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Abstract

In the (2, 5) minimal model, the partition function for genus g = 2 Riemann

surfaces is expected to be given by a quintuplet of Siegel modular forms that extend

the Rogers-Ramanujan functions on the torus. Their expansions around the g =

2 boundary components of the moduli space are obtained in terms of standard

modular forms. In the case where a handle of the g = 2 surface is pinched, our

method requires knowledge of the 2-point function of the fundamental lowest-

weight vector in the non-vacuum representation of the Virasoro algebra, for which

we derive a third order ODE.

1 Introduction

1.1 Motivation and outline

Two-dimensional conformal field theories (CFTs) are naturally defined on compact

Riemann surfaces. Every such theory is characterised by its partition function, which

defines a function on the moduli space of such surfaces. Its restriction to genus g = 1

is given by classical modular functions. For the (2, 5) minimal model, one obtains the

sum of the squared norms of the well-known Rogers-Ramanujan functions. These 0-

point functions satisfy a second order ODE in the modulus. For g = 2, a corresponding

system of differential equations has been established in [6]. The method relies on the

description of the Riemann surface Σ as a double covering of the Riemann sphere,

Σ : y2
= p(x) , (1)

where p is a polynomial of degree 3 (for genus g = 1) resp. 5 (for g = 2).

A different method for computing N-point functions of CFTs on higher genus Rie-

mann surfaces due to [8] is available, by sewing pairs of lower genus Riemann surfaces

[9]. The case of interest to us in this paper is N = 0.

For i = 1, 2, let (Σi, Pi) with Pi ∈ Σi be a non-singular Riemann surface of genus

gi with puncture Pi. Let zi be a local coordinate vanishing at Pi. We allow arbitrary
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complex coordinate choices. Now excise sufficiently small discs {|z1| < r} and {|z2| < r}

from Σ1 and Σ2, respectively, and sew the two remaining surfaces by the condition

z1z2 = r2 (2)

on tubular neigbourhoods of the circles {|zi| = r}. This operation yields a non-singular

Riemann surface of genus g1 + g2 with no punctures.

Instead of sewing two one-punctured surfaces, we may self-sew a single Riemann

surface (the case Σ1 = Σ2) with two different punctures. This procedure results in a

Riemann surface with one new handle attached to it.

Thus we consider the inverse procedure by which the genus g = 2 surface de-

generates. Such singular surfaces are boundary points of the the moduli space with

Deligne-Mumford compactification. In the limit where r2 ց 0, a cycle on the surface

is pinched. When the cycle is homologous to zero (case discussed in Section 2.1), the

squeezing results in two separate tori with a single puncture on each. In the algebraic

description by eq. (1), three ramification points run together. In the case where the

cycle is non-homologous to zero (addressed in Section 2.2), the above mentioned limit

describes the cut through a handle. In this case two ramification points run together,

yielding a single torus with two punctures. To distinguish the two cases, following [7],

we shall refer to the first and second case as the ε and the ρ formalism, respectively.

Using methods from vertex operator algebras, T. Gilroy and M. Tuite have derived

the first terms of the corresponding expansion for the ε formalism [2]. In this paper, we

give an expansion in terms of modular forms which in particular includes these earlier

results.

One purpose of this paper is to built a bridge between the two approaches, and to

make the subject better accessible to researchers interested in Siegel modular forms.

1.2 Quasi-primary and derivative fields

Let F be the space of holomorphic fields, (equivalently, the space of holomorphic

states). A distinguished element in F is the Virasoro field

T (z) =
∑

n∈Z

zn−2Ln .

