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Abstract

In the (2,5) minimal model, the partition function for genus g = 2 Riemann
surfaces is expected to be given by a quintuplet of Siegel modular forms that extend
the Rogers-Ramanujan functions on the torus. Their expansions around the g =
2 boundary components of the moduli space are obtained in terms of standard
modular forms. In the case where a handle of the g = 2 surface is pinched, our
method requires knowledge of the 2-point function of the fundamental lowest-
weight vector in the non-vacuum representation of the Virasoro algebra, for which
we derive a third order ODE.

1 Introduction

1.1 Motivation and outline

Two-dimensional conformal field theories (CFTs) are naturally defined on compact
Riemann surfaces. Every such theory is characterised by its partition function, which
defines a function on the moduli space of such surfaces. Its restriction to genus g = 1
is given by classical modular functions. For the (2, 5) minimal model, one obtains the
sum of the squared norms of the well-known Rogers-Ramanujan functions. These O-
point functions satisfy a second order ODE in the modulus. For g = 2, a corresponding
system of differential equations has been established in [6]. The method relies on the
description of the Riemann surface X as a double covering of the Riemann sphere,

iy =p@), 1)
where p is a polynomial of degree 3 (for genus g = 1) resp. 5 (for g = 2).

A different method for computing N-point functions of CFTs on higher genus Rie-
mann surfaces due to [8] is available, by sewing pairs of lower genus Riemann surfaces
[9]. The case of interest to us in this paper is N = 0.

Fori = 1,2, let (%;, P;) with P; € %; be a non-singular Riemann surface of genus
g; with puncture P;. Let z; be a local coordinate vanishing at P;. We allow arbitrary
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complex coordinate choices. Now excise sufficiently small discs {|z;| < r} and {|z5| < 7}
from Z; and X, respectively, and sew the two remaining surfaces by the condition

2120 = 1? )

on tubular neigbourhoods of the circles {|z;| = r}. This operation yields a non-singular
Riemann surface of genus g; + g» with no punctures.

Instead of sewing two one-punctured surfaces, we may self-sew a single Riemann
surface (the case X; = X,) with two different punctures. This procedure results in a
Riemann surface with one new handle attached to it.

Thus we consider the inverse procedure by which the genus g = 2 surface de-
generates. Such singular surfaces are boundary points of the the moduli space with
Deligne-Mumford compactification. In the limit where 7> \, 0, a cycle on the surface
is pinched. When the cycle is homologous to zero (case discussed in Section 2.1), the
squeezing results in two separate tori with a single puncture on each. In the algebraic
description by eq. (1), three ramification points run together. In the case where the
cycle is non-homologous to zero (addressed in Section 2.2), the above mentioned limit
describes the cut through a handle. In this case two ramification points run together,
yielding a single torus with two punctures. To distinguish the two cases, following [7],
we shall refer to the first and second case as the € and the p formalism, respectively.

Using methods from vertex operator algebras, T. Gilroy and M. Tuite have derived
the first terms of the corresponding expansion for the £ formalism [2]. In this paper, we
give an expansion in terms of modular forms which in particular includes these earlier
results.

One purpose of this paper is to built a bridge between the two approaches, and to
make the subject better accessible to researchers interested in Siegel modular forms.

1.2 Quasi-primary and derivative fields

Let F be the space of holomorphic fields, (equivalently, the space of holomorphic
states). A distinguished element in F' is the Virasoro field

T(z) = Z 2L, .

nez

The constant field 1 corresponds to the vacuum state v, the Virasoro field to Lyv. The
Laurent coefficients define the Virasoro algebra

(L, L] = (m = n)Lypyp + %m(mZ - 1)5m+n,0 P (3)
where ¢ € R is the central charge. (Note the unusual index convention, which is chosen
so that L; = a%)' The kernel of L; is spanned by the vacuum vector v. Ly defines a
grading on F, called the conformal weight. Holomorphic fields in the image of L; will
be referred to as derivative fields, whose space we denote by Fge;. The Shapovalov
metric defines a sesquilinear form on F. For the latter we have L_; = L]. The space
of quasi-primary fields is the orthogonal complement of Fy, w.r.t. that metric, thus the
kernel of L_;. A holomorphic field ¢ is primary iff L,y = 0 for n < 0. Suppose in some
minimal model, W is an irreducible representation of the Virasoro algebra (3). Then
there exists w € W with Low = hw and & is minimal in W. W is spanned by vectors of



the form L, ...L, w with ny € Z, k > 0. The vacuum representation is characterised
by
Lywv=0, Lyw=0, Liv=0.

