) () = (g(t[Jot ™ ])) . (1.18)

We have by (1.17)
| (B9 = 9) @) ok () = [ (Thg - g) @) (o8 (dw) — oF (dw)) . (1.19)

Since [[Zigl| < llgll,
(@9 - @) (oF (@) — 0 (d)) | < 2glllo — 2]l =, (1.20)

as A — 0. If || Tog — Tagl — 0, then

[ (Tog) — (T29)) (@) o8 (dw)| < [ Tog — Tagl — 0. (1.21)
Therefore

| 9w) o (dw) = [ (Tag) (@) o () (1.22)
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This invariance equation together with ergodicity is enough in many cases to determine oZ.

For the other cases we need the following result. We have, again by (1.17), for any positive
integer g,

X2 [ (Tlg = 9) @) o (dw) = A | (Tig — ) @) (oF (dw) —of(@w).  (123)
If \72||7.%g — g¢|| is bounded then right hand side of (1.23) tends to 0 as A — 0 and therefore
lm X7 [ (Tig — g) (@) of (dw) = . (124)
If in addition A™%(7)/g — g) converges pointwise as A — 0 to a function F, ; € C(2), then
/ L (W) 0F (dw) = 0. (1.25)

To be able to exploit (1.23) we shall need the following iteration result.

2 Iteration Formula

In this section we compute the lowest order terms in the expansion of a product of m inde-
pendent random matrices of the form (1.9). Let C be an [ x [ matrix which can be written as
2cos G where G is an [ x [ matrix. Let

sinrzx

T(z,7) = pr (2.1)
and T'(r) = 7(G,r). Note that
T(r)=2cosGT(r—1)—T(r—2)=2T(r —1)cosG —T(r — 2), (2.2)
Let A be a 21 x 20 matrix defined by
Agn) _ (C +Il)\Xn ——Oll> _ (2005 G}l—i- X, —OIL) (2.3)
where X3, X, ... are independent random [ x [ matrices with mean zero and let
B(m) =1, A", (2.4)
Then
B(m) = Bo(m) + AB1(m) + M Ba(m) (X1, ..., Xm) + O(N?), (2.5)
where
By(m) = (Tgfz;)l) _;g;gnj) 1)) (2.6)

5im =53 (162 2 op)(S X TG-ns) rn-m) @7

and E(Bs(m)) = 0.

n=1

The proof is by induction. We want to show that

B(m)u=T(m+1)+ A\ i T(n)X,T(m —n+1) + X2(By(m)11(X1, ..., Xm) + O(N3), (2.8)

n=1
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where E((Bz(m))11) = 0. This relation is clearly true for m = 1.

B(m -+ 1)11 = B(m)11(2 cos G -+ )\Xm+1) -+ B(m)lg
= 2T(m+1)cosG + A Y_2T(n) X, T(m —n+1) cosG

n=1

+2/\2(Bg(m))11 cos G -+ )\T(m -+ 1)Xm+1
+X2Y " T () XoT(m —n+ 1) X — T(m)

n=1

)\ \Z T(n) X T(m — n) + N(Ba(m))ss + OO)

= (2T(m+1)cosG —T(m))
+A i T(n)X,2T(m —n+1)cosG —T(m —n))

:;T(m + 1) X1 + A (Ba(m + D)11( X1, . Xng1) + O(N3)
= T(m+2)+A nil T(n)X,T((m+1) —n+1)

+/\2(Bg(m -+ 1))11(X1 . Xm+1) -+ O()\S)

where

(B2(m + 1))11(X1, e Xm+1) = Z(BQ(m))n cos G -+ i T(n)XnT(m —n+ 1)Xm+1
) +(Bz(m))12

which implies E((Bs(m + 1))11) = 0. The other entries of B(m + 1) are checked similarly.

3 The case of a single chain ([ = 1)

In this section we study the case [ = 1, i.e. a single chain. In this case, the projective space
P(R?) is homeomorphic to the circle and there is an obvious parametrisation on Q = [0, 7),
identifying 0 and 7, defined by the map ¢ : P(R?) — ( given by

g — {Sot—l 2e(0,m) ifz #0, (3.1)

if Iy = 0.
We put C(Q) = {f | f € C([0,7]), f(0) = f(m)}. Recall that E € [—2,2] so that we can write
E =2cosa with « € [0,7)] and

A)\:(Qcosa—%)\X —1)' (3.2)

1 0

We first consider the case F # £2. Then the real Jordan form of Aq is R,, the rotation by «:

Ra: < COSCx SImo ) . (33)

—Sina  Ccos o

We have
Jo = SA()S_I == Ra (34)
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where

sina 0
) .

(Tog)(0) = g((6 — @) mod ). (3.6)

If g € C(Q) has bounded first derivative, it follows from (6.14) that ||Zog — Zhg|| — 0, and
therefore for such ¢ the invariance equation (1.22) for o holds. If « is not a rational multiple
of m, the invariance equation (1.22) and ergodicity imply that of is the uniform measure on
[0,7). If @ = pm/q is a rational multiple of 7, we use the fact that 7y’ is the identity map, 7.
If the random variables X,, are symmetric then (%’Zj\qg),\_o = 0. Therefore, if the first three

As a result

derivatives of g are bounded, (6.14) of Appendix 2 gives

_ o
T -0 - ()

A=0

= 0. (3.7)

lim
A—0

If (%’ng)}\:o is continuous, equations (1.24) and (1.25) then yield

/ (5%-7;9) ©)fta) ~0 (38)

We now calculate (3‘9—;7}?9))\:0 with g(f) = €*™. Recall that

(T9) (6) = & (gt T 726])) (3.9)
where J™ = SA{MS-1. Hence
(T9) 9)(6) = E (g(t[S (T2, AS”) $71¢726])) = E (g(t[SB(g)S~'+76])) (3.10)
We have
B(q) = Bo(q) + ABi(q) + X’ Ba(q)(X, ..., Xg) + O(N?), (3.11)
where By(q) = (—1)?I and
Bi(g)11 = —(-1) éT(a, n— )71(a,n)X,,
Bi(g)12 = (1) i 7(a,n)*X,,
Bilghn = ~(-1F Lrlan— 17K,
Bi(q)es = (—1)? i (o, n — 1)7(a, n) X, (3.12)

We let

<
I
=

(o, n — 1)7(a, n) X, (3.13)

3
i
R

7(@, 1) X, (3.14)

0~.<
I
Ma

3
Il
A

N
I
=

(o, n — 1)%2X,,. (3.15)

3
Il
=
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Then x v
— (1w [
B =1, x)
and if a # 7,
3 —2sina)q
X)) =F — _(___.,._____.__
E(X) (¥2) 8sin* o
B(Y?) = B(Z%) = %
8sin” o
3qcosa
E(XY) = = .
(XY) = B(ZX) 8sin* a
If o =7 then
E(X?) =E(XY)=EYZ)=E(XZ)=0
and
E(Y?) =E(Z%) = 1.
Let

Bi(g) = SBu(q)S~! = (~1)” ( Zl —Zzl'g > |

where 7, = X — Y cosa, Zo =Y sina, Z3 = (Z + Y cos? @ — 2X cos )/ sina.

If o # % then

3q
E(Z2) = E(Z2) =
() =®(Z3) = =,
q
E(Z) = E(Z225) = 8sin? o’

E(Z1Z2) = E(leg) == 0

fTa= 5 then
E(Z2) = E(Z172) = E(Z223) = B(Z371) = 0
and
E(Z3) = E(Z3) = 1.
Now

B(q) = SB(q)S™" = (=1L + ABi1(q) + A’Ba(q) + O(M?).

where E(Bs(q)) = 0. If we put
__ [ sin@
T=\ cosh

2, = (=1)P{(1 — \Z,) sinf — A\Z cos 0} + Now; + O(\?)

and 2’ = B(q)x, then

and
zh = (—1)P{A\Zssinf + (1 + AZ;) cos 0} + A2wy + O(N?)

where E(w) = 0. Writing
;[ sin@
T 7\ cost )

/
tan@ = % =tanf + AU + X2V + O(\3),
2

so that @ = t[B(q)t~'6], we have

(3.16)

(3.17)
(3.18)
(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
(3.25)

(3.26)
(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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where
U=—-2tanf Zl - t&l’lz 0 Z3 — ZQ (332)

V = 2tanf Z7 +tan’0 Z; + 717y +tan Z,Z3 + 3tan® 0 Z3 7,
+(—1)P sec 26(w, cos @ — wy sind). (3.33)
We then get

) 1+itan@\"
exp(2inf’) = (m)

= exp(2in){14+2i U cos? §—2in\* cos* B(U*(tan § — in)—V sec 20)+O(\*)}.
Therefore

E (exp(2ind’)) =exp(2ind){1 — 2iX*[n cos* O(E(U?)(tan § —in) — E(V) sec 20)] + O(\*)}, (3.34)

and thus
}‘in% A\72E [exp(2ind') — exp(2inh)] = exp(2ind){An + A1 1n?}, (3.35)
where
Ay = 2icos*(E(V) sec 20 — E(U?) tan#), (3.36)
Ay = —2B(U?)cos*d. (3.37)
If o # 3,
3q sec 40 3gtan @ sec 20
2 — ——————— P =
B(UT) = 8sin®a ’ E(V) 8sin’ o (3:38)
and 3
_ _ q
A =0, Ap = ot (3.39)
Ifa=7,
E(U?) =1+tan*d,  E(V) =tan®6, (3.40)
and )
A; = 2i(cos fsin® § — sin f cos® 0) = ~§i sin 46, (3.41)
Ay = —2(sin* 0 4 cos* ) = —%(COS 46 + 3). (3.42)
From (3.8) with g(#) = %" we have
/[ EHA() + A (0))oF (d9) = 0 (3.43)

wof3
(NE)

for n # 0. Recall that the set {e*™ | n € z} is total in the space C(Q2). In the case when
a # 7, (3.43) gives immediately

/{ Eof () = 0 (3.44)
0,7

for n # 0, and therefore of(df) = %‘3. In the case when a = 7, that is £ = 0, if X is a
symmetric random variable then ¢ is symmetric about Z- It can be seen from the invariance
equation that if ¢f is an invariant measure then so is its reflection about 5. By the uniqueness
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of the invariant measure for A # 0 it follows that ¢ is symmetric and therefore so is o). We
can integrate by parts in (3.43) to get

2inf A, (0)03(df) = — A (0)o3(dO) — 2i 5 jaing A (8)ad(dd)db.
f M O)os) = [ as@of(a@s) ~2in [T [ 40080
(3.45)
Since of is symmetric about %,
/[ A B)of(ds) =0, (3.46)
0,7
and equation (3.45) gives
2 im0 [ Ay(0")og(d6")do = %8 A1 (0) o (d). 3.47
if [ A@)odd)ds = [ e A (B)of(dd) (3.47)
Hence
An(0)00(dh) = 2i /[ A (0)o3(d0')d + K, (3.48)
0,6

where K is a constant. Since A;;(#) # 0, this implies that o is absolutely continuous. If py is
the density of o) then

A (6)po(0) = 2 /[ A O)o(8)d0'+ (3.49)

Thus py is differentiable and
(cos 46 + 3)pp(0) = 2sin40po(6). (3.50)

Integrating we get )
po(0) = C(cos46 + 3)72. (3.51)

This corresponds to the equation (1.6) for F = 0.

