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1. Introduction

“Le monde progresse grace aux choses im
possibles qui ont t ralises.”
André Maurois.

The first microscopic theory of superfluidity was originally proposed in 1947 by Bogoliubov in
three revolutionary papers on the theory of interacting Bose gas [1—3]. His Weakly Imperfect

Bose Gas (WIBG) arising from the truncation of a full interacting gas. was a starting point
for this theory. However, only very few rigorous results concerning his WIBG and ansätze were

known until 1998-2000. Then, the recent papers [7—11] expressed for the first time a rigorous

analysis of this Bogoliubov model (WIBG) in the sense that the grand-canonical thermodynamic

behavior is finally given at all temperatures and densities.
A deeper analysis of the Bogoliubov theory, including all recent studies [7—12] and some new

critical analyses, has already been done from the point of view of rigorous results in the recent

review 14]. However, the intention of our work is to check more carefully the Bogoliubov theory

and its problematic ansätze in order to get solutions and explanations not included in [4].

Our detailed analysis gives rise to an improved new microscopic theory of superfluidity for

liquid helium explained in [6]. Here we review and give a critical discussion of the standard

microscopic theory of superfluidity, specially the Bogoliubov truncation and approximations

corresponding to both canonical and grand-canonical Bogoliubov theories of superfluidity, see

section 2. This will lead us in section 3 to our proposal for a new microscopic theory of super

fluidity, for which we provide the physical arguments.
Notice that a recent historical overview of superfluidity is given in the paper [13]. Here we take

into account only homogeneous gases. Concerning the inhomogeneous case, a rigorous proof that

a 100% superfluid liquid occurs, corresponding also to a 100% Bose condensate, was performed

for the first time with dilute trapped gases at zero-temperature whose the number of particles

goes to infinity with an interacting potential converging to a Dirac function, see [14, 15].

2. The Bogoliubov theory of superfluidity

“Que celui qui n’a jamais péché jette au

poisson la premiere pierre.’
Francis Blanche, Le Carnaval des ani

maux.

We give here a detailed analysis of the Bogoliubov theory to emphasize on its different problems

and questions.
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2.1. Setup of the problem: the full interacting Bose gas

Let an interacting homogeneous gas of n spinless bosons with mass m be enclosed in a cubic
3

box A = x L C R3. We denote by (x) = (Wx() a (real) two-body interaction potential
satisfying:

(A) (x)L’(R3).

(B) Its (real) Fourier transformation

k =f d3x (x) k e

satisfies: -o > 0 and 0 < ‘\k for k e W.

Using periodic boundary conditions, the corresponding Hamiltonian of the system acting on the
boson Fock space F is equal to

H0>0= kakak + U + UA, (2.1)
keA*

with

Aqajqa2_qaklak2, (2.2)
k1,k2,qOA*

(jMF - >Z = (N
— N). (2.3)

k1 ,k2EA

Here

kEA*

is the particle number operator. Ek =h2k2/2m represents the one-particle energy spectrum and

= {k E :
= 2fla

n = 0, ±1,±2, ..., a = 123}

is the set of wave vectors. Also, note that ar = {a or ak} are the usual boson creation/annihilation
operators in the one-particle state bk (x) = r_eikx, Ic e A*, z A. acting on the boson Fock
space

+

n=O

with 7-t defined as the symmetrized n-particle Hubert spaces

E (L2 t)symm 7 =

see (16. 17]. Under assumptions (A) and (B) on the interaction potential (x), the full Hamil
tonian HA,A0>o is superstable {16].
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2.2. The Bogoliubov truncation and approximation

In order to get a microscopic explanation of the (phenomenological) Landau theory of su

perfluidity [18, 19], it is crucial to get a Landau-type excitation spectrum for the model (2.1).

Indeed Landau [18,19] understood for the first time that the properties of quantum liquids like

4He (or 3He) can be entirely described by the spectrum of collective excitation. which for liquid

4He, has two branches : “phonons” for long-wavelength excitations and “rotons” for a relatively

short-wavelength collective excitations. This second assumption ensures the superfluidity of the

Bose system. The computation of the spectrum of the full interacting model (2.1) is far from

being solved for general two-body potential (x). For a large class of interaction potentials

(x), the standard canonical or grand-canonical thermodynamic functions (free-energy density

or pressure) of the Bose gas (2.1) in full interaction are unknown.