The generating function of W is the character
Xw = tl‘FWC]LO .

Let Fy be the space of quasi-primary fields in the representation W. If w = v, the
generating function of Fy is

Xw=1=@hw-1).

For other vectors one has
daw=0-gxw.

1.3 The (2,5) minimal model

For every minimal model and for every irreducible representation of the Virasoro al-
gebra, there are two fundamental linear relations between states in that representation.
In the (2, 5) minimal model, the Virasoro algebra has two irreducible representations,
the vacuum respresentation V (with vacuum vector v) and a non-vacuum representa-
tion which we denote by W. The lowest weight vector w in W has conformal weight
h = —1/5. The fundamental identities in V are

L]V =0
3
(L2L2 - §L4)V =0.

Equivalently, the operator product expansion (OPE) of T'(z) ® T(0) has the form

T()®T(0) - #-1 + lz {T(2)+ TO0)}+ iT”(O) +0(2), 4)
Z Z 10

where ¢ = —22/5. The two fundamental identities in W are

(2L2 - 5L1L1)W =0 (5)

(Ls = S5LL)w =0. (6)

To w corresponds a non-holomorphic field ®. For suitable pairs (z,Z) of a holomor-
phic and an antiholomorphic local coordinate the field’s local representative admits a
splitting ®(z,2) = ¢no1(z) ® ¢pgr(2) into holomorphic and antiholomorphic part. The

individual holomorphic part ¢ = ¢pe is a local primary field of conformal weight
h = —1/5. Thus eqgs (5) and (6) are equivalent to the OPE

h 1, 5, 25
T@®¢(0) = 5¢0) + —¢'(0) + 5¢"(0) + T5 2 (0) + OD). )
where h = —1/5. The space of all fields factorises as
F=Fy®F,®Fy®Fy,

where Fy and Fy denote the space of holomorphic fields that correspond to states in
V and W, respectively, and the bar marks the corresponding spaces of antiholomorphic
fields.



For the (2, 5) minimal model, the generating function for the number of holomor-
phic fields of a given weight in Fy and in Fy is the character

> qn +n
Xv =
;(q,q)n
=1+@+¢@ +q" +¢ +2¢° +2¢" +3¢* +3¢° + 49" +4¢" + 64" + ...,
1 6]"2
Xw=¢q > -
= (@ Pn

=q_é (1 Y g+ @+ +2¢" +2¢° +3¢° +3¢" +4¢° +5¢° + 6¢"° + 7¢" + 94 + ..

respectively. (Here (; ), is the g-Pochhammer symbol.)

Propos. 1. To every conformal weight h < 10, there exists at most one quasi-primary
field in Fy, up to normalisation. For h < 8, their respective weight and squared Shapo-
valov norm are given by the following table:

weight  quasi-primary field squared norm
2 Lyv c/2

4 . _

6 (TL4Ly — 2Lg)v 217¢

8 (6LeLy + 2 LyLy — TLg)v  —%22¢

Here c = -22/5.

Proof. The number of quasi-primary fields of conformal weight 4 in Fy is given by the
coefficient of ¢” in the series

w=l=0-9hv-D=+"+3"+q"" +2¢" +¢" +....
The fields and their respective weight are obtained by direct computation. O

Propos. 2. To every conformal weight h < 11, there exists at most one quasi-primary
field in Fy, up to normalisation. For h < 6, their respective weight and squared
Shapovalov norm are given by the following table:

weight quasi-primary field squared norm
_% +2 = —
+4  (52L4 —25LLy)w 928 14y |12
+6  (4LiLs +3L3Ls — & Lo)w 655631% Ilw