The constant field 1 corresponds to the vacuum state v, the Virasoro field to L2v. The

Laurent coefficients define the Virasoro algebra

[Ln, Lm] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , (3)

where c ∈ R is the central charge. (Note the unusual index convention, which is chosen

so that L1 =
∂
∂z

). The kernel of L1 is spanned by the vacuum vector v. L0 defines a

grading on F, called the conformal weight. Holomorphic fields in the image of L1 will

be referred to as derivative fields, whose space we denote by Fder. The Shapovalov

metric defines a sesquilinear form on F. For the latter we have L−1 = L∗
1
. The space

of quasi-primary fields is the orthogonal complement of Fder w.r.t. that metric, thus the

kernel of L−1. A holomorphic field ψ is primary iff Lnψ = 0 for n < 0. Suppose in some

minimal model, W is an irreducible representation of the Virasoro algebra (3). Then

there exists w ∈ W with L0w = hw and h is minimal in W. W is spanned by vectors of
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the form Lnk
. . . Ln1

w with nk ∈ Z, k ≥ 0. The vacuum representation is characterised

by

L−1v = 0 , L0v = 0 , L1v = 0 .

The generating function of W is the character

χW := trFW
qL0 .

Let F̃W be the space of quasi-primary fields in the representation W. If w = v, the

generating function of F̃W is

χ̃W = (1 − q)(χW − 1) .

For other vectors one has

χ̃W = (1 − q)χW .

1.3 The (2, 5) minimal model

For every minimal model and for every irreducible representation of the Virasoro al-

gebra, there are two fundamental linear relations between states in that representation.

In the (2, 5) minimal model, the Virasoro algebra has two irreducible representations,

the vacuum respresentation V (with vacuum vector v) and a non-vacuum representa-

tion which we denote by W. The lowest weight vector w in W has conformal weight

h = −1/5. The fundamental identities in V are

L1v = 0

(L2L2 −
3

5
L4)v = 0 .

Equivalently, the operator product expansion (OPE) of T (z) ⊗ T (0) has the form

T (z) ⊗ T (0) 7→
c/2

z4
.1 +

1

z2
{T (z) + T (0)} +

3

10
T ′′(0) + O(z) , (4)

where c = −22/5. The two fundamental identities in W are

(2L2 − 5L1L1)w = 0 (5)

(L3 − 5L2L1)w = 0 . (6)

To w corresponds a non-holomorphic field Φ. For suitable pairs (z, z̄) of a holomor-

phic and an antiholomorphic local coordinate the field’s local representative admits a

splitting Φ(z, z̄) = ϕhol(z) ⊗ ϕhol(z̄) into holomorphic and antiholomorphic part. The

individual holomorphic part ϕ = ϕhol is a local primary field of conformal weight

h = −1/5. Thus eqs (5) and (6) are equivalent to the OPE

T (z) ⊗ ϕ(0) 7→
h

z2
ϕ(0) +

1

z
ϕ′(0) +

5

2
ϕ′′(0) +

25

12
zϕ(3)(0) + O(z2) , (7)

where h = −1/5. The space of all fields factorises as

F = FV ⊗ FV ⊕ FW ⊗ FW ,

where FV and FW denote the space of holomorphic fields that correspond to states in

V and W, respectively, and the bar marks the corresponding spaces of antiholomorphic

fields.
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For the (2, 5) minimal model, the generating function for the number of holomor-

phic fields of a given weight in FV and in FW is the character

χV =

∞∑

n=0

qn2
+n

(q; q)n

= 1 + q2
+ q3
+ q4
+ q5
+ 2q6

+ 2q7
+ 3q8

+ 3q9
+ 4q10

+ 4q11
+ 6q12

+ . . . ,

χW = q−
1
5

∑

n≥0

qn2

(q; q)n

= q−
1
5

(
1 + q + q2

+ q3
+ 2q4

+ 2q5
+ 3q6

+ 3q7
+ 4q8

+ 5q9
+ 6q10

+ 7q11
+ 9q12

+ . . .
)
,

respectively. (Here ( ; )n is the q-Pochhammer symbol.)

Propos. 1. To every conformal weight h ≤ 10, there exists at most one quasi-primary

field in FV , up to normalisation. For h ≤ 8, their respective weight and squared Shapo-

valov norm are given by the following table:

weight quasi-primary field squared norm

2 L2v c/2
4 - -

6 (7L4L2 − 2L6)v 217c

8 (6L6L2 +
21
5

L4L4 − 7L8)v − 8952
5

c

Here c = −22/5.