Two ways to extract some thermodynamic properties from the original model (2.1) would be

either to use a very particular two-body potential so (x) (see [20—25]), or to truncate the full

interaction of (2.1).
As an example, the Mean-Field Hamiltonian

rj-MF — m rrMF rp (r2 r
11 = J T U = I A + W A — I V A

consists of either taking a constant two-body interaction potential so (x) in the box A , or

cutting-off the terms with q 0 in the full interaction of (2.1). This model has been analyzed

exhaustively via the Imperfect Bose Gas

11IBG TA +

in [26—32] and is thermodynamically “very close” to the Perfect Bose Gas, see the discussions

in [4, 33. 34].
The Bogoliubov WIBG, coming from the microscopic (Bogoliubov) theory of superfluidity [1—

4, 8, 1L3536], is also an example of such truncation procedures. Indeed, if one expects that the

Bose-Einstein condensation, which occurs for the Perfect Bose-Gas in the mode k = 0. persists

for a weak interaction so (x), then according to Bogoliubov [1—3, 35, 36] the most important

terms in (2.1) should be those in which at least two operators a, a0 appear. We are thus led

to consider the following truncated Hamiltonian [1—3, 35, 36]

jB _rp r’D TTND rrBMF
IIA,Ao>01A±UA mUA +UA

where we recall that A0 > 0 (hypothesis (B)) and

TA
kEA

Uf Aa0a0 (a7ak + a_ka_k), (2.5)

keA \{0}

U Ak
(aa*ag + a2aka_k), (2.6)

keA \{0}

rrBMF —
A0 *2 2 ‘\O * *

= a0 a0 + Vaoao akak.

kEA \{0}

4



This first step in the Bogoliubov theory. i.e. this truncation, is actually far from being exact.
The Bogoliubov model H0>0 manifests. for high densities, a coexistence of two Bose conden
sations in the grand-canonical ensemble [4, 7 8, 10, 11]. The first Bose condensation appears on
the single mode k = 0 due to the nondiagonal interaction U’ ef. [4, 7—10/. But it saturates
for high densities and then coexists with a conventional Bose-Einstein condensation on modes
next to the zero-mode (jkU = 2’rr/L). see [4, 11]. Then, for high densities, to be at least self-
consistent in this procedure, the terms in (2.1) involving the 6 modes kI = 2ir/L should not
have been neglected in the truncation of the full interaction!

The Bogoliubov model (2.4) is “simpler” than the full Hamiltonian (2.1) but it is still nondia
gonal. A very ingenious Bogoliubov treatment to solve this problem was to consider the two
operators ao/v”V, a//V as complex numbers:

ao/V —+ a, a/’A7—* ,

since for large V, ao/V17, a/v”V almost commute. This assumption is called the Bogoliu
boy approximation. Attempts of mathematical justification of this procedure and its intimate
connection with representations of the Canonical Commutations Relations (CCR) was the sub
ject of several papers, see e.g. [17. 37, 38]. A very interesting analysis was done by Ginibre [39)
where he thermodynamically treated this problem for the full Hamiltonian (2.1).
This Bogoliubov treatment implies a new self-adjoint operator Hf,0>0(0, c) (cf. (A.1) with

= 0) depending on operators {ak}kEA.\{O}. This operator is well-defined on the Boson Fock
space

constructed on the Hilbert space ‘H’ spanned by {k = e’/v’V} , where are the
kEA* \{O}

symmetrized n-particle Hubert spaces appropriate for non-zero momentum bosons (7t0) = C).
However, the Hamiltonians HA,,,0>o and H0>0 commute with the total particle-number A’,
whereas H>0 (0, c) (A.1) does not:

[H0>0(0, c) , NA] 0.

Then. in the canonical ensemble, Bogoliubov [3] suggests a different but similar way corre
sponding to a canonical Bogoliubov theory of superfluidity, whereas the intuitive Bogoliubov
approximation takes place only in the grand-canonical Bogoliubov theory of superfluidity: see
below.