Proof. The number of quasi-primary fields of conformal weight 4 in Fy is given by
the coefficient of ¢" in the series

~ 1
ow=U-auw=q(1+¢"+¢* +*+ ¢’ + " + 4" +2¢4" + )
The fields and their respective weight are obtained by direct computation. O

Now we specialise to ¢ = 1. The 0-point functions differ from the corresponding
characters by a factor of ¢~3, where ¢ is identified with the nome ¢**. For the (2, 5)



minimal model on the torus, these are the so-called Rogers-Ramanujan functions

1 (q) =H(g) = q®
,; (@@

2
n

g =Glg) =gy 1.
1%'(g) =G(g) = q ;(m)n

The modular invariant partition function is given by
75U (g) = IH(q)P +|G(q) .

The Virasoro field generates changes of 7, so that ([1], or [5] for a direct proof)

Do(l) = (T). (8)

(2mi)?
As an aside, the OPE (4) yields in addition

11
DAT) = (27’ Es(q)1) .

3600
Here for £ € R,
2 _ L
q(’i 2 E>(q

is the Serre-derivative operator, (defined on modular forms of weight £).

Let p(z|t) and £(z]7) (or p(z) and £(z) when T € H, the upper complex half plane,
is fixed) be the Weierstrass gp-function and the Weierstrass {-function, respectively.
For brevity, we write p;; and ¢;; in place of ¢(z;;) and {(z;;) respectively, where for
Zi,Zj € C, Zij =% — T

Now we calculate the 1-point function of the field ¢ € Fy corresponding to the
lowest weight vector w in W.

Propos. 3. We have
D_15(p) =0

Proof. By the OPE (7),

(T@e0) 1
RO SQ(Z)- 9

Indeed, the regular part must be constant, and is zero by the fact that (¢”(0)) =
0*(p(0)) = 0. Thus

1
——E>(q){¢(0)) .

—<<,o<0>>— 9€<T(z)90(0)> (2 =5

e ~2 4O f ()=

(Here the contour integral is taken along the real period, and f dz=1). O

Thus we have

@ =ng=gu|]a-g)?"

n>1
b1 2y T 98 0 T4 18768
-4 597257 T 1257 T 6257 T 15,6257

Here n(g) is Dedekind n-function.




Corollary 4. Set 7o = 0. We have

T(z)T(22)¢(0 1 6 :
W = %80%2 ~ 3912 (P10 + 920) + 75910920 + Z—5E4 : (10)

Proof. On the one hand, from the OPE (7) for T(z) ® ¢(0) and eq. (9),

h? h
(T @T(W)p(0)) = = p(w) — =’ (w) + terms that are regular forz — 0,
z z

where the occurring even and odd negative power of z can be replaced with p(z) and
z9(2), respectively. The latter expression is not elliptic, however we may use

29’ (W) = 9z = w) = p(w) + O2).
Thus we have
(T @T (w)e(0))
=hp(@Qp(z—w) + (h2 — h)p(2)p(w) + terms that are regular forz — 0.  (11)
On the other hand, by the OPE (4) for T'(z) ® T(w), using eq. (9),

c/2 N h
(z=-w*  (z-w)

3
7 (T @T (w)gp(0)) = 3(0(2) + (W)} + 7570 (1) + Oz = w).

Thus

(T ()T (w)g(0))
= 1—6250"(2 —w) + hp(z - Wp@) + pW)} + (W = @)+ K, (12)

where K is constant in z and w. Comparison of eqs (11) and (12) yields

4 4

1 b bd
hlh+=|= K =- 10h(h—1)—E4s = —E4 .
( +5) 0, (c + 10A( ))90 4= 75k

2 The genus 2 partition function

2.1 Results in the ¢ formalism

Let {¢;}i>0 be an orthonormal basis of Fy with the Shapovalov metric, where ¢y =
1 and Loy; = hap; for i > 0. For any ¢ € Fy, denote by ¥(z) and ¢(2) the local
representative of ¢ w.r.t. a chart of an affine structure [3] on the torus with modulus 7
and 7, respectively. In the respective coordinate z and Z, all 1-point functions on either
torus are constant in position. On a small annulus centered at z = O resp. Z = 0, we glue
the two tori using

zZ=¢



for £ > 0 small. This procedure yields a g = 2 surface with a projective structure.
Let 7 = 2/ and write J/(?) accordin%ly. For a,b € {1,2}, the choice of the Roger-
Ramanujan function (1)5:1 and (1)i: on the torus of modulus 7 and 7, respectively,
gives rise to the 0-point function for the index pair (a, b)