Now suppose that E' = 2. The case FF = —2 is similar. Here the real Jordan form for A,
11
=y 1) (3.52)
The matrix S is now given by
0 1
S, = (1 _1) . (3.53)
Note that
J = (1 q) (3.54)
c7\0 1
and therefore
(T579)(8) = g(6'9), (3.55)
where 9 is given by
£6@ { : £0=0, (3.56)
co = o . .
1+qf:gt0’ if § # 0,

It follows that 89 — Z as g — oo.
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We now have

E 1 q E
/529(9) og (df) = qlggo/ﬂ(% 9)(0) oy’ (df). (3.57)
Thus we have, for n € Z,
2inf 1 - 2in292 1
/Qo e oy(df) = /Qn{ezg}e oy(dh). (3.58)

Therefore o is concentrated on QN {f = I}, i.e. o5 = 0r/s.

To investigate whether there is an anomaly at £ = 2 we need to transform the invariant
measure df to the coordinates given by the matrix Ss. Calling the new angle coordinate ¢, the
transformation is given by

o .
(120) -5 () o)
and
s7=(1 4) (et 2= (2 7). 30
Hence ) ,
cotH’:SmaCOtg .—f—l——cosoz (3.61)
cos a — sin a cot ¢/
and

oy sin «v

 sin? @ cot? 0 + 2(1 — cos @) (1 + cot §)°
As « tends to 0, i.e. £ — 2, this measure tends to d,/2, so there is no (zeroth-order) anomaly
at B = 2.

do (3.62)

4 The case of two coupled chains (I = 2)
4.1 Parametrisation

In the case of two coupled chains (I = 2), the matrix C in (1.9) is given by

E -1
C=(~1 E) (4.1)
If
1 1 1
o141 »
then C' = UDU* where
[ E+1 0
b= (531, 9) ”
We can write D = 2cos Dy with
a 0
n-(3¢) »

where o and [ are defined by 2cosa= F + 1 and 2cos f = E — 1. Note that o and (3 are not
always real. It follows that G = UDoU* and T'(r) = Ur(Do)U*. Thus

_ 1 rmlar)+7(B,1r) —7(ar)+7(B,7)
T(T)—2<—-T(a,r)+7'(ﬁ,r) T(a,7)+ 7(8,7) ) (4.5)
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The real Jordan form of Ag is always of the form

Joz(‘gl JS) (4.6)

It is therefore convenient to parametrise the projective space RP? so that the 1-2 plane and the
3-4 plane have the usual parametrisation.

We map the projective space RP? onto the set ) = Q(O%) U 2 U Qz where
T T
Qg =0.20) x 0.1 x (0,5), Q=[0,m)x {0}, Qg =0mx{5} (A7)

by the mapping ¢ : RP? — Q defined as follows.
If 22 + 22 # 0 and 22 + 22 # 0,

t(x) = (61,02,65) € Qpo,z), (4.8)
where
cot™' 2 € (0, ) if z; >0,
-1z if z; <0
g, — JootT R 4me (m,27) if xy <0, 49
' 0 1 if z; =0 and 75 > 0, (4.9)
s if z; =0 and x5 < 0.
121 € (0,7) if 23 # 0
9 — {CO T ) 3 3 )
2 o if 25 = 0. (4.10)
6, = cott | ST ¢ T (4.11)
S 2+ 22 T2 :
If 22 + 22 = 0,
t(il?) = (92,0) € Qo, (412)
where . O o
0, — {co‘c 2 e (0,m) ifzz#0, '
2=l if 25 = 0. (4.13)
If 22 + 23 = 0, _
t(z) = (64, 5) € Qx, (4.14)
where me(n) o
6, — {cot 2 e (0,m 1 # 0, ‘
' 0 ' if z; = 0. (4.15)

We give the induced topology on © by describing the continuous functions C(2) on . For
f:Q — Cdefine fio,z) = f| Qo,z), fo=f| Qo and fz = f| Qz. Now, fisin C(Q) if fo,z), fo

and fz are continuous and

Blzi_lflﬂfo(%o) = £(0,0), (4.16)
Jim f£0,3) = £2(0,3), (4.17)
0111_1}%ﬂf(0,%)(91592,6’3) = f(o,%)(0»92,93), (4.18)
913_%10(0%)(91’92793) = fo(62,0), (4.19)
Jim, fo.3)(61,02,05) = f3(6 mod ﬂ,-;f), (4.20)

alzifﬂm f0,2)(01,02,05) = fio,5)((61 + m) mod 27,0, 05). (4.21)
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Suppose f € C(£2). Then we can write f = f&) + f& 4 fG) where f&, f@ and f& € C(Q)
are defined by

o)) (61,62,65) = fio,2)(01,0,05) = fo(62,0) coss — fz(61 mod m,3) sings,  (4.22
0(1)(62’0) = 0,
f%—l)(ela%) = 01

)

(4.23)

(4.24)

(4.25)

&) (61,65, 65) (4.26)
£(6:,0) = o, (4.27)
(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

= f%(ﬁl mod 7,%)sinfs,

f(gz)(Qh%) = f§(91,§),

f((g,)g)(% b5,605) = fo(6,0)cosbs,
02,00 = fo(6,0),
fgg)(elag) = {.

It is clear from the above decomposition that the union of the following three sets is total in
C(Q):

{ei(n101+n292) sin 2ns0s ]'Q(o I [ niy, Mg € Z,ng € N, Ny + ng even}, (433)
)

{¢#™%sinby 1g, . + ™% 1o, | m €2}, (4.34)

2in20s 9 1 2inof2 1 7 4 35

{e cosfz Lo, ¢, +e 2 | n2 €Z}. (4.35)

In fact, it will be more convenient to use as a total set the union of the following three sets
with r € Ny:

{eimbitn262) o5 9mafy sin D) 20, Lo,z | m1,m2 € Z,n3 € N,y + np even}, (4.36)
'2
{62in101 SinZ(H—l) (93 ]'Q(o 5 4 e2in101 10% I n, € Z}, (437)
'2
{02 cos® D O3 1o +¥% 1g, | ng € 2} (4.38)
12

This is because, as we shall see in Appendix 2, if g is an element of this total set then it satisfies

Tq T )\k ak Tq
Y- 2 g\ )

k=0

=0. (4.39)

lim A™"
A—0

4.2 General Scheme

We shall assume that the X,,’s are diagonal, that is,

Xm0
%= (%5 ) (4.40)
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Let
B(m) = SB(m)S™1,
Then B B B }
B(m) = By(m) + AB1(m) + A By(m) (X1, ..., Xm) + O(N?),
where

Bo(m) = Jg,
By(m) = SBy(m)S7,
and E(By(m)) = 0. B;(m) can be expressed in the form

Bi(m) = }m: Y. C,(m) + fj Y. D,(m),

n=1 n=1
where Y = %(X,gl) + X)),

Let
(73" 9)(61, 62, 63) = g™, 5™, 65™),
sin 6 sin f3
cos 0; sin 05
sin 8, cos 5
€08 05 cos 03

and 2/ = B(m)xz. Then

sin 6™ sin 6™

6)(7”) : e(m)
gl = | ST 4 A%w + O(N®),
sinfy" cos 63

cos H(m) cos O™
where E(w) = 0 and

= 3V (Calm)Tea) + 3 V(D () e ).

n=1

E(y) = 0 and

Bos) = 3  3(Cum)7ex ) Culm)es, )+ 3Dt 5} (Durn) e ) ).

where {e}, €s, €3, €4} is the usual orthonormal basis in R*. Writing

sin @ sin ¢

T /

/ cos 0] sin 0
sin 0} cos 64

cos 0% cos 64

we have .
x
tan@, = x—} = tan 6™ + AU, + A2V; + O(\%),
2
where
Y1 COS HY”) — o sin 9§m)

g(m)

U1 =
cos? 0™ sin 6§

14

(4.41)
(4.42)