2.3. Canonical Bogoliubov theory of superfluidity [3,35,40—43)

Let us consider the Bogoliubov Hamiltonian H0>0 in the canonical ensemble. Since N0 =

a5ao is a non-negative seif-adjoint operator, the operator (N0 +
Jyh/2 is correctly defined and

bounded. Let
= a (N0 + I)_1/2 ak, C = a (N0 + a0, k e A*, (2.8)
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Then for k 0 these operators satisfy the canonical commutation relations (CCR), and via

(N0 + I)_1/2 a0 =a02 the Hamiltonian HfA0>0 (2.4) can be written as

= + A0 kk + N0(N0 — I)
keA kEA*\{0} —

kEA \{0}

k
(k2( J)1/2 + r1/2 (V J)1/2

(2.9)
keA* \{0}

The canonical Bogoliubov approximation for the Hamiltonian (2.9) corresponds to

N0 2 N2 (N0 — J)1/2
2

-

— Ic
‘

—
. (2.10)

The procedure implies the model HfAo>0 (0, c) (A.l) where the operators {ak}kEA\{0} are re-

placed by {(k}kEA\{O}. By (2.8), this model now conserves the number of particles, i.e. we can

treat it in the canonical ensemble with some parameter c.
To exclude this uncertainty Bogoliubov proposed to eliminate the operator N0 from (2.9) at

the cost of further approximations, see [3, 35] and discussion in [40]. Since

= a/aJ = kCk’ N0 = Nj
— NA,k0,

keA\{0} keA*\{0}

he used the following approximation

u2 r r2

V” -i (2.11)
2V V kk—2V

keA*\{0}

in the sum of the second and the third terms of (2.9) and

— (2.12)

in the third, the fourth and the fifth terms to arrive to an approximating Hamiltonian for the

canonical ensemble with density p:

Ao>O (p) ( + pA) Ck + ‘\k (Ck + CkC-k)

kEA*\{0} kEA\{O}

PAo. (2.13)

Since the last two terms are constants in the canonical ensemble we get a bilinear form in

Bose-operators {k}kci-\{o} Therefore, using the Bogoliubov canonical u-v transformation (see

Appendix A with ak — ck) we finally get the well-known Bogoliubov gapless spectrum (cf.
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(A.4) with o = 0 and = 0).

This canonical approach involves two main assumptions: (2.10) and (‘2.11)-(2.12). By analogy
with some examples in the grand-canonical ensemble [7, 8. 10, 39], the canonical Bogoliubov ap
p’roxzmation (2.10) should be true, but we should be very doubtful concerning (2.11)-(2.12). The
approximation (2.11). taken in terms of operators, change the original Bogoliubov Harniltonian
H0>0 drastically, whereas (‘2.12) imposes a completely condensed particles density by fixing
c2 = p. This last assumption is not true for the original Bogoliubov Hamiltonian Hf0>0 (at

least not in the grand-canonical ensemble, see [7—111). Experimentally (cf. [44,45]), an estimate
of the fraction of condensate in liquid 4He at zero-temperature is only 99

2.4. Grand-canonical Bogoliubov theory of superfluidity [1,2,46—53]

Now. let us consider the more well-known approach, i.e. the grand-canonical Bogoliubov theory
of superfluidity. Originally proposed by Bogoliubov [1,2], and essentially advocated by Beliaev
[46.47]. Hugenholtz and Pines [48—51], Tserkovnikov [52], and Tolmachev [53], to remove the
problem of non-conservation of the particle number, they suggested to use the grand-canonical
ensemble from the very beginning, i.e. they introduced a chemical potential c:

= H0>0— NA. (2.14)

Then the Bogoliubov approximation gives the Hamiltonian HfAo>O (cr, c) (see Appendix A).

Remark 2.1. The models, HfA0>O (p) (2.13) in the canonical ensemble and HfA0>O (, c) (A.1)
in the grand-canonical ensemble, represent two different Bose systems even for c2 = p.