M. 4.0) = D W@ (@) @@y @ (13)

i>0
on the resulting genus g = 2 surface. A fifth solution (l)f,zz(q, g, €) is obtained by
choosing () on either torus.

For i > 0, only the ; that are quasi-primary contribute to the sum. Under the
coordinate change 7 — Z, the 1-point functions transform according to
.o hoh o
Wi(2) = e"Wi2)

so eq. (13) becomes an infinite series in powers of €. We will use the notation

Wiy =W @, W =)@ .
We also write Ey, = Ex(q) and Ezk = E»(@) and likewise for other modular forms.

Theorem 1. Fora = 1,2 we have

> 6
1¥2(g,8,8) = FoFo + —— (2mi)* F, F- £ 27i) 2 F o F,
(1)ea (g.4,8) = FoFo + 7920( mi) FoFy + 445,471,488,000( mi) “FeFg

8

125,067,317, 760,000

(2ri)'°FgFg + 0(e'%)

Here Fy, = Fyr(q) and sz = Fy(§) are given by
0 60
lea, F, := 60g—F =—.Ta, =1,2;
o =(D) 2 954" ° (2m)2< da, @
Fg .= 110E6F0 + 21E4F2 ,
6Fg := 1309EgF + 235E¢F, .

For Fy = H, the expansions

Fy(q) = "% (11+ 13147 + 19147 + 251¢* + 3114 + 7424° + 8624 + 1473¢° + 0(q"))
Pg(q)==q1”6°(341-1,327,699q2-11,366,119q3-49527739q4—-153310159q5-418324358q6+-cnq7ﬂ
Fg(q)::q1”60(649——112,420q—k6,348,609q24—173,671,679q34—1,424,241,669q44—CKq5ﬂ

(and similar expansions for Fy = G) have been found previously by [2] though the
coeflicients have not been identified with standard modular forms.

Proof. According to Proposition 1, we have for a, b € {1, 2},

_ —~ 2 — 7 —
(DA 4. 8) = (1a{1), - ~XD)alThy = - LalaDa(Lala ),

5&8

21 -
_ m(%Lﬁl& + ?L4L4)V)a((6L6L2 + %L4L4)v)b + 0(810)’



We have
(T@TO) = Y 2 HLyLov).

nez

Comparison with

C 71'2

(T@T (@) = 590 +201(T) = T Esc(1)

[4, and references therein] yields:

2 2
(Lalyvy = —S 70Eg(1) + —n*EL(T)

189 15
c 4

(LeLov)y = %ngEgm + @n6E6<T>
Tc 48

(LsLav) = mﬂgEg(l) + @H6E6(T)

‘We conclude that for the other quasi-primary fields listed in Proposition 1, we have

Fs
TL4Ly — 2L, = 2nri)° ——
((TL4L, 6)V)1 = (2mi) 21600
21 . 1309E8F0+235E6F2
6LsLr + —L4Ly — 7L = — 2ni)®
{(6LgL, + 5 LaLa V)1 (2ri) 756000

O

In order to compute the higher order terms (i.e., the one-point function of quasi-
primary fields of conformal weight 4 > 12), N-point functions for N > 3 are required.

Theorem 2. [4] Let S(z1,...,2nv), N € N, be the set of oriented graphs with vertices
Z1,...,2N (Which may or may not be connected), subject to the condition that every
vertex has at most one ingoing and at most one outgoing line, and none is a tadpole
(with the incoming line being identical to the outgoing line). We have

(T@)... T = > F,

reS(zi,...zn)
where forT € S(z1,...,2n),
¢ \Hloops
FI) := (E) 1_[ @ij<® T(Zk)> .
(zizj)el ke,

r

Here (z;,zj) € I is an oriented edge,
Ey :={1 £ j< N|3isuchthat (z;,z;) €T},

and E§; denotes its complement in {1, ...N}. Moreover, foralln € N, (T () ® ... ® T(z,)),
with k; € Ef, fori =1,...,n, is a modular form of weight 2n.