(4.43)
(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)
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and (m) 2 p(m)
cos 0™ —y2sinf"
‘/-1 — _ylyQ 1(m) : 3/22 o 1 +W1, (454)
cos3 0 sin” 6
with E(W;) = 0. Next we have
!
tan@ = =3 = tan 5™ + AU, + \V3 + O(A%), (4.55)
Ly
where m) (m)
cos ;™ — yssinfy"
R (4.56)
cos? 5 cos b
and (m) 2 pm)
cosfy —y?sinfy"
R s T e (4.57)
cos® 0y 7 cos? Oy
with E(W3) = 0. Thirdly,
r\2 /2 3
+ (25)*\? (m)
tan @, = gfﬁ_)___z = tan # AUs + N2V5 4+ O(03), 4.58
ity = (T (o)~ 40800 )
where
U, c0s 05™ (yy sin 6™ + y, cos 8™) — sin 5™ (ys sin 6™ + y4 cos 5™ (4.50)
cos? g™
and
V= y? cos? 0™ 4 42 sin? 6™ — 29195 sin 6™ cos gim)
’ 2 sin 6™ cos ™
. m)Y2(3sin® 0™ — 1) + y2(3 cos? 65™ — 1) + 6ysys sin o™ cos 5™
+ s 93
2 cos® 05
_ Yayacos 8™ cos 05™ + 41y sin 0™ sin 05 + yys cos 6™ sin 65 + yyy4 cos 5™ sin o{™
cos? 6™
+Ws, (4.60)
where E(W3) = 0. For k = 1,2, 3, therefore,
1-+itané, 3
- 0/ — k
P (i) (1 ~itan 9;)
= exp(inkQ,(cm)){l + AUy cos? 0™ + ing A2V, cos? Q,Em)
. 2 Anplmrr2 m) L. 3
—inpA* cos” 0, Ui | tan,” — S0 + O(N°).
Hence
exp(i(n10] + nabsy + nsby)) = exp(i(m@gm) + na6™ + ’)'L36§m)))
X {1 + iA[n,U; cos? 0™ 4 nyUs cos?® O™ + nyUs cos? 9§m)]
+)\2[B1n1 + Bong + Bang -+ Bnnf + Bzzng -+ B33n§
+Bianing + Bysnong + lensnl]} + O(N?). (4.61)
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where
B, =i (I/}C cos? 6™ — U2 tan 6™ cos* H,Em)) ,

1
Bkk = ———§Uk2: COS4 Glim),

and for k # I,
By, = —U,U, cos® 9,(;”) cos? Hl(m).

Taking expectations we get

E (exp(i(n1 0] + nab) + n3fy))) = exp(i(nlﬁgn) + nzﬁém) + n3¢9§m)))
X{l + /\Z[Alnl -+ A2n2 + A3n3 + Allnf + A22n§ + A33TL§

+Araning + Asgnang + A31n3n1]} +0(X%),

16

(4.62)

(4.63)

(4.64)

(4.65)

where Ay = E(By) and Ay = E(By;). The right-hand side of this equation can be written as:

2 2
{ - ‘ZAl*"‘a(“T;;)" — ZA2 ?m) - ?/A3 (?m) - Allii - A22__(?—“—2— -
06} 05 005 a6\™ a65™
0? ? &

A Ay
2 o6m ot T gglmagim T gglm gplm)
+0(N3).

4.3 The case F € (—1,1)

33773
o65™

}exp(i(nlé)yn) + 1o65™ 4 ngb™)Y)

(4.66)

If -1 < E <1 we can choose a € (0,%) and § € (3, n) satisfying 2cosa = E + 1 and

27

2cos 3 = E — 1. The real Jordan form of Ay is

R, O
J0_<0 Rg)

where
Ra:(c9sa ——sinoz)’
sina cosa
1 —1 —CcosQ  Ccoso
g — 0 0 sihae —sina
| —cosB —cospf 1 1 ’
—sinf8 —sinfg 0 0
and
1 cot o 0 - cosec 3
g1_ 1] -1 —cota 0 — cosecf
2 0 cosecae 1 —cotf
0 —coseca 1 —cotfd
Note that

(Tog)(6h,02,03) = g((61 — &) mod 27, (6, — B) mod =, 03)

and therefore

9§m) = (6, — ma) mod 2, Hgm) = (6 — mp) mod 7, 0§m) = 6.

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)
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Consider the total set

{ farmams| M1, M2 € Z,ng € N,ny + ng even} U {gn,| n1 € Z} U {hy,| n2 € Z}, (4.73)
where .
Framams (01,02, 05) = " M077202) cog 9m 20, 5in? 26, Log s (4.74)
Gn, (01, 05) = €*™% sin? Lo, + g2imo lo, (4.75)
and ) )
Finy (B2, 05) = €2™2%2 cos? By logg, + e¥in2f2 10 (4.76)

If g is in this total set then it satisfies (4.39) with r = 0, that is,
limy 79 ~ Togl| = 0, (@)

and therefore

Tiof = of, (4.78)
that is, o is invariant under rotations of 6; and 65 by o and 3 respectively. This is all we can
say unless one of a/m or 3/m are irrational. Consider the case when both a/7 and (/7 are
irrational. Because of the relation between a and 3, (nja + ne3) /7 is also irrational for any
ny,n, € Z. The standard ergodic argument then shows that o is Lebesgue with respect to 6,
and 65, that is, on Q 1), ol (db:, b, dbs) = db,df, GE(dbs), on Qz, o (df,) = 6zdf; and on
Q(), af(dﬁg) - (50d92.

The ergodic argument goes like this:

<fn1,n2,n3 ) UOE> - 6i(nla+n2ﬂ) (fnl,nz,n37 0-6E> bl <g'l’l1 b UOE> - ana (gnl b UOE> (479)
and _
<hn27 U§> = emwﬂ( nas 00 > (4'80)

Therefore {fn, nyms> 0L ) = 0if ny # 0 and ny # 0, {gn, n,y, 08) = 0if 0y # 0 and (A, py, 08) = 0
if ny # 0. Define

1
E E
58 (d0) = 5 /[0,27r)><[0,7r) o (61, b, dbs) (4.81)
and
1 1,

Ifon Q(O%), &g(dgl, dﬂz, d@g) = d&ldeg O'(‘;E(deg), on Q%, &f(d@l) = 5§d91 and on Q(], &g(d@Q) =
60d92, then

(fm,nv,naa oh) > (fnl,nz,naa Uf), <gn1:0'(1)?> (Gns> U§>a (4.83)

and

(Pngy 65) = (hny, 05 ). (4.84)
Therefore 6§ = of.
A similar argument applies if only one of a/7 or 3/ is irrational. Suppose for example, that
a/m is irrational and 3/ = p/q where p and ¢ are integers. Then, replacing 7, with 73! in
the above argument, we can see that o is Lebesgue with respect to 6y, that is, on Q0,2),

af(d@l,d%, deg) = dﬂlﬁgj(dﬁg, d03) and on Qg., af(d@l) = 5%d91
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In this case the matrices Cy,(m) and D,(m) in (4.45) are given by

0 5 (Bg—n-Da—(m-ms
C’n(m) -9 +R%~(n—1)a+(m—n)ﬁgz) (485)
;ii—a (R;—r —nf—(m—n+1)a
+R%—nﬁ+(m—n+l)aaz) 0
and
Dy(m) =2 (Sii“(R%‘m“ T Be—(an-2-ma0:) 0 ) (4.86)
" 0 sirlxﬂ (R%—m,@ + R%—(Zn-m)ﬂgz)
where Lo
o, = ( 0 1) . (4.87)
The expressions for the sums in (4.77),
> (Cn(m)Te;, z){Cr(m)Tej,z) and > (Dn(m) e;, z)(Dy(m) e;, z), (4.88)
n=1 n=1

are given in Appendix 1.

4.3.1 The special case E =0

Now we take F' = 0 so that o = % and 8 = —2—3’3 In this case we choose m = 6. This is
the smallest natural number so that when n; + ng is an even integer, m(nia + nof3) is an
integral multiple of 27. Note that in this case both ma and mg are also integral multiple of
2. Using (4.50), and Appendix 1 we can calculate the expectations of U,U, and Vj and then
using these together with (4.62), (4.63) and (4.64) we can obtain the expectations Ay = E(By)

and Ay = E(Bkl)- Let ’Qb = 26, + 20, + 'g: Then

— cos? 03(1 + cos 1)
2 cos? #; sin? b,

3
E(U?) = (4.89)
E(V1) = ({—3 sinf; — V3 cos6; + 2v/3 cos? 0 cos 6; + 2 sin 0y cos 0, cos 6,
+2sin 6y cos? By — 2sin ;13 sin Oy cos 05} cos? B3 + 6 sin 91)/(4 cos® 0 sin? 63).
(4.90)

Next we have
3 — sin? 03(1 + cos 1)

2 cost 09 cos? O

E(U3) = (4.91)

and

E(Vs) = ({—3 sin 6y — V3 cos By + 2v/3 cos? 61 cos 8y + 2sin 6, cos B cos b,
+25in 0y cos? 0, — 2sin 0v/3 sin 0, cos 0, } sin? 63 + 6sin 02) / (4 cos® 0 cos? 63).
(4.92)

Thirdly,
3 — cos 1 — 4 cos 1) cos 203 + cos? 203 + 3 cos 1) cos? 203

E(V3) =
(V) 8 sin 65 cos® 05

(4.93)
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and

E(U3) =

3 + cos? 205 — cos ) + 3 cos 1) cos® 205
4 cost Os )

We also need the expectations E(U1Uz), E(UxUs) and E(UsU,). They are

and

_ 2-—cosy
E(UL0,) = cos? 0, cos? 0’
in 65 si -1 20
E(UgUg):——SIH 3sinp(—1 + 3 cos? 63)

2 cos? #5 cos? 6,

sin¢(—2 + 3 cos? 65)
2 cos? 0, cos Bz sinfs

E(UsUy) = —

1
52’ cot? B3 sin 1),
1
§z' tan? 05 sin ¢,
1
—Zi(co‘c 205(1 + 3 cos 1) sin® 205 + 2 cot 205(cos P — 2)),

i(cot2 Os(cosp — 2) — 3),

i(tan2 f3(cosp — 2) — 3),

cosy — 2,
—1+ 2cos 205 + 3 cos? 205
4sin 293 ’
1+ 2cos 205 — 3 cos? 204
4 sin 20 ’

1
5((1 +3cos 1)) sin? 205 — 4 — 2 cos1p).

sin

sin )

19

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)
(4.100)
(4.101)

(4.102)
(4.103)

(4.104)
(4.105)

(4.106)