After the gauge transformation (A.2), the Hamiltonian (A.1) depends only on x = ic2. Then,
in [46.48. 50, 53] the authors proposed to fix x = c2 using the variation principle combined
with the ground state of the Perfect Bose Gas:

___

(‘ uB \ —

___

\ 4T7 —n
2 “A,Ao>OYO)FB — 2 ‘0 C — c —

ac A ac \2 j

i.e.

= Ao cj2. (2.16)

For a given total particle density p the chemical potential should be excluded from (2.16) by
the subsidiary condition, which defines c2 as a function of p. If one does this in the first appro
ximation [46,48,50], then one gets c2 = p, which returns us to (2.13). Therefore using again
the Bogoliubov canonical u-v transformation (see Appendix A), we again get the Bogoliubov
gapless spectrum (cf. (A.4) with )í = 0 and a = 0).

The clever Bogolinbov approximation on the model Hf Ao>O is in fact true in terms of the
thermodynamic behavior, see [, ‘7, 8,10]. However, the main assumption (2.16) which is crucial
to get a gapless spectrum is false, in the sense that the theory is not rigorously consistent.
Actually, in [5], the authors show for the first time that the condition (2.16) for c2 > 0
involves a positive chemical potential where the pressure of the original Hamiltonian HfA0>o
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does not exist. Then, in /4. 7. 8. 10!. it is shown that the thermodynamically relevant spectrum of

the original Hamiltonian H0>0 always has a gap for any chemical potential in the existence

domain of the pressure.

2.5. Remark on the spectrum of excitations

Before we embark on a strong revision of the Bogoliubov theory, we want to make precise the

definition of the excitation spectrum of a system of particles. In particular, which is the rele

vant ensemble between the canonical and grand-canonical one, in terms of physical excitation

spectrum?
It is clear that the spectrum of excitations should be understood as the spectrum of the cor

responding Hamiltonian. Considering for example the Perfect Bose Gas, this spectrum is gi

ven by {k}kER in the canonical ensemble whereas in the grand-canonical ensemble it equals

— }kE’ i.e. the spectrum has a gap for o < 0. Of course, the presence of this gap comes

only from the Lagrange multiplier associated with the operator Ni/V [54]. The excitation

spectrum of the Perfect Bose Gas is then {Ek}kE. The chemical potential c has no physical

relevance in terms of spectrum of excitations, i.e. the physical spectrum of excitations should

be seen only in the canonical ensemble.
An absence of gaps in the grand-canonical ensemble is only a specific case. For example,

it is only in the presence of the conventional Bose-Einstein condensation that this property

holds for the Perfect Bose Gas and then for the Mean-Field Bose Gas or the Imperfect Bose

Gas, see [26—33]. This fact can also not be generalized to any Bose system having a Bose

condensation, i.e. a gap on the spectrum in the grand-canonical ensemble may appear even if

no gap exists in the canonical ensemble. For the Bogoliubov microscopic theory of superfluidity,

the spectrum in the two ensembles gives the same result . However, it is only because of the

drastic Bogoliubov assumption (2.16), that all effects of the chemical potential on the spectrum

are removed in the grand-canonical ensemble (fi, cr).
Consequently, in terms of the spectrum of excitations, a Bose system should be thermody

namically analyzed only in the canonical ensemble.

3. A new microscopic theory of superfluidity?

To correct the Bogoliubov microscopic theory of superfluidity, the main guiding principle should

be to get a gapless Hamiltonian, or at least a Hamiltonian whose spectrum seems to be gapless.

Considering the complex Bose system (2.1), we should also truncate the Hamiltonian but, of

course, in a different way than Bogoliubov did, see the above discussion in subsection 2.2.