Example 5. For (1) = (1)§=1 with a € {1,2}, and for (T) given by eq. (8), we have

Dy =(1)
(T(2)r =<T)

"
(T@)T (22))r = — —Esc(1)

15
40 147*
(T(@)T(@)T @3, = - %Eﬁc‘(l) + 2—§E4<T>
1,468 8 1,792 6
TET@T T @) = - 75 12’; E2c(1) + Tglzﬁm.

We discuss the fifth solution, which is characterised by properties of ¢.

Theorem 3. We have

_ 13 —
g=2 N _ o5 =\ 2/5 8 4
(), (q,q.8) = ¢ (nm) {1+ —8, 208, 000(271’1) E'E4E,
989

6 ~12 2 8
&) o1 075, sao o Fe T O )}

Proof. By Proposition 2,

= RN 5 . 52 2 ——
WFg.3.8) = &P {e)p) + 5’(9253 X Law)(Lyw)
s 6,125

684 P Ve
+ & 25 565 (BLala = == LowX(LaLs = B Le)w) + O(eh)} .

We list the partial results: By eq. (9) we have

Qmiy* iy

(Law) = =500
Qri) s

Lew) = E

(Lew) = 3024070

Sorting out the terms o« z; 7, in eq. (10) yields:

5
3,024

(LsLsw) = Qi) °Een .

We conclude that for the quasi-primary fields listed in Proposition 2, we have

4 13 _
((52L4 = 25L Ly)w) = — (27rz)4ﬁE477 25

989

—2/5
176.400°67 -

684
((4LyLs + 3L3Ls — gLé)w> = — 2ni)°

The g = 2 partition function is

Z2 = KD+ AP
a,b=1,2

where A € R is such that Z8=2 is modular.



2.2 Results in the p formalism

We consider a torus with modulus 7 and two punctures separated from one another by
a pair of disjoint neighbourhoods with local coordinates z; and z, respectively, which
vanish at the respective puncture. The torus is self-sewed by imposing the condition

U2=p

for some p > 0. For any of the two local coordinates, we define Z = z/p. This gives
rise to local representatives of a field y denoted by ¥(Z). Let {if;}is0 be an orthonormal
basis of Fy with the Shapovalov metric, where ¥ = 1 and Loy; = hiy; for i > 0. For
k > 0, we have

K3t 11 1 1

2 k 2_
c”‘””‘ 3! 7474077207 20,1607

The choice of a Rogers Ramanujan function <1>§=1 on the torus with a € {1,2} gives
rise to a 0-point function

W57 = wiendi@)s (14)
>0
for genus g = 2. Since 3
T =p"™0T@), k>0,
where § = 8/, and d = 3/:, eq. (14) becomes an expansion in powers of p,
WE = Y i i) (1s)
>0

Note that upon setting three ramification points equal to 0, 1, co, respectively, for every
choice of a, either side of the equation depends on three parameters. On the 1.h.s. we
have the remaining three ramification points for genus g = 2. On the r.h.s., we are free
to choose the difference z; — z», the perturbation parameter p and the modulus 7 (or the
remaining ramification point) of the torus.

For the vacuum sector, the first non-trivial term in the series of eq. (15) occurs for
weight h = 6.