The behaviour of these quantities near i3 = 0 and near 3 = % is given in the table below with
the notation § = 7 — 0s.
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f3=0 O3 =72
isiny
A 0
' 262
isin
A 0 P
A __coszb—2 .cosp — 2
3 T T4
costh—2 3 3
S R B
3 cosyp—2 3
Aml g w1
A cosy — 2 cos — 2
sin 1)
A —_— 0
31 20,
sin
Az 0 2
A _cosyp+2 _cospp+2
33 Y Y

By writing cos 2nsfs sin®® 205 as a linear combination of terms of the form exp(irfs), we can
deduce from (4.65) and (4.66) that :

;in%) AR [exp(z‘(nl(?'l + n05)) cos 2na05 sin®® 2605 — exp(i(n10; + nybs)) cos 2nzfs sin® 293]

A N N & & o ”
= {ﬁgAla—b)I - ZA28—92 - ZAB(?_O?, - All(‘?—Q% - A22—a—eg - A335—0—§ - A125‘91592
92 d? . ;
— sz — Ani g} exp(i(nifs + nab)) cos mgfy sin®* 265 (4.107)

Note that if s > 3/2, the right-hand side of the last equation is continuous in the topology
of 2. Its restriction to gy U Qg is zero. Moreover, we shall see in Appendix 2 that if s; > 3
and s, > 3 then the first three derivatives of e!™V01+M%) 5in?1 ) cos?2 ¢} with respect to A are
bounded and (1.24) holds. Now cos 2n36s is a polynomial in cos 263 and therefore a polynomial
in sin® f5. Thus we have for s > 3

0 0 0 0% 2 o2 o?
A — — i Ae— — i Ar—— — A= — Aoy — Aaa—m— — Ay
/Qm,%){ gy ~ gy —idigg —Augp — Angg —Augm — Augras
9? 0?
—Ass 30,00, Asq 56,90, }exp(i(n16; + n2bs)) cos 2n30; sin® 20500 (d;, dby, ds)

= 0. (4.108)
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If we assume that o) is absolutely continuous on Q(O%) with density p we get:

3 8 a 82 82 82
R R N
/Q(O,%)p(gl’e“”%){ g, —ihagg — gy — Augg — Angg — Augem

o o o2 . .
—A12M - A23 602893 — A31 803801 } GXp(Z(TLlOl + ngeg)) COS 271393 Sll'l2 293d91d02d93

= 0. (4.109)

Integrating by parts, assuming that limg, o, p(61, 62, 05) = p(0, 05, 05) and limg, .. p(61, 62, 03) =
p((6; + ) mod 27,0, 63), we get

0 0 0 o2
/ exp(i(n160; + n2b2)) cos 2nsfs sin® 203 {i—A; +i——As +i——A3z — Apy 543

.3 86 00, 863 063
82 82 82 82 82
_23_0’%'1422 - 6—932‘1433 - 891892A12 — 392693A 3 69 691A31}P(61, 92, 93)d91d92d93

—0. (4.110)

Therefore, since the set of functions {e(™%1%m292) cos 2n303sin? 203 | ny,ny € Z,n3 € Nyny +
ny even} is total in the subspace of C(Q) consisting of those functions which are zero outside
Q(O 1),

12

0 0 .0 o? 9?
{i 26, A + 1892142 + 16—93‘143 - 6—912‘1411 - %Q‘Am
82 82 62 82
Asz — Ay — A — = As1}p(01,62,03) = 0. (4~111)

062 96,06, 96,005 86500,

Next we consider the measure on Qg and Qp. In the same manner as above we have with
g(03) = sin® 3 cos* 05,

Ly X2 [g(85) — 9(64)] = {~ids AgsaQQ}gwg) (4.112)

Here g(f3) has been chosen so that the right-hand side of (4.112) is continuous in the topology
of {1, its restriction to {2z is zero and its restriction to {1 is 2. So, using the results of Appendix
2 again, we have

0 o
200(Q) + p(01, 65,0 1A — Azz——1g(03)d0,db,db; = 0. 4.113
0( 0) /(O . 1,02 3){ 3(‘30 33893}9( 3) 1402003 ( )
and hence
0 0 9?
QUo(QO) = — 0 p(01,92,93){ ZA369 A33 02 }9(93)d91d92d93
©,%
0 0 ., 0 o2 0?
= - %05 ,0(91, 0, 93){ iA; = 90, ZAQ@H ZAs*a—Qg - Allﬁ_ﬁf_ - A220—0§
52 52 52 52
—Azz—— — A — A A . .
B0z 00,00, 00,00, 96,00, Y(0s)d61d6;dbs. - (4.114)
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Integrating (4.114) by parts as above we get
0 o? o2

.0 .0 )
200(Q) = /(O 5 (93){15‘9:A1 + 2552‘142 + 2553:143 - AuaeQ Az — 80§A22
60§ A33 - mz‘hz - 802663A23 ~ 56,90, Ag1}p(61, 62, 63)d0,d0,d0s
—0.  (4.115)
by (4.111). We therefore have
05(Q) = 0. (4.116)

'The same argument holds for Q2z.

Now we return to the equation for p. If p = p(t, 6s), (4.111) becomes

0 0 82 o2
{2 aw — (A +A2)+Z A3 5¢2 (A11 +Aga+ App) — 892 86 200 o (A2s+ Az ) (¥, 03) =
(4.117)
where
Ay + Ay = ising(2cot? 205 + 1), (4.118)
A23 + A31 = Sll’l’(,[) cot, 293, (4119)
_ _ 2 2
Auy gy + Ay = ~9—3cosy 5co§ 2293 + cos® 2603 cosgb, (4.120)
2 sin” 265
Agz = %((1-{—30087,0) sin? 263 — 4 — 2 cos 1), (4.121)
As = —i-;—(cot 203(1 + 3 cos 1) sin® 203 + 2 cot 203(cos ¥ — 2)). (4.122)
If 205 = ¢ and p = p(s), 9)
{Z““(Al + Az) + 0 A3 — 822 (Air+ Ao + Arp) — 62214 o o (Aas+ As) (e, ) = 0,
‘06 3111 8¢ 3¢3w
(4.123)
where
Ay + Ay = isiny(2cot? ¢ + 1), (4.124)
Asz + As; = sina cot @, (4.125)
_ _ 2 2
At Agy t Ay = ~9—3cosy =5 c?sng -+ cos” ¢ cos w, (4.126)
2sin” ¢
1
Agg = g((1+3cos¢) sin ¢ — 4 — 2 cosp), (4.127)
1
Az = —ig(cot #(1 + 3 cos ) sin® ¢ + 2 cot p(cos 1 — 2)). (4.128)

With p(v, ¢) = sing S(1, ¢) we can write this differential equation as

—16sin ¢ cos ¢ sin P ——— S(?,b o)

Opoy

+2sin? ¢(cos® ¢ + 3 cos® ¢ cosy — cos 1 + 3) S(z/) ®)

0¢?
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+(8cos® pcos P — 24 cos i + 72 — 40 cos® ¢)~a~1——p-2—8(7,b ,P)

—8sin(—7 + 5 cos? qﬁ)g%S(z/), @)
+2cos ¢sin ¢(—17 cos vy + 5cos® ¢ + 15 cos® ¢ cos 1 — 1)2%5(1/), ®)
—4sin? ¢(3 cos® ¢ + 9cos® pcosh — 1 — 9cos))S (¢, ) = 0. (4.129)

The last equation can be simplified to

—88iﬂ2¢sinzpa¢a¢8(z,/) ,®)
———(cos 2¢ — 1)(cos 2¢ + 3 cos 1) cos 2¢ + cos P + 7)a¢28(1/) ,0)
+(4 cos ) cos 2¢ — 20 cos i) + 52 — 20 cos 2¢) — > S(1, @)

oY?
—4siny(—9 + 5 cos 2(1))—6—5(1/17 )

+; sin 2¢(15 cos ¥ cos 2¢ + 3 — 19 cos 9 + 5 cos 2(15) S’(@b @)
+(cos2¢ — 1)(3cos2¢ + 9cosp cos2¢ + 1 — 9 cos Q,D)S(y, @) =0. (4.130)

This equation can also be written in terms of the variables u = cos 26 and v = cos ¢ as follows:

2(1 — u)(1 — u?)(3uv +u + 7)—2—S(u v)

8
Judv

+4(1 — v*)(uv — 5u — 5v + 13)i5’(u, v)

—16(1 — u?)(1 — v?) S(u,v)

—(1 — ) (Tu® + 21uv + 22u — 2uv — 19v + 3) S(u v)
+(20uv — 520 — 36 — 24uv? + 20u + SGUz)a—S(u, v)
u
—(1—u)(3u+9uv — 9v+1)S(u,v) = 0. (4.131)

Unfortunately, we have not been able to solve this equation, nor prove that it has a unique
positive solution.

4.3.2 The case E € (—1,1) with both a/n and /7 irrational

In this section we consider the case when both a/m and (/7 are irrational. We know that
in this case of is Lebesgue with respect to 6; and 6, that is, on Q,z), o (dby, dba, df3) =
d,dh,GE(dfs), on Q= n ol (dh,) = dzdf, and on Qy, ol (dhy) = S5odf,. Here o is rotation
invariant in both 6; and f5. Therefore we can choose m = 1. Also we need only to consider
functions of f3 to determine the limiting measure.