Regarding the last subsection 2.5, this truncation should be understood in the framework of

the canonical ensemble. In this ensemble (, p) and in terms of thermodynamic properties, the

full Hamiltonian (2.1) is completely equivalent to the model

HA,o Ekakak+DA= Ekakak+ Aqa1qa2_qaklak2, (3.1)

kEA* kEA kI,k2,qOEA

see (2.1)-(2.2), since the Mean-Field interaction U (2.3) is simply a constant on the Hilbert

space ‘“1) Here 43 is the inverse temperature, and p the fixed full particle density, whereas

n = {pV], defined as the integer part of Vp, is the number of particles.
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Formally, the Mean-Field interaction U does not change the “physical properties” of a Bose
system (cf. [33, 34]) and the “physical” effect of the interaction potential should express itself
by means of interaction U. This nondiagonal interaction LJ. (2.2) is then the only interaction
to truncate following the first Bogoliubov procedure. We then get the following (nondiagonal)
superstable Bogoliubov Hamiltonian in the canonical ensemble:

+ UMF

(3.2)see (2.3) and (2.4) for ,\ = 0. In the canonical ensemble, the superstable Bogoliubov Harnilto
nian H is also equivalent to the model H0. Now, considering that the canonical Bogoliubov
approximation is true. we directly get

(c) = (c) + (p2V
-

p),
(3.3)in the canonical ensemble with

SB ( v- 1
2 r,- ,- f*

‘L0 ) L.. L_ “k C [S.kk + S—ks—kkeA\{0} kEA*\{0}

+ k [c2k ±
kEA \{0}

The Hamiltonian fl (c) is again a bilinear form in Bose-operators {Ck}kEA-\{0} (2.8) diagona
lizable with the Bogoliubov canonical u-v transformation (Appendix A with ak —* Ck). We then
get the well-known Bogoliubov gapless spectrum for any x = c(2 0 (cf. (A.4) with o = 0
and = 0).

Remark 3.1. Under the assumption c2 = p we have the equality H (c) = HfA00 (p). The
paper [6] shows that this assumption is exact only for p —÷ cc.

The second term of (3.3) should not be taken into account on the thermodynamic level,
since it is a constant. In the canonical-ensemble, this means also that we can directly consider
the Hamiltonian H0 (see (2.4) with o = 0) instead of the superstable Hamiltonian H.

The Hamiltonian H0 corresponds to the original Bogoliubov truncation done on HA0. But,
unfortunately, in the grand-canonical ensemble, this Bose system is drastically instable at high
densities, i.e. the terms of repulsion are not strong enough to prevent the system from collapse,
see Appendix B. In order to analyze the thermodynamic properties of Hf0 in the canonical
ensemble, one should consider its supertabilized form [33,34], i.e. the superstable Hamiltonian
H (cf. [6]). Then. we should concentrate our discussion only on the superstable gas H,

whose thermodynamic properties exist in the two ensembles (can./grand-can.) at all densities.
At this point, the reader may be very critical about this intuitive explanation of the gapless

spectrum in the canonical ensemble, for the moment based on only two assumptions: a trun
cation of the full Hamiltonian [or HA,o (3.1)] implying H [or H0 (2.4)], and the canonical
Bogoliubov approximation (2.10).A first important question concerns the truncation. The Bogoliubov one was false: it was
not rigorously consistent with the grand-canonical thermodynamic behavior of the Bogoliubov
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Hamiltonian and the appearance of a second Bose condensation outside the zero-mode 14.7—10],
see subsection 2.2. We are going to explain why the truncation done here is also better from

this point of view.
Actually, the paper [9] is very useful to point out the origin of this second Bose condensation for

the Bogoliubov Hamiltonian H0>0 (2.4). Indeed, the apparition of the second (conventional)

Bose-Einstein condensation for the Bogoliubov WIBG comes from the term of repulsion

a2a (N — N0), with N0 aa0, (3.4)

which implies the saturation of the first (non-conventional) Bose condensation by excluding

particles in the zero mode, since for any k 0 the similar terms of repulsion

= (N — Nk), with Nk akakT (3.5)
V ) keA\{o}

in the full Hamiltonian (2.1) are neglected in the Bogoliubov truncation. All terms (3.4)-(3.5)

come from the Mean-Field (also called the “forward scattering”) interaction bF (2.3). Con

sequently, keeping the interaction (2.3) in the superstable Bogoliubov Hamiltonian (3.2) allows

us to avoid the appearance of a second Bose condensation, which would be inconsistent with

this truncation.
A second remark concerns the canonical Bogoliubov approximation. In the grand-canonical

ensemble (/3, ), it is proven by Ginibre [39] that the Bogoliubov approximation is exact for

any superstable Hamiltonian, including H. We believe that this procedure works also in the

canonical ensemble, and we are going to prove it for this specific model in [6].