Propos. 6. We have

((TL4Lp — 2L6)(21)(TLaLn — 2L6)(22)) = T{12g(z12XT) + f(z12)c(1)} ,

where
303, 662 1,813,300 71,057
f(zi2) = - 151,8319%, + at 480‘,‘2+Tn6 69 — T E2p%,
1,046,828 |, 5768 1, , 1,706 ,, .
e e O Eeppy — —— n'2E2 + —— g2
oa5 1 aRe¥i T TRem TRt et Tk

and

88,643 4 5 294326 o, 4192 ¢, T7.542

g(112)=577659?2_ 45 T L4907, 945 T LePrt 45 49

10



Proof. Using the contour integral method and sorting out the coefficient of z*w* in
(T(z+ z1)T(w + z)) yields

400 14
(Lo(@)Le(e2)) = {52 n°Ef - o 7 °E
380 539 1,100
5 7' E4Eep1) + = E2 9, - = n°Eepi, - 2,310 Eapt, + 5, 77598, |e(1)
88 56 200
+{ﬁ nEsEs + = n*Ejpn — = 1°Eeply = 420 7' Eagy + 1, 26003,KT) .

Sorting out the coefficient of (z — z1)? in (T'(2)T(z1)T ¥ (22)) yields

896

(LaLa(a)Lo(@)) = |5 7°Eg - 5 n°E]
7,520
+288 1 ExEopu + 1,232 1 Ejgh, = =3 n°Esg, = 15,840 7 Eap + 39, 60090, )e(1)
448
= T 104 Eg - 288 1 E2p1 + 960 8 Egpl, + 6, 144 1 Espl, — 18, 14497, KT) .

Sorting out the coefficient of (z — 212w — 22)? in (T @ T () TW)T(22)) yields
4,936 |, g2 134 123

59,535 67 33757 T4

(LaLa(z1)Lala(22)) = {

388 19 860 934
+ — 1B Egp1n + — NSEEW% 27 6E65012 =

s 5 n*Eapt, + 46795, (1)

2,728 710 32 904 ) 2,524 , ) S
+{4’ 55 7 EuEs+ =7 SEipn + =5 T ooty + T mEapls - 58897, KT .
From this follows the claimed equation. O

We list the first few terms in eq. (15).

coefficient of p*/c

«(1)

4P(T) + (Py — ggEan*)c(1)

—6P(T) — 5P3c(1)

12P5(T) + 21 P4c(1)

28P4(T) — 84P5c(1)

51:{(TLsLy = 2L6) (21 )(TLaLy — 2L6)(22)) + T2Ps(T) + 330Pec(1)

AN kWO

where (1) = (1 ﬁzl ,a € {l1,2},and (T) is is given by eq. (8). The P; are polynomials in
@ = 12 defined by

Pi= 9
2 1 4
P,= 9 —§E47T
P = 3_lE 4 _iE 6
3= © 3 4T 135 67T
_ 4 4 4 2 8 6 1 2.8
Py = [ —EE47T50 —@E67T 80+@E47T
— 5 1 4 .3 10 6 42 2
Ps = O — §E47T [4] 189E67T O+ ﬁE 71' 5{)+ 8505E4E67T
— 6 _ 2 4 4 4 6 43 11 72
Ps = ¢° - §E47T O — §E67T O+ 495E n® g{) + 10395E4E67T ©
2 312 16 2 12
s BTt e Eem

11



For N > 2, N-point functions involving ¢(z) can be properly defined for ®(z, 2)
only. On the torus, they may fail to be elliptic in z. In order to deal with this problem,
we assume that z takes on a fixed value, or varies little about a fixed value. We show
below that {(¢(2)¢(0)) satisfies a third order ODE in z, so ®(z, 7) defines a 3-dimensional
representation of the lattice translation group. In order to continue eq. (15) to a =
3,4,5, we must assume that (¢(z1)¢(22)), is translationally invariant. In particular,
(p(2)¢(0)), is an even function of z.

Propos. 7. Let zo = 0 and let 7, be fixed. We have
(T(@)@(2)@(0))*~" = hipiz + 910 — P2 KP(z2)@(0))

5
+{do1 + {12 + Lol (22)(0)) + 5(90”(12%#(0)) .

Proof. By the OPE of T'(1) ® ¢(z) and T (1) ® ¢(0), respectively,

(T(w)p(2)p(0)) = hop(u — 2){(2)p(0)) + {(u — 2){¢’ (2)p(0)) + regular foru — z
= hpu){p(2)(0)) + {(u){p(2)¢’(0)) + regular foru — 0

The Weierstrass zeta function fails to be periodic w.r.t. the torus periods w;, w, but
satisfies

£(z + mwy +nw) — £(2) = 2m g(%) +2n g(%) . mneZ.

