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Abstract

Gauge symmetry breaking through the Hosotani mechanism (the dynamics of

nonintegrable phases) in softly broken supersymmetric QCD with Nf flavors is
studied. For N = even, there is a single SU(N) symmetric vacuum state, while
for N = odd, there is a doubly degenerate SU(N) symmetric vacuum state in

the model. We also study the generalized supersymmetric QCD by adding
numbers of massless adjoint matter. The gauge symmetry breaking pattern such as
SU(3) —+ SU(2) x U(1) is possible for appropriate choices of the matter contents
and values of supersymmetry breaking parameter. The massless state of the adjoint
Higgs scalar is also discussed in the models.
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1 Introduction

Gauge symmetry breaking through the Hosotani mechanism [1, 2] (the dynamics of non

integrable phases) is one of the remarkable phenomena in physics with extra dimensions.

Component gauge fields for compactified directions, which are dynamical degrees of free

dom and cannot be gauged away, can develop vacuum expectation values, and the gauge

symmetry is broken dynamically. The existence of the zero mode for the component

gauge field is crucial for the mechanism. Quantum effects shift the zero mode to induce

the gauge symmetry breaking, reflecting the topology of the extra dimension.

The vacuum expectation values, which are nothing but the constant background fields,

are also related with the eigenvalues (phases) of the Wilson line integrals along the com

pactified direction, and the gauge symmetry breaking corresponds to the nontrivial Wilson

line integral. One can discuss the gauge symmetry breaking patterns of the theory by

studying the effective potential for the phases [2].

Since the pioneering work by Hosotani [1], the dynamics of the nonintegrable phases

has been studied in various models [2j—[7], namely, nonsupersymmetric gauge models. It

has been known that the gauge symmetry breaking patterns depend on matter contents,

i.e., the number, representation under the gauge group and boundary condition of matter.

In this paper, following author’s works [8, 9], we study the gauge symmetry breaking

patterns in supersymmetric SU(N) gauge theory with Nf numbers of massless fundamen

tal matter (supersymmetric QCD) defined on M3®S’. Here M3, 8’- are three-dimensional

Minkowski space-time and a circle, respectively. And we also study the generalized su

persymmetric QCD (supersymmetric QCD with massless adjoint matter).

The dynamics of the nonintegrable phases determines the vacuum structure of the

theory. If we, however, introduce the matter multiplets, the vacuum expectation values of

the squark fields in the multiplets also become the order parameters for gauge symmetry

breaking. We assume that the gauge coupling constant g is small and ignore 0(g2)

contributions to the effective potential. In this approximation, there exist flat directions

of the potential parametrized by the vacuum expectation values of the squark field. In

order to concentrate on the dynamics of the nonintegrable phases, we take the trivial

“point” on the flat direction, where all the vacuum expectation values of the squark fields

vanish.

If the theory has supersymmetry, one cannot discuss the dynamical breaking of gauge

symmetry based on perturbation theory because the perturbative effective potential for

the nonintegrable phases vanishes due to the supersymmetry. One must break the super-

symmetry in order to obtain nonvanishing effective potential . We resort to the Scherk

1This is not the case where the gauge charge such as the gauged U(1)R in supergravity models dis
tinguishes bosons and fermions in a supermultiplet. In this case supersymmetry is broken spontaneously
by the Hosotani mechanism [10].
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Schwarz mechanism [11, 12], which is a natural candidate to break supersymmetry softly

in this setup [13].

In the softly broken supersymmetric Yang-Mills theory, the SU(N) gauge symmetry

is not broken through the Hosotani mechanism. There are N vacuum states in the model,

and the vacuum has ZN symmetry. By adding N sets of massless fundamental matter

multiplet, the model describes the softly broken supersymmetric QCD with Nj” flavors.

We find that in the case N = even, there is a single SU(N) symmetric vacuum state, while

in the case N = odd, there is a doubly degenerate SU(N) symmetric vacuum state in the

model. The degenerate two vacua is related each other by the symmetry transformations

of the effective potential. Unlike the case of the softly broken supersymmetric Yang-Mills

theory, there is no Z2 symmetry for the degenerate vacuum because of the fundamental

matter in the model. The vacuum configurations do not depend on the values of N and

supersymmetry breaking parameter.

We also discuss the mass of the adjoint Riggs scalar. The scalar is originally the

component gauge field for the 31 direction and behaves as adjoint Riggs at low energies.

It acquires mass through the quantum correction in the extra dimension, and the mass is

obtained by evaluating the second derivative of the effective potential at the minimum.

The adjoint Riggs scalar is always massive in the softly broken supersymmetric QCD.

In the generalized supersymmetric QCD, we find that the partial gauge symmetry

breaking such as SU(2) x U(1), which may be important for GUT symmetry breaking, is

possible for appropriate choices of the matter contents and values of the supersymmetry

breaking parameter. This gauge symmetry breaking pattern is not realized until one

considers both of the massless adjoint and fundamental matter multiplets. We also find the

massless state of the adjoint Riggs scalar within our approximation for the aforementioned

gauge symmetry breaking pattern in the model.