Proof. The number of quasi-primary fields of conformal weight h in FV is given by the

coefficient of qh in the series

χ̃V − 1 = (1 − q)(χV − 1) = q2
+ q6
+ q8
+ q10

+ 2q12
+ q15

+ . . . .

The fields and their respective weight are obtained by direct computation. �

Propos. 2. To every conformal weight h ≤ 11, there exists at most one quasi-primary

field in FW , up to normalisation. For h < 6, their respective weight and squared

Shapovalov norm are given by the following table:

weight quasi-primary field squared norm

− 1
5

+2 − −

+4 (52L4 − 25L1L3)w 5928
5
‖ w ‖2

+6 (4L1L5 + 3L3L3 −
684
35

L6)w 6539268
6125

‖ w ‖2

Proof. The number of quasi-primary fields of conformal weight h in FW is given by

the coefficient of qh in the series

χ̃W = (1 − q)χW = q−
1
5

(
1 + q4

+ q6
+ q8
+ q9
+ q10

+ q11
+ 2q12

+ . . .
)

The fields and their respective weight are obtained by direct computation. �

Now we specialise to g = 1. The 0-point functions differ from the corresponding

characters by a factor of q−
c

24 , where q is identified with the nome e2πiτ. For the (2, 5)
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minimal model on the torus, these are the so-called Rogers-Ramanujan functions

〈1〉
g=1

1
(q) = H(q) := q

11
60

∑

n≥0

qn2
+n

(q; q)n

,

〈1〉
g=1

2
(q) =G(q) := q−

1
60

∑

n≥0

qn2

(q; q)n

.

The modular invariant partition function is given by

Zg=1(q) = |H(q)|2 + |G(q)|2 .

The Virasoro field generates changes of τ, so that ([1], or [5] for a direct proof)

D0〈1〉 =
1

(2πi)2
〈T 〉 . (8)

As an aside, the OPE (4) yields in addition

D2〈T 〉 =
11

3600
(2πi)2E4(q)〈1〉 .

Here for ℓ ∈ R,

Dℓ = q
∂

∂q
−

ℓ

12
E2(q)

is the Serre-derivative operator, (defined on modular forms of weight ℓ).

Let ℘(z|τ) and ζ(z|τ) (or ℘(z) and ζ(z) when τ ∈ H+, the upper complex half plane,

is fixed) be the Weierstrass ℘-function and the Weierstrass ζ-function, respectively.

For brevity, we write ℘i j and ζi j in place of ℘(zi j) and ζ(zi j) respectively, where for

zi, z j ∈ C, zi j := zi − z j.

Now we calculate the 1-point function of the field ϕ ∈ FW corresponding to the

lowest weight vector w in W.

Propos. 3. We have

D−1/5〈ϕ〉 = 0 .

Proof. By the OPE (7),

〈T (z)ϕ(0)〉

〈ϕ(0)〉
= −

1

5
℘(z) . (9)

Indeed, the regular part must be constant, and is zero by the fact that 〈ϕ′′(0)〉 =

∂2〈ϕ(0)〉 = 0. Thus

q
d

dq
〈ϕ(0)〉 =

∮
〈T (z)ϕ(0)〉

dz

(2πi)2
= −

1

5
〈ϕ(0)〉

∫ 1

0

℘(z)
dz

(2πi)2
= −

1

60
E2(q)〈ϕ(0)〉 .

(Here the contour integral is taken along the real period, and
∮

dz = 1). �

Thus we have

〈ϕ〉 = η(q)−2/5
= q−

1
60

∏

n≥1

(1 − qn)−2/5

= q−
1

60

(
1 +

2

5
q +

17

25
q2
+

98

125
q3
+

714

625
q4
+

18, 768

15, 625
q5
+ . . .

)
.