Since a and § are arbitrary, the expressions for E(UZ) and E(V3) are very long. However we
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only need the integrated expressions with respect to 6; and 6, . These are much simpler:

2r pm 2 1+4cos¢p—3cos’p 5— 4cose¢ — cos? ¢
db,dOE(V3) = ;
/o /0 100:8(Vs) \/5(1 + cos ¢)3/2 sin 63 ( sin? 3 + sin? o
(4.132)
and
272 3+4cos¢+cos qu 3 —4cosd+ cos? ¢
. 4.133
/ / d61d0;E(Us) = (14 cos ¢)? ( sin® 3 sin’ o ( )
Recall that
E (exp(zngﬁé)) = exp(z'n303){1 + )\2 [A3n3 -+ A33?’L§]} + O()\S), (4134)
where A3 = E(B3) and Ass = E(Bsgz). Therefore
2 pw
/0 /0 df,df, E (exp(ingy)) = exp(inzfs){1 + A\2[Csnz + Casnjl} + O(\?), (4.135)

27 T 2 T
where Cs = /O /0 As d6ydfy and Css = /0 /0 Ass d0,d6, and therefore

27 T
lim A~2 < /0 /0 d0,d6; (E (exp(insdl)) — exp(mgeg))) — ng exp(ingfs) (Cs + Caang)

A—0
(4.136)
It follows that for any g(f3) which is a finite linear combination of terms of the form
exp(ingfs),
2r
tim 2 ([ [ doids @ 903))) ~ 9(69)) = ~9"(G0)Cos — ig/(6)Cs. (4.137)

If A72||7g — g|| is bounded and if the right-hand side of (4.137) is continuous on [0, 7/2] then
we have from (1.24)

/(0 ) (9”(93)033 + Zg/(93)03) 5'53((193) + 7'('50 (g”(03)033 -+ Zg’(93)03)’

+mdz (9"(65)Cs3 + i91(93)03)|93:7r/2

f3=0

=0. (4.138)

In terms of ¢ = 2603 we have

o= Z7r_ <(1 — cos ¢)(5cos¢ — cos? ¢ + 2) (1+ cos¢)(5003¢+ cos? ¢ — 2) cosec &,
8 sin? a sin? 5
(4.139)
3+4cosgb+cos ¢ 3—4cos¢+ cos?
Cas = 16 < sin® 3 * sin® o ' (4.140)

In Appendix 2 we show that if g(63) = f(sin? f3) and the first three derivatives of f are bounded,
then (1.24) holds. Now, if g(#s) is a linear combination of terms of the form cos2n3f; then it
is a polynomial in cos 203 and therefore a polynomial in sin® ;. Let

1 1
fy) = —— S
905) = =2 4(nz +2)
for n3 # 0 and n3 # +2. For nz = +2 we take

1
Ccos 2(713 — 2)93 -+ Ccos 2(77,3 -+ 2)93 — % cos 271303} (4141)
3

1 1
g(6s) = <1_6 cos 803 — 7608 493> (4.142)
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Then
g’ (03) = 25sin 2n30; sin® 203 (4.143)

and (4.138) becomes for ng # 0,

/( ) {2713033 cos 2n365 sin? 205 + (iC’g sin? 265 + 4Cs3 sin 265 cos 203) sin 2n303] &OE (db3) = 0.
0,3

(4.144)
We can integrate by parts to get:

iC5 sin? 205 + 4Cs3 sin 265 cos 203 ) sin 2n363 & (dfs)
©3) 0
2

— —2n, /( )( /( ) (iC3(65) sin? 6% + ACs3(64) sin 26 cos 264 ) 5§(deg)) cos 2n3s dbs.
0,2 0,

(4.145)
Therefore
0.5) C33 COS 277,393 sin2 293 &f(d@g)
0.5
- /( ) ( /( ’ (iC5(6) sin® 26 + 4Cs3(65) sin 260 cos 264) 57 (d9§)> cos 2n305 dbs.
0,2 0,
(4.146)

Since the set {cos2nsfs | ng € No} is total in C([0, §]),

Cazsin® 203 52 (df3) = ( /( ) (z'c3(9§,) sin® 205 + 4C33(64) sin 264 cos 29;) &f(dag)) dfs + Kdbs,
0,

(4.147)

where K is a constant. Cyssin® 263 never vanishes on (0, Z), therefore 6§ is absolutely contin-
uous and if its density is p,

Cazsin® 203p(03) = /( ) (7;03(0;) sin? 20’3+4033(9g)sinzegcoszeg) p(05)d0s + K. (4.148)
0,

It follows that p is differentiable and

%(033 Si112 293[)(93)) = (ZC;J, (03) Sif[l2 293 + 4033(&3) sin 293 COs 293) p(93) (4149)
3

or
zl‘(;—g(cssp(ea)) —iC3p(03) = 0. (4.150)

We shall solve this equation below, but first, as in the case E = 0, let g(#) = sin® 3 cos* 5.
Then (4.138) becomes, for n3 # 0,

273
s 5o

/0% (g"(03)C33 + ig' (03)Cs) p(65)dbs = (4.151)

Since p satisfies the differential equation (4.150) the left-hand side of the last equation vanishes
and therefore o = 0. Similarly 6z = 0.
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We now proceed to solve the differential equation (4.150). If p = p(¢),

iCup(8) ~ 27 (Caapl9)) =0 (4.152)

Simplifying and putting p(¢) = R(¢) sin ¢, we get

((1 —cos¢)(3 —cosp) (14 cose)(cos e+ 3)) dR(¢)
sin? o + sin? 8 d¢

) 1—cos¢p 14cos¢ .
—f—ZquS( e sn’p )R(¢) =0. (4.153)
With R(¢) = S(cos ) and t = cos ¢ this becomes
(1—8)(3—1) (L+1)(E+3))dS() 1—t 1+t B
( sin® o + sin? 3 ) dat 2 (sin2 o sin? ﬁ) 5(t) =0 (4.154)
or
(A—1)(3—t)sin* B+ (1 +1)(3+1)sin’ ) diff) —2((1—1t)sin? B~ (1+1)sin?a) S(t) = 0.

(4.155)
[((1 —t)(3 —t)sin® B + (1 + t)(3 + t) sin® oz) S(t)] —2 (0052 B — cos® a) S(t) =0. (4.156)

d
dt
% [((1 —1)(3— t)sin® B+ (1+t)(3+ 1) sin’ ) S(t)] ., <COS2 - costa

) S(t) = 0. (4.157)

sin? 3 + sin? o sin® 8 + sin® a

Let
(A=) —1t)sin? B+ (1 +1)(3+t)sin? )
ey = (t—t)(t—t) (4.158)
and
Ult) =t —t)(t—1t-)S(t) (4.159)
then
du(t) cos? B — cos’ a U(t) B
Cdt —2 <sin26+sin2a) (t—t)(t —1-) =0 (4.160)

Recall that cos? 3 = cos? a only if E = 0 and therefore . and ¢_ are not pure imaginary. From
now on it is easier to work in terms of FE.

dU(t) ( 4F ) U(t)
= 4.161
dt 3_B2) (t—t)(t—t) (4.161)
where t, and ¢_ are the solutions of t — $82;¢ + 3 = 0, that is
4F V34E? — 3E4 — 27
tp = + . 4.162
T3 E2 3— E? (4.162)
Note that
U(~E,t) = U(E, —t) (4.163)

and therefore we only need look at the case E > 0. Let Ey = (v/13 — 2)/v/3 ~ 0.927. In the
case when E = Fy, t, =t_ = a where a = 4F,/(3 — E?) and then

S(t) = (c%t)Q exp( a ) . (4.164)

a—t
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(Note that a > 1.7.)
In thecase Fy < E < 1,1ty = a=xbwherea=

27

4E_ . VBIEP3ET-9T
an =
(3 E? 3 E?

C a+b—t\%
= . 4.16
S(t) (a—1t)? —b? (amb—t) ( 5?
AE V3E* — 34E2 + 27
db= 5 e and

05 an
_ E?

In the case 0 < E' < Ey, ty = a £ ib where a =
C a b
S(t) = ——————exp| —tan™! 4.166
=Gy w p(b w—ﬂ) (4.166)
Notice the limiting cases
ot E>E 0,-
. \ ’,/\s\\\
/ “\ B=E,
!/ |
sl \/
: ! "\
i 2
! “\
| )\
P(E) 1.0 4 ;‘ \
i \ E<E,
i
0.5 )
0 02 0.4 0.6 08 10 1.2 14 m
6,
Figure 2: 05 — p(0s)
C
(4.167)

E~—>O'—~>S(t)—>t3+3
(4.168)

and

The former clearly does not satisfy the equation (4.130), which means that there is an anomaly
at E = 0. The second even diverges at t = 1 and the corresponding p(f3) also diverges at
03 = 0. This of course means that the constant C' needs to be scaled and the resulting measure
is Lebesgue measure on €)g. This is due to the fact that the coordinates are singular at this

point, however, and we need a more careful analysis. For small ¢ we can write a =~ 2(1 — 2¢)
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and b &~ 1 — 8¢, so that S(t) ~ ﬁ, replacing a/2b by 1. The normalisation constant C'
must be proportional to ¢, so the density is

Cesin 2(93
1+ 4e — cos 265

p(0s) ~ (4.169)
To compare this measure with the invariant measure at £ = 1 we need to change coordinates.
The corresponding transformation is given by $;571, where S; is the matrix (4.200) and S is
the matrix (4.69. For E =1 — ¢ we have

1 2 0 -1
1 -1 =2 0 -1
-1 ~ =
57531 0 ez 1 0 (4.170)
0 —¥2 1 1
Thus
0 0 1 -1
110 0 -1 -1
S5 = 0 —1/e 0 0 (4.171)
1 0 0 O
and hence if we denote the original coordinates by # and the new coordinates by &',
coth; = —cot(by — w/4), (4.172)
cot 0 = —+/etan; (4.173)
and 1
cot? 0 ~ §(sin2 0, + ¢ ' cos® B;) tan® . (4.174)
It follows that dfly = df} and
1 cos?6, \edo,
df, = — = . 4.175
T Jesin?@, 2 cos? + esin?6),’ ( )
and &, 1 o d,
3 .2 -1 2\ 3
——— . 4.1
S2 0, 3 (sm 01+ € " cos 01) o2 ] (4.176)
We also have )
.2 1,29 _
sin“f; + € " cos” 0 = o2 0, e’} (4.177)
Denoting
X = cos® ) + esin® 6, (4.178)
we have o 1o
d de; X
dfy = V2——2-X"?cos’ 3 = V2—> : 4.17
’ \/—Sin2 A o8 s \/_sinQ 051+ 2X cot? 64 (4.179)
Similarly, transforming the density, we have
2v/2 cot @, X1/?
in2@, = Y= 2737 )
S = T X cot? 6 (4.180)
and »
4X
1 — cos 26} — —x SO 03 (4.181)

142X cot?6y’
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so that VEXY2 cot B 241)
22X /2 cot 04(1 + 2X cot? 0,
ply) = L2 - (1.182)
[4X cot? 0% + 4e(1 + 2X cot? 63)]
We thus get
/ ! / 9/
p(0:)d0:d0:d0; = Cey/e cot 8 by dbhdf . (4.183)
4 [cot? 0 cos? 05 + €(1 + cot? B (1 + cos? 65))]
Ce/esin 04 cos 0y d6 d6,d;
- Ve e S (4.184)
4 [COSQ 6% cos? 0 + e(sin® 6% + cos? 05(1 + cos? 9’2))}
In the limit € — O this tends to
1

4.3.3 The case E € (=1,1) with a/7 rational and /7 irrational

In this section we consider the case when «/7 is rational and §/7 is irrational. We know
that in this case of’ is Lebesgue with respect to s, that is, on Qo,2), of(dby, dby, dbs) =
d6,6E(db,, dbs), and on Qq, of(dhs) = bodfs. Since we need to consider only functions of 6,
and 05 to determine the limiting measure we choose m so that ma is an integral multiple of 7.