In the next section we present the effective potentials for the nonintegrable phases of

the models we study in this paper. We first discuss the gauge symmetry breaking patterns

in the softly broken supersymmetric Yang-Mills theory in the section 3. Then, we proceed

to the softly broken supersymmetric QCD, and the gauge symmetry breaking patterns are

determined. The massless adjoint Riggs scalar is also discussed in the models. In section

4 we consider the generalized supersymmetric QCD. We are, especially, interested in the

gauge symmetry breaking pattern such as SU(3) —+ SU(2) x U(1) and the massless state

of the adjoint Riggs scalar. The final section is devoted to conclusions and discussion.

2 Effective potential for nonintegrable phases

In this section we present the effective potentials for the nonintegrable phases of our

models. We first consider the SU(N) supersymmetric Yang-Mills theory for the latter
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convenience. The on-shell Lagrangian is given by

£ = tr[_FF — iAu4DA +iD4Au4]. (1)

The coordinates of M3 and S’ are denoted by x and y, respectively. x’2 stands for (x’s, y).

We impose the boundary condition associated with the U(1)R symmetry on the gaugino

field [8, 13],

A(x, y + L) = y), (2)

where L is the length of the circumference of S’. The nontrivial phase 3 breaks super-

symmetry softly. The gauge field A4 satisfies the periodic boundary condition.

Let us parametrize the vacuum expectation value of the component gauge field A for

the S1 direction as

with =O (3)

where g denotes the gauge coupling constant and élj is module of 2ir. The phase 8 called

the nonintegrable phase is related with the eigenvalue of the Wilson line integral,

W Pexp (_ig dy(A)) = diag (ei61, eiO2,. . . , eij. (4)

The residual gauge symmetry is generated by the generators of SU(N) commuting with

W[2].

By expanding the fields around the constant background (3) and integrating out the

fluctuating fields up to the quadratic terms, one obtains the effective potential for the

nonintegrable phases. Following the standard technique given in the papers [1, 2], we

obtain the potential for the softly broken supersymmetric Yang-Mills theory [8],

2°°’1
Vs71()

=
- (cos[n(9

-

O)] - cos[n(
- - a)]), (5)

n=1 i,j=1

where n stands for the Kaluza-Klein mode for the 51 direction. The nontrivial phase

/ appears in the second term coming from the gaugino contribution to the constant

background (3) and gives the nonvanishing effective potential. The number 2 in Eq. (5)

counts the on-shell degrees of freedom of the gauge boson (D — 2) and gaugino(2[D/21/2),

which are equal in four dimensions. One can discuss how the gauge symmetry is broken

through the dynamics of the nonintegrable phases in this model by finding the absolute

minima of the effective potential.

Let us introduce ATd sets of fundamental massless matter multiplet denoted by Q(Q)
belonging to the (anti)fundamental representation under SU(N). The physical fields in

Q(Q) are quark q(t) and squark qq(qq). We impose the boundary conditions associated
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with the U(1)R symmetry on the squark fields [812,

q(x, y + L) = eq(x, y), q(x, y + L) = eq(x, y), (6)

where we have suppressed the flavor index for the squark. The nontrivial phase /3 breaks

supersymmetry softly and gives the nonvanishing effective potential. It has been pointed

out that the phase is common to all flavors, so that the supersymmetry breaking terms

in three dimensions are flavor blind [8, 13].

As noted in the introduction, we focus on the gauge symmetry breaking through

the Hosotani mechanism and set all the vacuum expectation values of the squark fields

vanishing. In order to evaluate the effective potential for the phases, one needs the

mass operators for Q and Q, which actually give the mass terms for the (s)quarks in

three dimensions after compactifications. Since the matter multiplet Q(Q) belongs to the

(anti)fundamental representation under SU(N) and the squark fields have the nontrivial

phase /3, the mass operator for q5q and that for bq have different forms . On the other

hand, the quark fields have no nontrivial phase, so that both of q and give the same

mass operators ‘.

One can read the mass operators in the covariant derivatives for the squark fields,

(ãq + igA) (8q5q — ig4bq), (ajq + igqA (O — igAq5). (7)

They are obtained as

(.D)2 = - () ( - 0i2/3) for q, (8)
n ooi 1

(D)2 =

-

(2w) 2 -

_

/3)2

for q• (9)

Here n stands for the Kaluza-Klein mode for the S’ direction. That the prescription

t9 —+ —t9j in Eq. (8) gives the Eq. (9) shows the field tçbq belongs to the antifundamental

representation under SU(N). We see that q5q and c/q contribute to the effective potential

in a different manner

Following again the standard prescription, we obtain the effective potential for the

phases coming from the fundamental massless matter multiplets,

2NN00 N 1
V/tter(O) = 24

- ((cos(n) - cos[n(9 - 3)]) + (cos(n) - cos[n( + /3)]))
n=1 i=1

2These boundary conditions are defined by the assignments of U(i)R charge on the fields based on
the invariance of the action under the U(1)R transformation in the presence of the mass term mQQ. The
discussion on the effective potential of the nonintegrable phases in this paper corresponds to the massless
limit.
3This point has been overlooked in the previous paper [8].
4This is also clear from the fact that q and forms a Dirac spinor satisfying the periodic boundary

condition.
5The gauge group SU(2) is an exceptional case as we will see in the section 4.