Before going further, let us add an important remark. The canonical Bogoliubov approxima

tion (2.10) done here for the superstable model H may be interpreted, in the grand-canonical

ensemble, as using the Bogoliubov approximation only on HfA00’ i.e. not in Ut’ (2.3). In

the grand-canonical ensemble, doing this incomplete Bogoliubov approximation seems to be

inexact [39].
This last procedure for the grand-canonical ensemble was used in papers [5. 55. 56]. Indeed,

the same truncation and so the corresponding Bogoliubov Hamiltonian H was previously

proposed by N. Angelescu, A. Verbeure and V.A. Zagrebnov in 1992 [5]. The main object of

this superstable model was, for the authors [5], to correct the instability for positive chemical

potentials of the Bogoliubov Hamiltonian (2.4). At the same time, the aim in [5] was to find a

gapless Bogoliubov spectrum. In [56] the authors use a “generalized” Bogoliubov approximation.

This “generalized” Bogoliubov approximation corresponds to partially changing the operators

{ao/i/V. a/VV} by a suitable function {b (c) in (3.2) except in the viean-Field inter

action U’ (2.3). Then, they prove a Bose condensation in zero-mode via second-order phase

transition and a linear asymptotic of the elementary excitation spectrum in condensed phase

for Ik(I —* 0, see also discussions in Section 3.4 of [4].
In [6] we show that the first procedure (partial Bogoliubov approx.) done in [5] is true but

the other one [56] (partial generalized Bogoluibov approx.) performed on the superstable model

(3.2) in the grand-canonical ensemble is inexact, in the sense that it is equivalent to drastic

modifications of the original Hamiltonian (3.2). However, as Bogoliubov did, they were forced

in [5] to add some additional assumptions to find a gapless spectrum since they use the grand

canonical ensemble, see the discussion of subsection 2.5. From the beginning it was unlikely that
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the exact solution of H had a gapless spectrum even in the presence of Bose-condensation.
In fact. we prove in [6] that. on the thermodynamic level, there is a gapless spectrum in the
canonical ensemble. but not in the grand-canonical ensemble at all chemical potentials.

Actually, the main problem of their methods (Bogoliubov et al) is to assume. a priori, the
Bose condensation by directly doing the Bogoliubov approximation with an arbitrary choice of
c 2

without exactly solving it in terms of the thermodynamic behavior. In particular. the ex
planation given after the truncation leading to (3.3) has to be proven. For example, Bogoliubov
made the (shown to be wrong in [6]) assumption that c2 = p but what is our value of Id2 in
(3.3)?

As the review [4] explained in the ‘outline” section, we should be discouraged ‘from perfor
ming sloppy manipulations with Bose condensations, quantum fluctuations and different kinds
of ansdtze”. The example of the exact solution of the WIBG-model (on the thermodynamic
level) in relation with the Bogoliubov ansätze, provide a strong warning in doing it.
Actually, the rigorous thermodynamic behavior of the nondiagonal superstable Bogoliubov
Hamiltonian H is performed in [6]. In particular, we rigorously prove that this model H
is “equivalent” in thermodynamic limit to the model Hf0 () (3.3) in the canonical ensemble.
The value of = r8, p) < p satisfies a variational principle, different from (2.15) in the
canonical ensemble (, p). This provides a new theory of superfluidity with a gapless spectrum
at any particle densities and temperatures, leading to a deeper understanding of the Bose
condensation phenomenon in liquid helium [6]: coexistence in the superfluid liquid of particles
inside and outside the Bose condensate (even at zero temperature), Bose/Bogoliubov statistics,
Cooper pairs” in the Bose condensate.This theory is based only on a weaker truncation (see (3.2)) than the Bogoliubov truncation