The quantities that we need are:

/07r do-E(UY) = 2m7r2 Si;i?;f s:ngsa:iigigsﬁ;ig: : (150

/0 " dO-E(V;) = 2sinbymm (sizisc; ;Tij?;siszigﬁniig: s (4.187)
e~ — o
/0 " d0,E(USUL) = 0. (4.190)

Starting from

E (exp(i(n10; +nsb3))) = exp(i(ni161 + nsbs)) exp(—imn )
X {1 —+ )\2 [A1n1 + A3Tl3 + AMTIE + A337’L§ + A31?’L3n1]}
+O(X?),

where Ay = E(By,) and Ay = E(By), we get

/o dB:E (exp(i(nq16] + n3by))) = exp(i(nib; + nzb3)) exp(—imn, )

x{1+ )\2[C1n1 + Csng + C’Unf + ngng + C3insna|}
+O(X%),
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where Cy, = [ df, Ay and Cy = [y dfzAj. Therefore

hm A2 </ df E (exp(i(n,0] + n363)) — exp(i(n16; + nzbs)) exp(— zmnla)))
= exp(i(n161 + nsbs)) exp(—imnia)[Cing + Csng + C11n? + Csgni + Cainany]
and
Jim 1~ ( /O " 48 B (exp(2i(naf. + nsf})) — exp(2i(naby + n393)))>

= 2exp(27j(n101 =+ 71393))[01711 -+ C3Tl3 -+ 20117?/% -+ 20337’13 + 2031n3n1].
(4.191)
It turns out that C; and Cs; are both zero and C3 and Cs3 are mm times their values in the

previous case. There remains C1; which is given below. Note that it is independent of 6;.
2(1 + cos ¢) sin® a + 3(1 — cos ¢) sin® ﬂ

- 4.192
Cu (1 — cos ¢) sin® asin® 3 (4.192)
For suitable functions g such that
d?g g
92 (91, 93)033 + ’L (91, 93)03 + == 892 (91, 63)011 (4193)
is continuous we have as in previous cases.
d%g &g .
/[0,27r)><(0 5) ( 562 (01,03)Cs3 + Z (917 03)Cs + —— 96 (91> 93)011> &5 (dfy, dbs)
&g dg &g
+ wdo £ (91,93)033 -Ha@ (01,05)C3 + -5 962 (91; 03)C11 ‘ -
&g
+/ <802 (01, 03)033 -+ ‘l 3 (91, 93)03 + —(9_9?(91’ 93)011) t o 271_/200E(d'91) = 0
(4.194)
Note that
9 9,9 .99 (6, 0,6
5_9%( 1, 3)033 + Z8—93( 1, 3)03 + 892( 1, 3)011 '93:0 (4195)

is independent of #;. If we assume that of is absolutely continuous on Q0,z) with density
p by choosing g’s whose restriction to () U Qz is zero and integrating by parts, we get with

pA(Hla 93) = f[o’ﬂ—) p(917 927 93)d92:

02 .0 32
(692 C33 (993 C3 802 ) (917 93) (4 196)

As in the previous two cases we can show that o vanishes on Qy U Qz. If g is independent of
01 and 55 (df3) = [ig 20y 65 (db1, dBs), then (4.194) becomes

dg
‘/(0 ) (802 (03)033 -+ 209 (93)03) 5’5((103)

2 ag
+ 7T(50 802 (93)033 + Z (93)03 |03:O

0g
89(

and therefore 6§ coincides with of in the previous case.

i (00w +iZL 0G|, =0 (.197)
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4.4 The case F = &1

Suppose that F = 1; the case £ = —1 is similar. Here the real Jordan form for A, is
R= 0
— 54,571 = < : ) 4.198
Jo =54, o 7 (4.198)
where
T = (1 1) (4.199)
2 — O 1 . .
The matrix S is then given by
1 1 1 1
1 1 -1 -1
S=10 o 1 -1 (4.200)
1 -1 -1 1
Note that
g9 — (1 q) (4.201)
2 0 1
and therefore 69, 6 and 6% are given by
0% = (6, — %) mod 27, (4.202)
1 iff, =0
cot 69 = { 7 . ’ 4.203
o Lm0, 40 (4205)
and )
cot 02 = cot f5(1 + gsin by cos Oy + g2 cos )7 (4.204)

Therefore 05 — T as g — co. If 6 = 0 or T, then 65 = 5. If 6, = T, then 8 = b5,

otherwise 6 — 0.

‘We have
| 9ot () = Jim [ (T5g) (w)r (dw). (4.205)

By using the functions (4.33) in (4.205), we get for n1,ny € Z, ng € N, ny + ny even,

s

(4.206)
Thus o on Qg z) is concentrated on Qg z) N {#; = 5}. Then by using the functions (4.35) in
(4.205), we get, for ny € 7,

m9151202) iy 9205 o (dB) dBydbs) = / e (rifrtn202) gipy 9203 ok (dBy dBadbs).

©%) o, 5)M{2=3}

/Q Pt (dfy) = /Q s, N d6). (4.207)

Therefore o3 is concentrated on (Q,z) U Q) N {6 = 5} UQx.

Since - -
(%49)(617 57 93) = g((gla 57 93) (4208)
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we have 52
—Ttg ) (8)cl(dh) = 0.
J, (5ma) @ b
2
It is sufficient to calculate -é—zﬂj{{q (61, E, 0s). Let
oA o 2
sin ¢ sin 05
cos b, sin 05
cos O3

0

and let

sin 0] sin 04
cos 6 sin 6
sin 6 cos 65
cos 6 cos 05

' =B#)z =

Then we get from (4.65) with ne = 0 and m =4
E (exp(i{n16] + nsb3))) = exp(i(n10; + nsbs))

X {]. -+ )\Z[Alnl -+ A3TL3 -+ AHTL% + A33’Tl§ -+ Aglngnl}} -+ O()\g)

To calculate the A’s we need:

0 0 1 4 0 0 1 3
0 0 1 4 0 0 -1 -3
2 2
P00 41
0O 0 -1 -2 0 0 -1 -1
0O 0 -1 -2 0 0 1
03(4): ) C4(4)'—" 3 3
1o P o
-3 3 0 0 3 2 0
and
b 300 EEEEE
I _1 99 L1 00
DW=15 ¢ oo PW=15 0§ 13
0 0 1 4 0 0 1 3
EH T
Ds) =18 ¢ 2 4| P=13 § 33
0 0 1 2 0 0 1 1
Using (4.50) we get from these, with ¢ = 26; and ¢ = 265,
5+ 3cos¢
Byr) = E(y) = B(y}) = —F—
1.
E(y1y2) = —7sing(l—cosg)
1
E(ylyS) = —‘Q‘(Siﬂgl’i"?)COSGI)Singb
1
]E(yzyg) = 5(3Sin91+COS91)Siﬂ¢
1
E(ys) = —(35+21cosd + 3(1 — cos)sinp).

8

32

(4.209)

(4.210)

(4.211)

(4.212)

(4.213)

(4.214)

(4.215)

(4.216)

(4.217)
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These give

A = —;—cosd)sim,b, (4.218)
As — 4(SC—CTqu:»IHw%)—+13sin¢-{-15<:os<;Ssinqu—2(2—cosgb)sincbsin?@b
16 sin @

—8cos ¢sincostp + 3(1 — cos @) sin psine) }, (4.219)

(3 — sin® 1) 2

= — 4.22
An 4 1—cos¢’ (4.220)
Ay = SB9 (cos i singh — 6 — 2sinep), (4.221)
and
Asz = —3—12-((23in2 ¢ + 3sine) + 8 costp — 15) cos® ¢ + (2 — 6sin?)) cos ¢

+(3sin® — 8 cost) — 2sin 1) + 45)). (4.222)

As in the previous cases we then get for suitable g’s

If we assume that oy restricted to Qg =) N {fa = 5} is absolutely continuous with density p,
then choosing g’s whose restriction to €2y UQ% is zero and such that the integrand is continuous,
by integrating by parts we can show that p satisfies the differential equation

0 02 o2 02

00, As = A — 5 dss — 0000,

9
96,1 igg s e am

t 6, o Asp(61,05) = (4.224)

Near 65 = 0, Az behaves like i65" 4+ O(63) and As; behaves like —1+O(63). While near 65 = Z,
A3 = —2(4(% — 03))_1 -+ O( % it 03)) and

Agy = —%(3 singg +7) + O((5 — fs)?). (4.225)

Therefore, by choosing g(f3) = sin® 65 cos* f; we see that the measure oy is zero on )y and by
choosing g(#s3) = sin* 85 cos? f5

/Q (9 + 3sine)oi(d6,) = 0. (4.226)

Since the integrand is positive, the measure o} is zero on 1z also.