5



2N oc N 1
=

—(2 cos(n0) — cos[n(8 — 3)] — cos[n(8 + j9)]) (10)
711 i1

where the first term in Eq. (10) arises from the quarks q, , and the second and third terms

come from q5q and cq, respectively. By putting Eqs. (5) and (10) together, we obtain the

effective potential for the softly broken supersymmetric QCD with Nf numbers of the

massless fundamental matter,

T I \ T I \ fci
1SQGDiP) = SYM8)+ Vmatter 0

2ooN1

=
—(cos[n(8

-

0)] - cos{ri(0
-

- 3)j)
n=1 i,j1

2N oo N 1
+ —(2 cos(n0) — cos[n(0 /3)] — cos[n(8 + /3)]). (11)

n=1 i=1

For completeness, let us present the effective potential for the phases coming from Nj

numbers of the massless adjoint matter multiplet denoted by Qadi(qadi ad). We impose

the boundary condition associated with the U(1)R symmetry on the squark field in the

same manner with Eq. (6),

y + L) = er(xb, y). (12)

The potential is given by [9]

2Nai 00 N 1
Vrter(0) =

- (cos[n(8 - Oj)] - cos[n(0
-

0
-

/3)]). (13)
m=1 ijrz1

As a general remark, the phase 8 gives no physical effects at least classically, but

the effect is essential at the quantum level. It should be emphasized that these effective

potentials (5), (10), (13) arise from taking into account the quantum correction in the

extra dimension.

3 Supersymmetric QCD with N flavors

In this section we discuss the gauge symmetry breaking through the Hosotani mechanism

based on the obtained effective potentials in the previous section. Before doing it, let

us mention about the vacuum structure of the model, which is peculiar to softly broken

supersymmetric gauge theories.

Strictly speaking, the dynamics of nonintegrable phases itself does not give the whole

information on the vacuum structure of softly broken supersymmetric gauge theories. This

is because, as noted in the introduction, the vacuum expectation values of the squark fields

(qq), (çL)q) e C are also the order parameters for gauge symmetry breaking. If one wishes

to study the entire vacuum structure, one should take into account the order parameters
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ill addition to the nonintegrable phases. This means that one has to include the tree-level

potential and one-loop corrections to the vacuum expectation values of the squark fields

as well.

The tree-level potential, which arises from the covariant derivative and the quartic

couplings for the squark field, is given by 6

ree = g2 (()(Ay)2(q) + (q)(Ay)2()) + g2 (()Tq) -

= 182 ((qi)I2 + 2)
()Ta(q) - (q)Ta())2, (14)

where we have used Eq. (3) and Ta(a = 1,. . . , N — 1) stands for the generator of

SU(N). Let us note that the interactions between (q5q), (q) and 8j are 0(1), while the

self-interactions among the squarks are of order g2. And the one-loop correction to the

vacuum expectation values of the squark fields, which is not written explicitly, is also of

order g2.

If the gauge coupling g is very small, then, one may ignore the 0(g2) terms, so that the

term which does not have the gauge coupling dependence becomes dominant contribution

to the vacuum structure of the theory. In this approximation, the total effective potential

is given by

v(8, (q), (q))
= 1

82 (Rqj2 + (2)
+ VsQcD(8), (15)

where VSQCDQ9) is given by Eq. (11). The relevant interaction to generate the effective

potential (15) is only the gauge interaction, which is 0(1). That is why the total effective

potential does not have the dependence on the gauge coupling.

The first term in Eq. (15), which stands for the tree-level potential, is positive semi-

definite. The configuration that minimizes it is given by (q5qj) = (g) = 0 for nonzero

values of 9(i = 1,. . . , N). In fact, as we will see soon, the nonzero values of 8j are the case

where the absolute minima of VsQCD(8) is realized. As a result, the tree-level potential

does not affect the vacuum structure of the model in this approximation. Therefore, the

vacuum structure is determined by the dynamics of the nonintegrable phases alone in this

model.

3.1 Gauge symmetry breaking via Hosotani mechanism

Let us now consider the effective potential VSQCD (8) in order to study the dynamics of the

nonintegrable phases, i.e., gauge symmetry breaking through the Hosotani mechanism.

Our strategy to find the vacuum configuration of the potential is to minimize VSyM(O)

6Since the tree-level potential in the model is not the Higgs type potential, we do not expect the phase
structures depending on the size of S’ such as the ones studied in Ref. [14].
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and Vmatter (0) separately, and we take the common configuration for both of them, which

actually gives the absolute minima of the potential VSQCD(O).

Since 14syji(O) can be recasted as [9]

2°° N1 7

=
—[1 — cos(n,8)] (N + 2 cos[ri(0 — (16)

n=1 i,j=1 1<i<j<N

it is easy to see that this potential is minimized at 6)j
— = 0. Taking account of

= 0 and a module of 2ir of Oj, we obtain

m=0,••,N—1. (17)

This means e0 =e2m/1T, so that the Wilson line integral just corresponds to an element

of the center of SU(N), and it commutes with all the generators of SU(N). Hence, the

gauge symmetry is not broken in this model. This is the same result with the case of the

nonsupersymmetric Yang-Mills theory [1].

