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Abstract

We outline some of the connections which exist between directed

site percolation and tandem queues, and show how these can be (and

have been, although generally not in the language of queueing the

ory) used to explicit shape theorems for certain first and last passage

percolation problems.

1 Directed site percolation in Z2

For (i,j) < (k,l) inZ2, denotebyll,((i,j),(k,l)) the set of increasingpaths

of adjacent points (i,j) = (i,,j,) < (j,j) < (jm,jm) = (k,l). Denote

by f12((i,j), (k, 1)) the set of paths (i,j,), (i + 1,j2),... ,(k,jk_+1) where

1
. . . jk-j+ <1. Let {s(i,j) : (i,j) e Z} be a collection of

iid random variables, and for each y E H, ((i, j), (k, 1)) U H2((i, j), (k, 1)) set

SQy) = (ij)E7 s(i,j). The first and last passage percolation variables we

consider are, for i = 1, 2:

F1((i,j), (k,l)) = nun S(7)
7EH ((,j),(k,1))

‘BRIMS, Hewlett Packard Labs, Stoke Gifford, Bristol BS34 6QZ.
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and

L((i,j),(k.1)) = max SQy).
7EH ((z,j),(k,1))

By Kingman’s subadditive ergodic theorem, the following limits exist almost

surely for x > 0 (possibly infinite):

f(x) =limF((0,0),([xn],n))

and

l(x) = lim L((0, 0), ([xn], n)).

Sufficient conditions for these limits to be finite are given in [2, 5, 7]. Explicit

formulae have only been found in some special cases; these are:

If the s(i, j) are exponentially distributed with parameter 1, then [14]

li(x) = (+ 1)2.

If the s(i, j) are positive geometrically distributed with parameter q,

then [10, 4]

1 (x)_2+l
1 1—q

If the s(i, j) are Bernoulli with parameter p, then [15]

f2(x) = (max{_V(1_q),o})2

and

I (+(‘-q))2-’ forx>q/(1q)
12(X) =

x otherwise.

These are often referred to as ‘hydrodynamic limits’, or ‘shape theorems’,

and are often stated in terms of ‘interface’ or ‘growth’ models.
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Under suitable moment conditions where necessary, these functions have the

following properties (see, for example, [2] for the case of 12).

11 and 12 are non-decreasing and concave;

fi and f2 are non-increasing and convex;

11(Oj = lim li(x)/x = urn 12(x)/z = Es(O,O);
x—*oo x—*oo

f(Oj = urn fi(x)/x = urnf2(x)/x = Es(O,O);
x—*oo X—*CX)

12(Oj = f2(Oi = 0.

One of the (many) big open problems in this area is to determine the last-

passage shape function 1 (or, equivalently, fi) in the case where the s(i,j)

are Bernoulli. This would in turn determine the critical probability for

directed site percolation in Z2, which is presently unknown (it can be veri

fied using concentration inequalities that percolation occurs if, and only if,

l(1) = 2).

Fluctuation theorems for L1 in the cases of geometric and exponential ran

dom variables have been obtained by Johansson [11]. Large deviations re

sults for the same problem are also presented in [11] (lower tails) and by

Seppalainen [17] (upper tails); large deviations results are also given in [15]

for F2 in the Bernoulli case.
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2 Variational formula for average waiting time in

a tandem queueing system

To begin with, consider a series of n single-server queues, each with unlimited

waiting space and first-in-first-out service discipline. Initially the system is

empty and k customers are placed in the first queue. The service time

of the customer i at the queue j is given by s(i,j), and these variables

are assumed to be iid and non-negative. Denote by D(k, n) the departure

time of customer Ic from queue ri. Then the following formula, which first

appeared in [13], holds

D(k, n) = L1 ((1, 1), (k, n)). (1)

Glynn and Whitt [9] use this identity to infer asymptotic results for D(k, n)

from known asymptotics for last passage percolation, which had earlier been

obtained by Rost [14], in the case where the s(i, j) are iid exponentials.

It was recently observed by Seppalainen [16] that an ‘equilibrium’ version

of the identity (1) can be used to go the other way and explicitly com

pute the hydrodynamic limit for the last passage percolation problem using

known results for interacting particle systems. In a queueing context, the

fundamental identity which underpins the approach was first presented in

[18]. (A related formula was presented in [1] in the context of Hammers

ley’s process and the longest increasing subsequence problem.) We assume

the system has been running for an infinitely long time, and customers are

labeled by the integers. For k E Z, let a(k) denote the interarrival time

between customers Ic and Ic + 1, at the first queue; we shall assume these

are iid random variables. As before, s(i, j) denotes the service time of cus
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tomer i at queue j, and again we assume these are iid random variables

with r = Ea(O) > Es(O, 0) = u for stability. Denote by v(i,j) the sojourn

time of customer i at queue j. Szczotka and Kelly [18] obtain the following

identity:

v(0,j) = sup 1), (0,n)) - a(_k)}. (2)

This formula can be used to compute the hydrodynamic limit l in spe

cial cases. Suppose that the interdeparture times from the first queue are

iid with the same law as the interarrival times, and the random variables

v(0, 1),... , v(0, n) are also iid. Suppose that for each T> o we can choose

an interarrival time distribution with Ea(0) = T such that this is the case,

and g(T) := Ev(O, 1) < Do. Then, under suitable moment conditions on

s(0, 0) (see, for example, [2, Theorem 5.3], where it is shown that ‘3 + c

moments suffice’, or [16] and references therein for related results), we can

divide both sides of (2) by n and let n —+ oo to obtain:

g(r) = sup{li(x) — TX}, (3)
x>O

for r > a. This variational formula, which is essentially a Legendre trans

form, can be inverted to get:

li(x) = inf{rx+g(r)}. (4)
T>J

We now present two examples where this ingeneous method can be applied.