To sum up, in this case o}, is concentrated on Qz and its density satisfies the differential
equation (4.224).

The differential equation (4.224) does not appear to have a 6;-independent solution, and in
particular p(61,0s) = sinfs is not a solution, so that there is an anomaly at £ = 1 on the
left-hand side. In the next section we will see that there is also an anomaly on the right-hand
side.
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4.5 The case F € (—3,—-1)U(1,3)

Suppose that 1 < E < 3. The case —3 < £ < —1 is similar. We can choose 3 € (0, §) but we
cannot choose « to be real number, in fact if we put a = iy, v > 0, we get 2coshy = F+ 1
and 2cos 8 = E — 1. Then

_(fs 0 )
Jo = ( v R ) (4.227)
where ()
=~ [ exp(—y 0
R, = ( 0 exp(7) ) . (4.228)
1 1 —cosf3 —cosf
0 0 sin (3 sin 3
S = 4.229
—exp(—y) exp(=y) 1 -1 (4.229)
exp(y)  —exp(y) -1 1
and
1 cotp % cosech v % cosech
_ 111 cotp —1 cosech v —1 cosech v
1_ 4 2 2
5= 21 0 cosec %e"’ cosech y %e‘” cosech vy (4.230)
0 cosec § —3€7 cosechy —3ze™ 7 cosech v
We have
ol = (61 — ¢B) mod 27, (4.231)
cot 659 = cot, BT (4.232)
and .
cot 9:(,,‘1) = cot fs(e247 sin? B, + €77 cos? 6,)?. (4.233)

Therefore as g — oo, 9&‘” converges to 0 or . We have

| g@of(dw) = lim | (T5g)(w)ot (dw). (4.234)
By using the functions (4.33) in (4.234), we get for ny,ny € Z, n3 € N, ny + ny even,
/S; ei(n191+n202) sin 2n30305(d91d92d03) =0 (4235)
©%

(9)
3

since sin 2n303” converges to 0. Thus of (Q,z)) = 0.

If 65 = 0 or %, then 09 = 6. If 6, = 7, then ol = 7, otherwise 0 — 0. So by using the
functions (4.35) in (4.234), we get for ny € Z

) T T i
[ et (d8y) = o (00 01 {6 # 51 + oF (0 01 {62 = 5 e, (4.236)

Therefore of on is concentrated on (9 N {f2 = 0 or 5}) U Qx.

We have

Cpn(m) = —2 (Vn?m) U"ém)) (4.237)

and

L Rz _pp+ Rz _(9n—2_m)502) 0
— smﬁ( B8 7~ (2n—2-m)p0Y 2
D,(m) =2 ( 2 0 (m) ) (4.238)
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We need the explicit form of U, (m), V,(m) and W, (m) only for n = m = 1. Note that the first
entry in D, (m) is as in Section 4.3 with « replaced by 3.

g 8 2 siéh ) sirilh ¥
Ci(1)=14 " 2sinhy , 4.239
(1) —e7 —eYcotf 0 0 ( )
—e¥ —eYcotf 0 0
1 cotp 0 0
0 0 0 0
Dl(l) — 4 O O . e Y e~ (4.240)
25ir}yhfy Zsigyh'y
0 0 ) sfnh'y 2 sienh ¥
From (1.24) we have
I )\‘2/ Tag — 9) (6,)0(d6y) + lim A2 Tog — g) (0:)0E(dds) = 0. (4.241
7 [ (o= 0o (@) +Jimp > [ (T~ g) @ (@8) =0 (4211
If we let g(03) = sin® 05 cos? 3, then
Tog (Qn{02=0))U0g =0= gl(nonwg:o})usz%' (4.242)
Thus
/ P I 0,05 @8 + P T Gofan) =0 (203
ON2 /70 Qon{f2=0} \ ON2 0 '

A longish calculatlon using the above information and (4.65) Wlth ny =ny =0and m =1,
shows that the first term is 0 and that the second term is equal to

16(62"' . 1)—2053(90 N{f, =0}) +8(1 — 6_27)_2057(90 N{6; = g})

Therefore of’ () = 0 and o on is concentrated on Qz.

is invariant under rotation by 8. Thus if 3/ is irrational this measure

I

It is clear that o 0

must be the Lebesgue measure. If §/m = p/q where p and q are positive integers then we have

82
/ ( T )(91)051(6191) —0. (4.244)
A=0
Let
sin 91
7= 00391 (4.245)
0

and let ' = B(2q)z. As in (4.65) with ny = ng = 0 and m = 2¢ we have
E (exp(ini0})) = exp(inlel){l + N[An; + Almf]} +0(\?). (4.246)

Using Appendix 1 and (4.50) we get

1 & 2 2q(1+2cos?6
Byr) =52 (Dley, ) = ( 7 ) (4.247)
n=1
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124, . r 4q sin 6, cos 6,
E(y11s) = 5:;1 <Dnel,x> <Dn ezja:> = —W_
12 2 2¢(1+2 sin? 61)
2y T _
E(y3) = 5 nz::l <Dn 62,x> = sin 3 .

One can then check that when 03 = 7,

3
Al = 0, and Au = —'S—H—lg—ﬁ—'
Therefore from 4.244 for ny # 0

/Q e?m0sE(de)) = 0.

W

Thus ¢Z|  is Lebesgue measure.
0iq

ar
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(4.248)

(4.249)

(4.250)

(4.251)

Summing up, we have that o is concentrated on {1z and on that it is Lebesgue measure.

4.6 The cases F = +3

Finally we come to the case F = +3. It is sufficient to study the case E = 3. Here cosa = 2

and 3= 0.
S 0)
= ,
0 0 T
where
11
=0 1)
and
7, = 2—-v3 0
T 0 2+v3 )
1 1 0 0
S 1 1 -1 -1
T —(2-v3) 2—-v3 1 -1
24+v3 —(2+v3) -1 1
We have . co
= 1 1=0
cot 89 :{ 7 . . ’
b | e (0 A0,
cot 657 = cot 65(2 + V/3)%
and

cot 0(‘1) = cot 93 ((2 - \/3)2(] Sin2 62 + (2 + \/:9;)2q 0082 02)
3 =

1+ g2 cos? 6, + 2gsin 6, cos 6,

Therefore as ¢ — oo, 9:(;1) — 0 or Z. We have

| s@)d(aw) = lim [ (T9)w)o(dw)

I

(4.252)

(4.253)

(4.254)

(4.255)

(4.256)

(4.257)

(4.258)

(4.259)
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By using the functions (4.33) in (4.259), we get for ni,ny € Z, n3g € N, n; + ny even,

/Q ei(m 61+n262) sin 2713930'(3) (d61 dfs d93) = 0. (4260)

©0.%)

Thus US(Q(O,%)) = 0.

Now 652 = 65 if 3 = O or T. 959 = 6, if 6, = 0 or T, otherwise 5” — 0 as ¢ — oco. Therefore by
the same argument as in Section 4.4, o3 on is concentrated on (N {# =0or 6, =S} U Qz.

Similarly, since GEQ) — 5 as ¢ — 0o, we can argue that o5 on is concentrated on (Qo N {62 =

0or 6, =2} U(Qs N {0 = 2}).

Using the notation of Section 4.2 we have

1 1
0 0 A 70
0 0 L. 1
Ov(1) = 3 35 | (4.261)
~@2-v3) 0 0 0
2++/3 0 0 0
1 0 0 0
D =g 0 2 Vs (4.262
= 2—v3 _2-3 |. .
1 00 -5F% %5 )
O 0 2+\/§ 243
2v3 23
From (1.24) we have
lim A2 Tg — 6,)of (d6 lim A2 Thg — g) (0:)0E(dfs) = 0.
lim n%n{elzg}( 29 — g) (01)ag (d6:) + lim {020 or _,21}( g — g) (02)0q (d62)
(4.263)
If we let g(63) = sin? 5 cos* 03, then
%glﬂouﬂg = O =9 QoUQ% ’ (4.264)

Thus

92 o2
—T,q |(0))cZ (dp ——T,.q | (0:)0E (dby) = 0. 4.2
/Q%ml:%} ((»2 Ag))\(:é)o'o( 1)+ Q0N (830 or %) (W ”g)fj)%( ) =0 (4.265)

From the above information and (4.65) with ny = ny = 0 and m = 1, we can check that the
first term is 0 and that the second term is equal to of (Q N {62 = 0 or 2})/12. Therefore
a5 (Q N {2 =0or §}) =0 and of is concentrated on Qz N {6, = 5}

Thus oF is concentrated on {2z and on that it is the atomic measure at 6; = 3.

The limiting measure at £ = 1 has to be transformed via the matrix

1 cotp 0 0
1 ces Q’B—l 0 0
_ sin
SB S ! = O O 72+\/§+67 —2+\/§+€_7 . (4266)
2sinh~y 2sinh~y
0 0 24+v3—e” 24v3—e7
2sinh vy 2sinh~y

This matrix transforms the point
concentrated on §./, N {6 = w/4}.