It is important to note that there are N vacuum states corresponding to the values

of m. The N vacua are physically equivalent because, for example, the mass spectra on

the vacua are exactly the same with each other. The fields 4, A stay in massless on the

vacuum configuration (17). The vacuum has ZN symmetry. A way of looking at the ZN

symmetry is to consider the gauge transformation (regular, nonperiodic) defined by

Nm

U(m)(y) = exp- . (18)

— (N-1)m
N

This transformation does not change the boundary conditions of the fields A,, A because

they belong to the adjoint representation under SU(N). It is easy to see that the N

vacuum states are related each other by this transformation.

Let us next consider the potential Vjtter (0) given by Eq. (10) and find the configura

tion that minimizes it. This is interesting in its own light because, as we will see later, this

potential corresponds to the case of the generalized supersymmetric QCD with Nj = 1.

The potential is recasted as

2N N 1
Vjtter(O) = 24

—(2cos(ri0) — cos[n(8 — /3)] — cos[n(0 + /3)])
n=1i=1

4N°° N1

=
—[1 — cos(n5)] cos(n0). (19)

ir

We see that the nontrivial phase /3 does not affect the location of the absolute minima of

the potential. In finding the minimum, let us note that the potential is invariant under ‘‘

_____________________

/3-+2ir—/3. (20)

TThe potential is also invariant under 3 —+ 3 + 2rik, k E Z. This corresponds to A —÷e2A.
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This invariance means that the potential is symmetric under the reflection with respect

to 3 = -it for fixed O. The region given by 0 < /3 < r is enough to study the potential.

Moreover, the potential also posessess the invariance under

6j—+27r—8, i=1,..,N. (21)

The maximal symmetry of Vj,ter (6) is given by the transformations with Eqs. (20) and

(21).

Taking into account Eqs. (20) and (21), we see that the region given by 6 — /3 0

is enough to study the potential. Thanks to this, one does not need the classification

depending on the sign of O — /3 when one uses the formula,

1
— cos(nx) = -x2(x — 27T)2 + (0 <x < 2-it). (22)

Noting an expression obtained by applying the formula (22),

2

—(2 cos(nO) — cos[n(6
— /3)] — cos[n(6 + /3)]]) = (662

— 12ir8 + /32 + 4ir2), (23)

we have

2N’ 2 N—i N—i N—i

Vtter
= 2L4 ( (66 — l26 +/32 +42) +6( o) — 12 0 +/32 +42). (24)

The extremum condition ãVmatter/ãOk(k = 1,. . . , N — 1) = 0 yields

Ok+(Oi++ON_i)=0 (mod 2r), k=1,,N—1. (25)

The solution to Eq. (25) is obtained as = 2rq/N (q = 0, . . , N — 1). Since 0N =

Ek1 6k = 2irq/N, we finally have 61(i = 1,. . . , N) = 2irq/N.

Unlike the case of the softly broken supersymmetric Yang-Mills theory, the effective

potential has different energies for different values of q in the present case. The minimum

of the function (23) is achieved at 6 = r. If all the 6’s can take this value, the potential

Vntter(6) is obviously minimized at 6 = q (i = 1• . . , N). In fact, this is the case when

N = even and corresponds to = N/2. For N = odd, the value which is as close as

possible to ir gives the lowest energy of the potential. It is given by q = (N — 1)/2, i.e.,

=

— 1)r/N. The potential is invariant under Eq. (21), so that the configuration

with IodcI = (N + 1)/2 corresponding to O = (N + 1)ir/N(= 27r — 6 ) gives the same

energy with that for q} = (N — 1)/2 and also becomes a vacuum configuration .

The two vacuum configurations 61), g2) are not distinct. In order to see it, let us

consider the mass spectra for /q on the vacua 6, 62). They are given by (n — (9 —

/3)/27r)2 and (ri — (02)
— 43)/2r))2 from Eq. (8). The former is reduced to the latter by

8Note that the physical region of j(j = .
,
N) is 0 < 8 <2ir.
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the transformations with Eqs. (20) and (21) and vice versa. Since they are the symmetry

transformation of the effective potential, both of the mass spectra are physically identical

each other.

The vacuum configuration for the case N = odd is a doubly degenerate. There is,

however, no Z2 symmetry for the vacuum configurations in the present case because the

model contains the massless matter multiplet belonging to the (anti)fundamental repre

sentation under SU(N). The gauge transformation with Eq. (18) changes the boundary

condition of the field in the multiplet. In fact, we see that

q5(y + L) = e(q(y), (26)

where = U(m=l)(y)bq.

We have obtained the vacuum configuration which minimizes Vtter () as

I ir •N=even,
8(i = 1,. ..,N) = -

(27)
(or -7r) . N odd.

As we have noticed before, they do not depend on I\ and the supersymmetry breaking

parameter 3 by the Scherk-Schwarz mechanism. The vacuum configurations respect the

SU(N) gauge symmetry and are the parts of the center of SU(N).

We are ready to find the common configuration between Eqs. (17) and (27), which

gives the absolute minima of the effective potential (11). It is given by Eq. (27) obviously.