Thus the difference (1 — z) — {(u) defines an elliptic function of u, while the sum does
not. It follows that we necessarily have!

(e(2)¢'(0)) = ~(¢' (2)p(0)) .
So
(T(W)p(2)p(0)) = h{p(z — u) + pU) Kp(2)p(0)) + {{(u — 2) = LK (2)p(0))  (16)

+ terms that are regular in u.

In order for (T (#)¢(2)¢(0)) to be elliptic in u, the terms regular in # must actually be
constant. Comparison of the u° terms in line (16) with the OPE (7) for T (1) ® ¢(0)
shows that the terms constant in u are equal to

5
§<<P(Z)90"(0)) — hp(2){@(2)(0)) + {(2)X¢" (2)¢(0))

(¢ is an odd function). Comparison with the terms constant in ¥ which are obtained
from the OPE for 7T'(u) ® ¢(z) shows that

(@ (2)¢(0)) = (p(2)¢” (0)) .

m|
Corollary 8. Let 7o = 0 and 71 = z. The two-point function of ¢ satisfies the ODE
25 d3 g=1 ’ ’
- d—z3<so(z)so(0)> = heo{e(2)¢(0)) + P10(¢"(2)¢(0)) , a7
where h = —1/5.

! Alternatively, this follows from the assumption that {¢(z)¢(0)) is translationally invariant.
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Proof. This follows from comparing the terms in line (16) which are linear in u with
the OPE (7) for T(u) ® ¢(0), using that {’(z) = —p(z) for z € C, and the fact that
@2 (@9(0)) = ~(D(0)¢(2)). o

Using that for k > 0,

| % |12 = 7 5 25 125
k[ Jhk-n-Lyel1,-2, -2 =22
A g( A R N TR T AL

solving eq. (17) will allow to compute the coefficients of p*~1/3/ || ¢ |* in eq. (15).
For example, (L4¢(z1)Li L3¢(z2)) sorts out the coefficient proportional to (z — z1)>(u —
2)7' (v = 22) in (TRQT ()T (M@(z1)¢(22))-

2.3 Outlook

Using the Frobenius Ansatz (¢(2)¢(0)) ~ z%, the differential equation (17) imposes the
condition

25 2
— -I(a-2)= = .
12a/(a Na—-2) 5+a

on a, which produces the values 1/5,2/5 and 12/5. The obvious solutions to the ODE
are, to leading order,

2y, 2P,

but the third exponent remains to be understood.

Remark 9. Solving the ODE (17) is equivalent to solving the ODE

43 d? d
VA (p(x)@ + 075 + 8-+ h(x)) P(x) =0,

where .
bd 2
p(x) = 4(x3 - ?E4x - 2—77T6E6) s
and
6,
f= gp
_3 WP, 9,
100 p 50

__BWP, 33 pp 288
500 p2 250 p 125°

In particular, the ODE has simple poles at the four ramification points.

Proof of the Remark. We change to the algebraic coordinates x = ¢(z) and y = ¢’(2)
with y? = p(x). Let ¢(x) be the local representative of ¢ and let ¥(x) = (¢(x)¢(0)). By
the ODE (17), (¢(2)¢(0)) = y~'>¥(x) lies in the kernel of the operator

Lo, L3 12, d 12
“Pae T 2P a2 T 25 ax T 125
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since di = ¢’L_ Moreover, y_'/° lies in the kernel of the three operators
z dyp

p

dx 10p° dx> 10(10] p dx 10100 p| 10 p2 T p

d 1 P, d2 1 11 p_l 2 p// d3 . 1 231 p_/ 3_£p/p// +p/n
dx 10p° dx* 10 ’

respectively. So Ly YP¥(x)) = y'P(L - %Ll)‘l’(x), where

L = /—+ —
1 )’(P dxz p

d2 . i[p/]Z i . lp/// . E[P'P ~ lp/p//
10 dx 3 p 50 p* 25 p |’
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