Example 1. The first is the case where the s(i,j) are exponentially dis

tributed with mean a and the a(i) are exponentially distributed with mean

‘r, for any r > a. The fact that all of the above is satisfied in this case is a
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consequence of Burke’s theorem (see, for example, Kelly [12]). In this case,

g(r) = u’r/(T — a) and we can apply (4) to obtain Rost’s result [14] that

li(x) =u(+1)2.

Example 2. The second example is a discrete analogue of the first. Take the

s(i, j) to be positive geometrically distributed with parameter q, that is,

P(s = k) = qk_l(1
— q),

for k > 1. Take the a(j) to be geometrically distributed with parameter

p> q. Again, all of the above conditions are satisfied with

Ev(0,1) =

p—q

(see, for example, [19, §4.3]) and we obtain the known result [10, 4] that

—

_______

1—q

3 Variational formula for the average queue-length

in a tandem queueing system

In this section we use an analogue of the identity (2) for the total occupancy

in a series of tandem queues, operating in discrete time, to compute q5 in

special cases. The first of these is the case where the s(i,j) are Bernoulli,

which had previously been solved by Seppalainen [15] using methods which

are related but less direct. The other cases we consider are apparently new,

namely the cases of geometric and exponential distributions; here we exploit

a recent observation due to Bedekar and Azizoglu [3].

6



We consider queues which operate as follows. At time k, a(k) customers

arrive at the queue and at most s(k) customers depart; if q(k) denotes the

number of customers in the queue at time k, then q satisfies the Lindley

recursion:

q(k) = max{q(k — 1) + a(k) — s(k), O}. (5)

The number of departures from the queue at time k is given by

d(k) =a(k)+q(k—1)—q(k). (6)

Note that this queueing system is well defined even if the a’s and s’s are not

integers. As in the previous section we consider a series of n such queues,

with departures from one queue immediately entering the next queue in the

series. Let a(k,j) denote the number of arrivals at queue j at time k, s(k,j)

denote the service available, q(k, j) denote the number of customers in the

queue and d(k, j) denote the number of departures; then

q(k,j) = max{q(lc — 1,j) + a(k,j) — s(k,j),O}, (7)

and

a(k,j) =d(k,j—1) =a(k,j—1)+q(k—1,j—1) —q(k,j—1). (8)

If the s(i,j) are iid, and the a(k, 1) are iid with Ea(O, 1) < Es(O, 1), then

we can set

q(O,j) = sup[a(i,j) - s(i,j)] (9)

and this represents a stable equilibrium. (By convention we take the empty

sum to be zero.) We can now combine (7), (8) and (9) recursively to obtain:

q(O,j) (10)
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As far as I am aware, this formula first appeared in [8]. As before, suppose

that for each ii = Es(0, 1) we can choose the distribution of a(0, 1) such

that Ea(0,1) = i’and the q(0,j) are iid with h(v) = Eq(0,j) < Do. Then

(under suitable moment conditions which can be identified by mimicking

the arguments set out in [2], for example) we can scale the identity (10) and

pass to the limit:

h(v) = sup{vx
- f2(x)}. (11)

x>O

Since this holds for each ii < we can take the Legendre transform to get

f2(x) = sup {vx - h(v)}. (12)
O<ii<i

Let’s ignore technical issues and apply the formula (12) to some examples.

Example 1. Consider the case where the s(i, j) are Bernoulli with parameter

q and the a(i, 1) are Bernoulli with parameter p < q. Then, for each j, the

sequence {a(i,j),j e Z} is iid Bernoulli with parameter p and the q(0,j) are

iid geometric random variables with mean h(p) = p(l — q)/(q
—

p) (see, for

example, [19]). Applying the formula (12) we obtain Seppalainen’s result

that

f2(x) = (max{_ (i -q),0}).

Note that we can immediately deduce from this (by switching l’s and 0’s)

that for s(i,j) Bernoulli with parameter r = 1 —

I (+(1_r))2_1 forx>r/(1-r)
12(X) =

x otherwise.

Example 2. Now suppose that the s(i, j) are iid geometric random variables

with parameter b, that is P(s = k) = b’(1 — b) for k > 0. It was recently
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shown by Bedekar and Azizoglu [3] that if the a(k, 1) are iid geometric with

parameter a < b then (in equilibrium) the departures are also iid geometric

with parameter a, and the q(0, j) are iid with distribution

b—a

P(q = 1) =
b(1-a)

((1- a/b)(a/b)1’ 1 1

Thus, setting ii = a/(1 — a) and ,u = b/(1 — b), we have

h() = Eq(0, 1) =
v:)

and we can apply the formula (12) to obtain

f2(x) =(Vi+x— i +1/it)

for x 1/au and zero otherwise.

Exarriple S. We treat the exponential case as a continuum version of the

geometric case. It follows easily from the result of Bedekar and Azizoglu [3]

that for iid exponential s(i,j) with mean 13 and iid exponential a(k, 1) with

mean a < /3, the departures are iid exponentials with mean a the q(0, j)

are iid exponentials with mean a2/CB — a). Applying (12) in this case we

obtain

f2(x)
13()2
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