We conclude that for N = even, there is a single vacuum state, while for N = odd, there

is a doubly degenerate vacuum state in the softly broken supersymmetric QCD with Nj’

flavors.

Here we confirm the discussion on the tree-level potential at the beginning of this

section. As we have studied above, the configuration that minimizes the effective potential

(11) is given by the nonzero values of O(i = 1,. . , N), so that only the vanishing vacuum

expectation values of the squark fields minimize the total potential (15).

Let us now study the mass of the adjoint Higgs scalar. The scalar is originally the

component gauge field for the 1 direction and behaves as adjoint Higgs at low energies.

It acquires mass through the quantum correction in the extra dimension. The mass is

obtained by the second derivative of the effective potential (11) at the minimum,

2Tr ,-SQCD
(1 VSQCD H rySQCD p2 (T4.T i 7rfd’\

—

iV1jj ‘-1H = /‘ .LVF ),
‘13

where the matrix is given by

21 1

12
: .. : . (29)

1 2
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All the (off-)diagonal elements of the matrix are 2(1). As studied in Ref. [9], this matrix

is easily diagonalized, and the mass is obtained as

20SQCD N2_’ H

—

-22 2

The mass of the adjoint Higgs scalar is SU(N) invariant, reflecting the SU(N)-symmetric

vacuum configuration of the model. It is easy to see that there is no possibility to have
qQCD

= 0, so that the adjoint Higgs scalar is always massive and cannot be massless.

4 Supersymmetric QCD with massless adjoint mat
ter

In this section we proceed to study the generalized version of supersymmetric QCD by

introducing N’j numbers of massless adjoint matter multiplet. Let us first discuss the

tree-level potential within our approximation in this model.

If we add the massless adjoint matter, the tree-level potential becomes, ignoring the

0(g2) terms and the flavor index ,

ree

= 1 (qj)J2 +
+ tr [() (adi)] 2

(31)

The second term comes from the covariant derivative of the squark field in the adjoint

representation under SU(N). The total effective potential is, then, given by

ota1 =
(Kqj2 + (2)

+ tr [() @i)]
2

VGSQcD(8). (32)

VGSQCD(6)is given by

fIi\ — T7 fn\ rradj
VGSQCDI\U) = SQCD) + Vmatter

2N’j 2°° N

= r2L4
-(cos[n(

-

8j)] cos[n(
-

- /3)])
T11 i,j=1

2N N1

+ 24
-(2 cos(n) - cos[n( - /3)] — cos[n( + /3)]), (33)

n=1 i=1

where the first term in Eq. (33) stands for the contributions from the supersymmetric

Yang-Mills theory and numbers of the massless adjoint matter [9].

Let us note that one cannot rotate Q/adi) into a diagonal form by utilizing the SU(N)

degrees of freedom because we have already used them to parametrize (An) as the diagonal

form given by Eq. (3). The first and second terms in Eq. (32) are positive semi-definite. In

order to minimize the second term in Eq. (32), (çbadi) have only a diagonal form. Then, it

9We have ignored the terms coming from the trilinear coupling of the chiral superfields, QQ°Q by
assuming that the coupling are of order g, hence 0(g2) in the potential.
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commutes with Q1) for any values of 8 and yields the vanishing second term [(1), (çbadi)] =

0. Therefore, (q5adi) is undetermined in this approximation and parametrizes the fiat

direction of the potential.

In addition to (qadi), the vacuum expectation values of bq and c/q can also parametrize

the fiat direction of the potential. If all the Oj’s take nonzero values, Q/q) = (q) = 0 gives

the vanishing first term in Eq. (32). In this case, there is no fiat direction of the potential

parametrized by (qSq) and (q). This was the situation in the softly broken supersymmetric

Q CD. If some of 8j’s, however, take the values of zero, say, 8k 0(k = 1,. . . , 1 < N — 1),

the corresponding (qSqk) and () can take arbitrary values in keeping the vanishing first

term and parametrize the fiat direction of the potential. In our approximation ignoring

the 0(g2) terms, the effective potential has the fiat direction in general.

In this paper, we are interested in the dynamics of the nonintegrable phases, or one

can say that we study the gauge symmetry breaking in this model at the trivial “point”,

where all the vacuum expectation values of the squark fields çbq, qq, vanish. We ignore

the tree-level potential, first and second terms in Eq. (32) and focus on the effective

potential VGSQGD(O) only.

Here we notice that the effective potential VGSQCD(O) is reduced to Vtter(O) for

N = 1. The contributions from the vector multiplet (Au, A) and the massless adj oint

multiplet (qadi, ad) to the constant background (3) cancel each other. This is because

in four dimensions the two massless multiplets form N = 2 supersymmetry to have the

SU(2)R symmetry, so that we still have N = 1 supersymmetry for the two multiplets

even though we imposed the boundary conditions (2), (12) associated with the U(1)R

symmetry {8j. As we have already studied in the previous section, the vacuum configu

ration for this special case is given by Eq. (27) from the potential Vtter (8) alone. The

SU(N) gauge symmetry is not broken for any values of Nf and /. In order to avoid

the cancellation, one needs to impose the boundary condition associated with the SU(2)R

symmetry in addition to U(1)R.