(see (2.4) with ) > 0). This unique hypothesis is not proven in this paper or [6] and it may not
be exact even in thermodynamic limit (cf. discusions in [4, 12]. However, the paper [6] shows
that the theory is, at least, self-consistent as intuitively explained. Moreover this implies the
exact solution of a nondiagonal continuous model, i.e., Hf0, far from the Perfect Bose Gas in
the canonical ensemble at all temperatures and densities [6]. This is the first time for such a
rigorous thermodynamic analysis to be performed on a non-trivial continuous gas.Acknowledgments.
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Appendix A. : the Bogoliubov u-v transformation

“L’ennemi se déguise parfois en geranium.

mais on ne peut s’y tromper. car tandis que
le geranium est a nos fenêtres, l’ennemi est

a nos portes.”
Pierre Desproges,
vivre.

il/larluel du savoir

In this subsection we recall the Bogoliubov canonical u-v transformation by applying it on the

Bogoliubov approximation [39]

Icf2] akak + k cf2 [aak ± akak]

kEA\{O}

/\k [c2aa*k ± caka_k] — cf2 V + (fcI4 V — c2) (A.1)

of Hf (a) H — aN (2.4) for any A 0. After the canonical gauge transformation to boson

operators
k e A*\{0} (A.2)

the Hamiltonian (A.1) depends only on x = cj2. Then, we compute the corresponding pressure

(, a, c) in TrF’ eHo@
/317 B

(A.3)

Since Hf (a, c) (A.1) is a bilinear form in boson operators
JkEA\{O}

the Bogoliubov

canonical u-v transformation diagonalizes it by using a new set of boson operators { b } keA\{0}

defined by
ak = Ukbk — Vkb_k, a = Ukbk — Vkb_k,

with real coefficients {Uk = uk}keA\{0} and {Vk = V_k}keA.\{o} satisfying:

Here

xAk 2 2 Ek
u — v = 1, 2UkVk EB , U + Vk EB

k,)0

2_ (fk,A
Uk
_ I j’B

H (a, c) [Ek—Q+AO

kEA\{0}

±z
keA\{0}

for x c2. Thus

fk,A0 Eka+X(AO+Ak),

— f2
— x2A2 = (Ek — a + xAo) (Ek + x (A0 + 2Ak)),

(A.4)

2_i (fk.A0
+

1)
, Vk — I EB

\ k,Ao
-
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Notice that fk.0 xA and. c2 and a satisfy the inequality:

a < ;2 -\± mm Ek. (A.5)kEA\{0}

The Hamiltonian (A.1) becomes:

(a. c) = + (E0
— fk.Ao) —

ax + (2
— ). (A.6)

keA\{O} keA\{0}

Therefore, the pressure p0 (3, a, c) (A.3) equals

p,A0 (, a, c)
= (3, a, x + A,Ao (a, x E

A,A0 (,a,x)
=

in (i —

kA\{0} (A.7)
TA,A0 (a, x) = (f,0 — E0) + ax —

(x2
—keA*\{0}

and has the following thermodynamic limit:
p (3, a, x c2) urnp0 (, a. c)

= (fi, a, x) + ( x),

(,3,a,x) iimAA0(ax)
= 13

fin (i — eo)1d3k,A (2ir) 3
(A.8)

‘ (a, x) lirn
= 2 f (f0 —

E0)d3k ± —

with E0>0,fk,A0>o defined by (A.4), and a xA0 by (A.5).

Appendix B. : The grand-canonical Bogoliubov Hamiltonian

“C’est encore plus beau lorsque c’est mu-
tile.”
Edmond Rostand, Gyrano de Bergerac.

We are exploring the thermodynamic behavior of the Hamiltonian Hf0 (2.4), because the results in 14,8.11] are not useful anymore to deduce the thermodynamic properties since they arevalid only for A0 > 0.
The pressure in the grand-canonical ensemble for a chemical potential a and an inverse temperature /3 0, is given by

p0(5,a) InTrFB (e_fo_)),

and the grand-canonical particle density by

P,o (/3, a) (/3, a) = 8p,0 (/3, a).
Hf0

13



B.1. An upper bound for the grand-canonical pressure

Regrouping terms in (2.4) one has

H0 = H ± A (aak ± a_kao) (aak + (kao) >

— kEA\{0}

where

(k-)Nk- (kEA\{0} kEA\{0}

Hence we obtain

p,0 (fi, ) p (, ) in
(1_

e())