—~~

1,0,0,0) to (1,1,0,0), so that the transformed measure is
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5 Appendix 1 The expectation of the terms y;y;

Case i =1,7=1.

m . 2
> <D3;61,:L‘>2 = 2 (sm 63) {mcos(2moz —260;) +2m

= sin «
sin 2mo

+ cos(2a — 26,) —

+4 cos(ma — 601) cos(a — 6)

(5.1)

sin mo
sin o

LA 2 cosfz )’ coslim — 1)(a B sinm(a — §)
nz::l <C” el’I> = 2 ( sin 3 ) { [( 1)( + /6) 202] sin(a - ﬂ)

sinm(a + 3)
+eosf(m — 1)(e = B) + 266~ P =

+2cos((m — 1)a)sm mae

sin o

+2cos[(m — 1)8 — 2921831"? + Zm} (5.2)

Caset1=1,j =2.

sin o

Emj <D3;el,a;> <D3;ez, x> = 2 (sin 93)2 {msin(2ma —26)
n=1

sin 2mao

—sin(2a — 26;) o

sin mo
sin «

+2sin((m — 1)a) (5.3)

m . T . 00393 2 sinf(m — o o w
Z<Cn€1,17> <Cn€2,$> = Q(Sinﬁ) { [( 1)(e+ B) — 26,] sin(a — f)

sinm(a + )

+sin[(m — 1)(a — B) + 265 sin(a + B)

+2sin((m — 1)a) Szn”;a} (5.4)

Case i = 1,5 = 3.
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> <D3;61,$> <D,:feg,x> = Y <Cgel,x> <C’T{e3,:c>
n=1 n=1
= 2%?;5—2?——523 {mcos[m(oz + ) — 0, — 6]
+m cos[m(a — ) — 0; + 63)
sinm(a+ 3)
sin{a + 5)
sinm(a — 5)
sin(a — B)
sin ma

+2cos(mf — 05) cos(a — 6;) o

sin m
sin 3

+cos(a — 5 — 60, — 05)

+cos(a+ 5 — 61+ 65)

+2cos(ma — ;) cos( + 65)

Casei=1,j5=4.

§m: <D17;el,m> <Dge4,a§> = i <C’,Zel,:v> <C£e4,x>
n=1 n=1
in6 o
= 2%{m sinjm(a + ) — 61 — 0]
—msin(m(a — ) — 61 + 05)
) sinm{a + )
—SID(O[ - /g - 01 — Gz)m
sinm(a — )
sin(a — )

sin ma

+Sil1(0&+ﬂ-—01+92)

+2cos(a — 61) sin(mg — 6) o

sinmg }

sin 8

+2 cos(ma — 6;) sin(G + 65)

m . 2
> <D;";eg,:c>2 = =2 (smﬂg) {mcos(Qmoz —201) —2m

sin «
sin 2mao

+cos(2a — 26,) %0

+4sin(ma — 6;) sin(a — 6;)

sin ma
sin o

sinm(a — )
sin 3

35 (ctens)’ = —2(Z22) {em(m— @+ ) - 20y 2P

39

(5.5)

(5.6)

(5.7)
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sinm(a + 3)
+COS[(’I‘TL - 1)(0’ - ﬁ) -+ 292]m
sin ma
+2cos((m — 1)a) o |
—2cos[(m — 1)8 — 20] S;?n’zﬁ - Zm} (5.8)

Case i =2,7 = 3.

<D71;62, .’L’> <D3;63, ﬂ'}>

ANSE!

Case 1 = 2,j = 4.

i <D562, a:> <D,7;e4, :13>

n=1

Case i =3,j = 3.

i <C’3:ez, a:> <C$e3, :z:>

n=1

sin f5 cos 64

{m sinfm(a + 8) — 61 — 65

sin «v sin 3
+msinfm(a — B) — 61 + 65]
—sin(fa — 3 —6; — 92)%
—sin(a+ [ — 6, + %)W
—2sin(a — 604) cos(mf — 02)818?:;&
+2sin(ma — 6;) cos(8 + 62) S:;nn;ﬁ} (5.9)

i <CZ€2, :1:> <CZ€4, :c>
n=1

sin 6 cos 63

) S s {m cos[m(a + 3) — 6, — 6,)
—mcos[m(a — 3) — 601 + 65]

sinm(a + B)
‘f‘COS(C\f - ,6 — 91 — HQ)M

sinm(a — )
— COS(O’ -+ ﬁ — 91 + eg)m
+2sin(a — 6;) sin(mg — 92)811,1 ma

sin a

—92sin(ma — 6,) sin(3 + 6) S;?n”;ﬁ } (5.10)
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m 2
> <DZ:eg, a:>2 = 2 (COS 93) {m cos(2mfB — 26,) + 2m

— sin
+cos(20 + 265) S;?j;nﬁﬂ
+4 cos(mfB — 0s) cos(fB + 62) SL?IZT;'B}

2 sin ar
sinm(a+ 5)
+cos[(m +1)(a — 8) — QQI]W
+2c0s{(m + 1) — 26,] 2
sin o

+2cos[(m + 1)0] S;I;nn;ﬁ + Qm}

S (Cley,a) = 2 (Sin03>2 { cos[(m + 1)(a+ §) 201]%;%

41

(5.11)

(5.12)
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Case 1 = 3,j = 4.

m 2
n;l <DZ’€3,:13> <D77:e4,:v> = 2 (:rsli;) {msin(2m6 — 265)
+sin(28 + 26,) S;f;gﬂ
+2sin((m + 1)8) Sis‘iln";ﬁ } (5.13)

sinm(a — )

n (sin 03

> <C,7:63,x> <C,:fe4, x> = 2 ) {sin[(m + 1)(a+ fB) — 264]

— sin o sin{a — 3)
_sinl(m o) — sinm(a + )
2sin((m + 1)8) Sls?n”;ﬁ } (5.14)

m 2
> <Dge4,x>2 = -2 (COS 93) {m cos(2mp — 262) — 2m

—_ sin 3
+cos(20 + 263) s;rlfgnﬂﬁ
—4sin(mf3 — 0,) sin(8 + az)si?n”gﬁ } (5.15)

sinm(a — 3)

3 (reas)’ = -2 (22 L awlim+ (e + 9) - 2020

—_ sin «
sinm(a + f)
1 - fB) — 20—+
Feosf(m + Do~ 8) ~ 26 S S
—2cos[(m+ 1)a — 261]511,1ma
sin
sinmg
2 1 -2 1
+2cos[(m + 1)0] S0 m} (5.16)
6 Appendix 2 Continuity etc
If M is an n X n matrix with det M = &1 then
x
| Mz|| = L - (6.1)

nl|| M0
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This follows from the inequality

- M"Y n—
720 < i =t e, (62
which gives
2]l = 1M~ M| < M| M|l < nl| M)V Ma]). (6.3)

Let M()) be a 2 x 2 matrix with det M(\) = £1. Let

fa(z) = tan "L =L, (6.4)
T3
where z' = M(\)z and let M = 7 g/:[\()\) Then
0 MO Nz A M(N)z
A VOV (%9
and so
[ A)xll
f , 12 A7 6.6
Similarly
M@ (X MOz
2 o] < LoD LM .
2 [M(A)z]| [M(X)z]]
and
2 | < IO IO g O .
@) < . .
X3 M (N)z| M (N)z|]> [M(A)z]]®
In general
o MWzl . M (N
_fA($) < Orl ,,,,, Tn 6.9
PO o EOER o9
and therefore
ak
Srh@| < 3 G 2N MWLM )M (6.10)
r1+ro+. . trn=k
i<r;<k
(n)
Now we take M(\) = [12_, D{ where D = SA™S-1. Note that 8)\2 =0 and if the
random variables X,,’s are bounded then there exists a constant C' such that both ||[D{"|| and
oD'™
3 )’: are bounded by C for all n and all A € [—1,1]. Therefore (6.10) gives for any k € N,

< Cy. (6.11)

ak
(@)
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If hy = go f\, where the first k derivatives of ¢ are bounded, then we also have

8k
o ()] < K. (6.12)
Since Tolg = E(hy o t™1), this gives
ak
” (8%7;9) = f o1

By using the Mean-Value Theorem we then see that if the first r+1 derivatives of g are bounded,
then we also have

. T )\k ak
- A0 _
Now let M(X) be a 4 x 4 matrix with det M(\) = %1 and let
;72 ;2
1" + x5
T) = , 6.15
Hz) 2+ 2)? + 2® + 2 (6.15)
where 2/ = M(\)z, that is
|PMN)z|?
Hhz) =S~ 6.16
) = Rl (6.16)

where Pz = (1, z3,0,0) or in the notation of Section 4.2, f\(x) = sin?(#}). Then

9 (PMO(N)z - PMN)D)IMNa]? = MO\ - M(Na)|PM )
2 | M (N)z]|
and so
9 M)z |[|MD Nz
— 2 . .
x| <2 (618)
In general
o [MED N .. | M Nz
————-f)‘(flf) S C’rl ..... Tn 6.19
v s OVl (019
and therefore
ak
aah@] < Y G @M MNP (6.20)
o
Again if we take M(\) =TI2_; Dg\") we get for any k € N,
6k
If hy =l o f\, where the first k derivatives of [ are bounded, then we also have
ok
’Wh,\(m) < K. (6.22)
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If g(63) = I(sin® 03) then T,7g = E(h, o t7) and we get

(G

By using the Mean-Value Theorem we then see that if the first r+1 derivatives of [ are bounded,
then we also have

lim A" =0 (6.24)
A—0

e [ OF
T}?Q Z k! <a)\k‘2:\g)/\-0

Now we want to consider functions of the form V% sin2® g5. First let

ta(z) = tan™! <—:€1—) , (6.25)
T2
that is £y(z) = 6;. Then as in (6.9)
oF |PMTDI(N)z]| ... |[|[PMT)(\)z||
—t\(z Cry..oirm 6.26
A SRR [PMO)TF 1620
Let Sy(z) = exp(iN tx(z))(fr(z))® where fy is as in (6.16), that is, Sy(z) = eN%1sin? 6}.
%S’,\(m) consists of a finite linear combination of terms with [ = 0,.. ., k, of the form
exp(iN () (@)™ (@) ... 77 (@) (57 (@) ... 45 (2) (6.27)

withpi+...4+p,=lLn<land g +...4+ ¢, =k—1, m < k—1 If weuse (6.26) to get
an upper bound for ]t(ql)(x) . tf\q’”)(a:)] we see that the highest power of ||[PM(\)z|| in the
denominator of the upper bound is k — . From (6.16) we see that the term in 6.27 is bounded
if s —n > (k—1)/2 and therefore if s > (k +1)/2 it is bounded for all m. Thus if s > k,
%S)\(l’) is bounded.

Clearly the same argument works for €M% cos® 0} and for e*N®+M82) sin?s1 9] cos?*2 6} if s; > k
and s > k.
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