4.1 SU(2) case

The effective potential (33) seems to have a simple form. It is, however, hard to study

the vacuum configuration of the potential fully analytically. As we will show in the next

subsection, the location of the minima of the potential changes according to the values of

the phase ,8. The only exceptional case is the SU(2) gauge group. The effective potential

for the case of SU(2) becomes

2Naj_2 °° 1
VGQSCD(8)

=

(2(1 — cos(n))

+ 2 cos(2n8) — cos[n(28
— fi)] — cos[n(28 +
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2 2N” 00 1
+ (2 cos(n6) — cos[n((9

—

— cos[n(6 + a)]). (34)

Let us note that the contributions from /q and qq to the potential (34) have the same

forms. This is because 2 and 2 of SU(2) are equivalent. The SU(2) gauge group is special

in this sense.

The potential (34) happens to be invariant under Eqs. (20) and (21), so that the

region given by 6? — 43> 0 is enough to study the potential, and we can apply the formula

(22) to the effective potential. We obtain that

VGQsCD(&)
= 2Nadj 2

((43 — 2)2 + 2462
— 246 +432 +

42)

+
2 x(2N) 432

(662
— 126 +432 +

42). (35)

By solving the extremum condition6VQSCD/ae = 0, we have

TTfd [a0j 1
(1) = lV — I

(36)
N + 2(N’ — 1)

The other solution, which is obtained by taking into account the invariance of the potential

under Eq. (21),
I adj n

6(2) = 2 (‘) F F — (37)
Nf’ + 2(N — 1)

is not distinct from the solution (1)• The squark mass spectra on the solutions are

identical each other due to Eq. (20) (and/or Eq. (21)). There is a doubly degenerate

vacuum state. The vacuum configuration breaks the SU(2) gauge symmetry to U(1)

spontaneously.

The second derivative of the effective potential at the minimum gives the mass of the

adjoint Higgs scalar as we have stated in the section 3. We find that

m (gL)2ãD
= 2g2432(2(Ni -1) + Ne). (38)

No massless state of the adjoint Higgs scalar appears except for (N2, N) = (1, 0),

whose flavor number corresponds to the aforementioned iV = 2 supersymmetry in four

dimensions.

4.2 SU(3) case

Let us next consider the SU(3) gauge group. Even in this case, we find interesting physics

such as the partial gauge symmetry breaking and massless adjoint Higgs scalar, which is

never observed in the models studied in Ref. [9] and the previous section.

In order to see that the vacuum configuration changes according to the values of ,B by

the Scherk-Schwarz mechanism, we first assume that 43 is very small, but nonzero. After

13



finding the vacuum configuration for the small values of 3, we next study the vacuum

configuration for 3 = 7t. The potential (33) for the case of SU(3) is still invariant under

Eq. (20), so that 0 <4? ir is relevant. Then, we compare the configurations for the two

cases.

We may apply the formula (22) to the potential (33) for the small values of 8. We

obtain that

2N°t 2 N1N 1
VGQSCD(O)

=

4?2
— 2r)2 +

48
1 (4?2 + 4212)

N /N—i N—i

+ --(9+ -ir(N-i)O
\i=i i<i<j<N—i i=i

fd 2 N—i N—i N—i

+ [12 ( 8 + ( 8)2)
— 48ir 8 + N(32 + 4212)] (39)

where we have used the result obtained in Ref. [9] for the first term in Eq. (33). The

extremum condition aVGSQCD/DOk(k = 1,. , N — 1) = 0 yields

((; 1) + N) (8k + (O + + ON-i)) = N + (N — i)(N — k). (40)

This is written in the form, denoting d N(N — 1) + N,

21 1 8 1 N—i
02 1 N—2

d
1 2 1 N—3

= Nj : + (N — 1) : ‘ (41)

8N—2 1 2
1 2 8N—1 1 1

where the matrix of the left-hand side in Eq. (41) is the same with the one in Eq. (29).

The inverse of the matrix is given by

N-i -i •..... -1

_1 N-i
: (42)

-1 •. N-i

All the (off-)diagonal elements of the matrix are N — i(—1). The solution to Eq. (40) is,

then, found to be

(43)

with

=

— =

N— 1 (Nd + (N;di (44)

14



These solutions become

(2 Nf 2r’\
(0, 02) = 3K

3(N — 1) + N
(45)

for the SU(3) gauge group, which is of our interest. Except for the case of = 1

the configuration breaks SU(3) to U(1) x U(1). Therefore, for the small values of /3, the

gauge symmetry is maximally broken, which still holds for the SU(N) gauge group. As

an example, the solutions for certain values of Nj and NL are given by

(01,02) = (,)...(N;di,Nd)=(2,1),

— I radj Tfd\ —

— —7r
jgil) iVF ,1vF ) — , £),

= (,) . .. (Np, Nj = (2, 3). (46)

Let us next study the vacuum configuration at /3 = 71. The possible gauge symmetry

breaking patterns are 10

CTT1o\ ff3 ij’ /2 2 ‘

3U U1, “2) — 71, 7T),

SU(3) —+ SU(2) x U(1) (01,82) = (it, 0) + permutations, (47)

U(1) x U(1) ... (, 8) = (.ir, 0) + permutations.