‘±

kA \{0}

± in — efi(p,A)

3V I

for
(B.1)

keA* \{0}

B.2. A lower bound for the grand-canonical pressure using the Bogoliubov appro
ximation

The corresponding lower bound for the Bogoliubov Hamiltonian HfA0>O (2.4) found in [5]
remains valid even for \o = 0 and one gets

p,o(j3,c) supp0(j3,c,c), (B.2)
cC

where p0 (j3, c, c) is defined by (A.7) in Appendix A. Therefore one has to analyze the lower
bound sup p.0 (/3. c. c).

cEC

Lemma B.1. Letp0(3,c,c) be given asin A.7,). Then

SUP PAO (p3, c c) P.o (3, c 0) = BG (/3 ) sup, <0

cEC ±oo for > csup,A,

where BG (/3, c) is the grand-canonical pressure for the Perfect Bose Gas.

Proof. Through (A.4) and (A.?) in Appendix A, one gets that for c 0:
(i)

1 1 / 9Ak
(,x) = + Ak 1 ± X

—keA*\{0} keA\{0}

0x7A,o (cr, 0) = c < 0;

14



(ii)

_________

(a,x) =

keA\{O} (Ek

VEk_a,)
> o.

Since

1 / 9\urn \k(1+X
k

=0,x—++oo2/
kEA*\{O}

even in the thermodynamic limit, (I) implies

a 6x7A,o (a, x) a
— 0sup,A for all x 0

and

li {OXA,O (a, z) a + = 0,
we get with (ii)

sup { (a x)} =
o ( X = 0); for a

(B.3)xo ‘ +oo ; for a>
Therefore. for j3 —÷ oc (zero-temperature) the corresponding pressure p0 (p3, a, c) (A.7)attains its supremum at c = 0 if a aSU,A whereas sup Po (3, a, c) does not exist for any

cECa> By (A.4) and (A.7) note that

(i) (3, a, x) <0 and urn (3, a, x) = 0,
—

x-+OO
- B4(ii) (3, a, x) <0 and urn (i3’ a, x) = 0.

-

-

Hence via (B.3) and (B.4) the lemma holds.

Consequently, combining (B.2) with Lemma B.1, we find

p,0 (, a) p0 (, a, 0) = BG (3 a), (B.5)
for any a a5.A , whereas for a > the pressure (3, a) does not exist.

B.3. Thermodynamic behavior of the model
Via the previous upper bound and (B.5) we get

pBG(a) <p0(,a) <p,a),

for a < a5A , which gives

p (, a) =Iin p,0 (, a) = PBG (8, a) (B.6)
in the thermodynamic limit for

a < a5 lim = — (0),
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and which can be extended by continuity of the pressure to a aSU. Here P49G (/3, a) is the
infinite volume pressure for the Perfect Bose Gas. From (B.6) and Griffiths lemma [57,58] the
infinite volume particle density p (/3, a) equals

B ( a) =
PBG (3 a) = PBG (/3, a)

= 1 f dk (e — 1)_i
(27r)

for a < a and therefore

un p (/3, a) = PBG (/3, a) <+cxi (B.7)

i.e. it is not possible to reach high densities regimes in the grand-canonical ensemble (/3, a).
Hence the properties of the model H0 are, in a way, trivial for rather negative chemical

potential a they are equivalent to the Perfect Bose Gas. The nondiagonal interaction
UTD (2.6) is not able to change the system for sufficiently negative chemical potential a
This fact is not surprising since it is exactly the same for the Bogoliubov Hamiltonian Hf
for a see the corresponding lower and upper bounds in [5] and discussions in [4, 8].
Actually, as soon as the nondiagonal interaction U1’ (2.6) beats the kinetic part for a >

by attracting particles in the zero-mode [9], the system becomes unstable, i.e. all particles
collapse in the zero-mode because of the absence of strong enough repulsion terms such as
(3.4). Such terms as (3.4) are then crucial to induce the non-conventional Bose condensation
mechanism without any instability.

The model Hf,0 turns out to be not sufficient for a microscopic theory of superfluidity in
the grand-canonical ensemble.
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