By studying the determinant of the Hessian,

2TI

H
— VGSQCD 48
= aoao

and comparing the potential energy for the given gauge symmetry breaking pattern (47),

we know the position and stability of the global minima of the effective potential. And at

the same time, as we will see later, the matrix gives the information on the mass of the

adjoint Higgs scalar at /3 = it. Depending on the numbers of flavors N’j, N, the gauge

symmetry breaking patters are different. We obtain

0 <N (N — 1) ... (81,82) = o) + permutations,

(N —
<Nd < 9(Ndi

— 1) . . . (8,8) = (yr, 0) + permutations,

9(N—1) <N ...(81,82) (49)

The vacuum configuration at /3 = it corresponding to our example (46) is given by

(8k, 82) = (ii, 0) and its permutations, for which the residual gauge symmetry is SU(2) x

U(1). Therefore, we observe that the vacuum configuration changes according to the

‘°We have confirmed that the configurations given by (8k, 82) = (0,0), (ir/3, rr/3) do not alter our
discussions.

“The configuration for the region 3(N — <fd <N — 1 is not given by (8,, 82) = (ir, 0),
but is close to it and respects U(1) x U(1) symmetry.
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values of the phase 8. The configuration in Eq. (46) starts to change as /3 becomes

large, keeping U(1) x U(1) symmetry, and arrive at (8, 82) = (ir, 0) at /3 = r, where

SU(2) x U(1) symmetry is realized 12•

What is interesting is that the gauge symmetry breaking pattern SU(3) —÷ SU(2) x

U(1) cannot be realized until one considers the softly broken suppersymmetric QCD with

the massless adjoint matter. Actually, as we have studied in the previous section, the

gauge symmetry breaking pattern in the softly broken supersymmetric QCD and Yang-

Mills theory is SU(N) — SU(N) and that in the softly broken supersymmetric gauge

theory with only the massless adjoint matter is SU(N) —+ U(1)N_1 [9]. This partial gauge

symmetry breaking has been pointed out in the nonsupersymmetric gauge theory with

both of the massless adjoint and fundamental matter [15].

If we change the number of the flavors, the vacuum configuration at /3 = ir also

changes. For Njj = (4, 1), the vacuum configuration is given by (0k, 02) =

(2K/3, K/15) from Eq. (45) for the small values of /3, while at /3 = ii, taking account

of Eq. (49), it is given by (0k, 02) = (2ir/3, 0). The configuration at /3 = ir still respects

U(1) x U(1) symmetry though the configurations themselves are different for the two

cases.

The above observation implies that if N’j increases, then, the first term in Eq. (33)

dominates in the effective potential. The vacuum configuration tends to realize the max

imal breaking of SU(3). This is consistent with the result that the dynamics of the

nonintegrable phases for the massless adjoint matter always results the maximal breaking

of SU(N), i.e., U(1)N_l [9]. If we, instead, increase N for fixed Nj, the vacuum con

figuration tends toward the original gauge symmetry. This is because the second term in

Eq. (33) dominates in the effective potential for large number of N, and the potential

has the SU(N) symmetric vacuum as we have studied in the section 3.

Let us finally discuss the massless state of the adjoint Higgs scalar. To this end, we

study the determinant of the Hessian for the configuration (0, 02) = (ir, 0),

detH = (N — (Nadi — 1))(9(N;di — 1) — Ne). (50)

The determinant vanishes for the case N = Nj — 1 or = 9(N — 1) except for

the aforementioned A[ = 2 supersymmetry. The conditions are satisfied without any fine-

tuning of the parameters as long as Nj and Nf are discrete numbers. In our example,

(Np, Nj = (2, 1) satisfies the former condition. The vanishing determinant implies

that the Hessian contains the massless mode, which is nothing but the massless adjoint

Riggs scalar in our approximation ‘. The massless state of the adjoint Riggs scalar has

‘2The gauge symmetry breaking pattern becomes SU(3) -÷ SU(2) for the configuration (8, 82) = (ir, 0)
if we consider the nonzero values of (q), (b).
3This vanishing determinant is modified if we consider the nonzero values of the vacuum expectation

values for the squark fields.
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also been pointed out in the nonsupersymmetric gauge theories [15].

For comparison to the case of /3 = it, let us evaluate the second derivative of the

effective potential (33) for the small values of ,8. The vacuum configuration in this case

is given by Eq. (43) and breaks the SU(N) gauge symmetry to U(1)’’1 spontaneously.

The second derivative is calculated, using (39), as

2Tr GSQCD
(1 VG!9QD

—

_______

yGSQCD — 2 (7’.T(r.T’j fl I 7Tf
rn: — 2T4

iVlij ‘—‘H = /J iViVF 1)
TiV

(JUitJIJj it IJ

where IV[ is given by Eq. (29). The matrix does not have the zero eigenvalue, and the

coefficient never vanishes except for the aforementioned .A1 = 2 supersymmetry.

Therefore, the adjoint Higgs scalar for the small values of /3 is always massive and cannot

be massless.

5 Conclusions and discussion

We have studied the gauge symmetry breaking patterns through the Hosotani mecha

nism (the dynamics of the nonintegrable phases) in the supersymmetric QCD with Nj

numbers of the massless fundamental matter and its generalized version by introducing

numbers of the massless adjoint matter. The supersymmetry is broken softly by the

Scherk-Schwarz mechanism to give the nonvanishing effective potentials for the phases.

We have first studied the softly broken supersymmetric Yang-Mills theory. The

SU(N) gauge symmetry is not broken, and there are N vacuum states given by Eq.

(17). The N vacua are physically equivalent, ZN symmetric and are related each other by

the gauge transformation with Eq. (18). The fields A, A stay in massless on the vacuum

configuration.

By introducing N sets of the massless fundamental matter multiplet, we have ob

tained the softly broken supersymmetric QCD with NL flavors. The SU(N) gauge sym

metry is not broken again in this model, but the vacuum configuration itself depend on

the number of color N. For N = even, there is a single vacuum state, while for N = odd,

there is a doubly degenerate vacuum state. The symmetry transformations with Eqs. (20)

and (21) of the effective potential relate the degenerate two vacua. The Z2 symmetry is

broken by the massless matter multiplet belonging to the (anti)fundamental representa

tion under SU(N). The adjoint Higgs scalar is always massive in the two models except

for the case of the accidental JV = 2 supersymmetry in four dimensions.

We have also discussed the gauge symmetry breaking patterns in the generalized

version of supersymmetric QCD (supersymmetric QCD with the massless adjoint matter).

We have first studied the case of SU(2) and found the vacuum configuration given by Eq.

(36), which breaks the SU(2) gauge symmetry to U(1) spontaneously. There is no massless

state of the adjoint Higgs scalar in this case.
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In order to see how the gauge symmetry is broken through the Hosotani mechanism

for higher rank gauge group, we have considered the SU(3) gauge group and chosen the

appropriate numbers of the flavors as a demonstration. The vacuum configuration changes

according to the values of the supersymmetry breaking parameter /3 by the Scherk-Schwarz

mechanism. We have explicitly shown that the vacuum configurations for small values of

/3 and /3 = r are given by the different configurations, which realize the different gauge

symmetry breaking patterns. It is possible to have the gauge symmetry pattern such as

SU(3) —* SU(2) x U(1) for the choice given by Eq. (46) at /3 = r. This symmetry

breaking pattern is peculiar to the model and is never observed in the models studied in

Ref. [9] and the section 3.

We have investigated the massless state of the adjoint Higgs scalar by studying the

determinant of the Hessian (48) for the small values of /3 and /3 = ir. We have shown

that the massless adjoint Higgs scalar is impossible for the small values of /3. At /3 =

however, we have obtained the condition for the vanishing determinant of the Hessian

without any fine-tuning, which implies the existence of the massless adjoint Higgs scalar

in our approximation. And we have given the explicit example of the parameter choices for

the massless state. It seems that in order to have the massless adjoint Higgs, the partial

gauge symmetry breaking such as SU(3) —+ SU(2) x U(1) is necessary. Hence, the massless

state is specific feature to the generalized version of the softly broken supersymmetric

QCD.

We have also discussed the tendency of gauge symmetry breaking pattern at /3 = r by

varying the number of the flavor in the generalized supersymmetric QCD. If the number

of the massless adjoint matter Nj increases for fixed number of the fundamental matter

N, the gauge symmetry breaking patterns tend toward the maximal breaking of the

original gauge symmetry, say, U(1) x U(1) in our example. On the other hand, if Nj

increases for fixed jj it does toward the vacuum configuration respecting the original

gauge symmetry, (8k, 2) = (br, ir) in our example.

It may be interesting to ask what gauge symmetry pattern is realized if we consider the

higher rank gauge group such as SU(ö) in the generalized supersymmetric QCD. Taking

into account the lessons in this paper, one has to select carefully the numbers of flavors

Nj in order to realize the partial gauge symmetry breaking such as SU(5) —÷

SU(3) x SU(2) x U(1), which may be relevant to the mechanism of GUT symmetry

breaking. We need further studies in order to determine the gauge symmetry breaking

patterns for the higher rank gauge group in the model. This will be reported elsewhere.

We have assumed the gauge coupling g is very small and ignored the 0(g2) terms in

the effective potential. In this approximation there exists the flat direction of the potential

parametrized by the vacuum expectation values of the squark fields, namely (qadi). We

have chosen the trivial “point” corresponding to the vanishing vacuum expectation values

of them, and we have studied the gauge symmetry breaking patterns through the dynamics
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of the nonintegrable phases alone. In order to determine the whole vacuum structure, one

needs to take into account the ignored 0(g2) term including the tree-level potential and

one-loop corrections to the vacuum expectation values of the squark fields.

We have implicitly assumed the mass term for the squarks, from which we have defined

the boundary condition of the squark field associated with the U(1)R symmetry. We have

taken the massless limit in order to study the gauge symmetry breaking patterns. It

is expected that the nonvanishing mass term may also influence the gauge symmetry

breaking [16]. It is important and interesting to study the effect of the mass term on the

Hosotani mechanism.
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