Here η(q) is Dedekind η-function.
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Corollary 4. Set z0 = 0. We have

〈T (z1)T (z2)ϕ(0)〉

〈ϕ(0)〉
=

c

2
℘2

12 −
1

5
℘12 (℘10 + ℘20) +

6

25
℘10℘20 +

π4

45
E4 . (10)

Proof. On the one hand, from the OPE (7) for T (z) ⊗ ϕ(0) and eq. (9),

η2/5〈T (z)T (w)ϕ(0)〉 =
h2

z2
℘(w) −

h

z
℘′(w) + terms that are regular for z → 0 ,

where the occurring even and odd negative power of z can be replaced with ℘(z) and

z℘(z), respectively. The latter expression is not elliptic, however we may use

−z℘′(w) = ℘(z − w) − ℘(w) + O(z2) .

Thus we have

η2/5〈T (z)T (w)ϕ(0)〉

= h℘(z)℘(z − w) + (h2 − h)℘(z)℘(w) + terms that are regular for z → 0 . (11)

On the other hand, by the OPE (4) for T (z) ⊗ T (w), using eq. (9),

η−2/5〈T (z)T (w)ϕ(0)〉 =
c/2

(z − w)4
+

h

(z − w)2
{℘(z) + ℘(w)} +

3

10
h℘′′(w) + O(z − w) .

Thus

η2/5〈T (z)T (w)ϕ(0)〉

=
c

12
℘′′(z − w) + h℘(z − w){℘(z) + ℘(w)} + (h2 − h)℘(z)℘(w) + K , (12)

where K is constant in z and w. Comparison of eqs (11) and (12) yields

h

(
h +

1

5

)
= 0 , K = −(c + 10h(h − 1))

π4

90
E4 =

π4

45
E4 .

�

2 The genus 2 partition function

2.1 Results in the ε formalism

Let {ψi}i≥0 be an orthonormal basis of FV with the Shapovalov metric, where ψ0 =

1 and L0ψi = hiψi for i ≥ 0. For any ψ ∈ FV , denote by ψ(z) and ψ̂(ẑ) the local

representative of ψ w.r.t. a chart of an affine structure [3] on the torus with modulus τ
and τ̂, respectively. In the respective coordinate z and ẑ, all 1-point functions on either

torus are constant in position. On a small annulus centered at z = 0 resp. ẑ = 0, we glue

the two tori using

z ẑ = ε
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for ε > 0 small. This procedure yields a g = 2 surface with a projective structure.

Let z̃ = ẑ/ε and write ψ̃(z̃) accordingly. For a, b ∈ {1, 2}, the choice of the Roger-

Ramanujan function 〈1〉
g=1
a and 〈1〉

g=1

b
on the torus of modulus τ and τ̂, respectively,

gives rise to the 0-point function for the index pair (a, b)

〈1〉
g=2

a,b
(q, q̂, ε) =

∑

i≥0

〈ψi(z)〉
g=1
a (q) 〈ψ̃i(z̃)〉

g=1

b
(q̂) (13)

on the resulting genus g = 2 surface. A fifth solution 〈1〉
g=2
ϕ (q, q̂, ε) is obtained by

choosing 〈ϕ〉 on either torus.

For i > 0, only the ψi that are quasi-primary contribute to the sum. Under the

coordinate change z̃ 7→ ẑ, the 1-point functions transform according to

〈ψ̃i(z̃)〉 = εhi〈ψ̂i(ẑ)〉 ,

so eq. (13) becomes an infinite series in powers of ε. We will use the notation

〈ψi〉 = 〈ψi〉
g=1(q) , 〈ψi〉

∧

= 〈ψ̂i〉
g=1(q̂) .

We also write E2k = E2k(q) and Ê2k = E2k(q̂) and likewise for other modular forms.

Theorem 1. For a = 1, 2 we have

〈1〉
g=2
a,a (q, q̂, ε) = F0F̂0 +

ε2

7920
(2πi)4F2F̂2 +

ε6

445, 471, 488, 000
(2πi)12F6F̂6

−
ε8

125, 067, 317, 760, 000
(2πi)16F8F̂8 + O(ε10) ,

Here F2k = F2k(q) and F̂2k = F2k(q̂) are given by

F0 = 〈1〉a , F2 := 60q
∂

∂q
F0 =

60

(2πi)2
〈T 〉a , a = 1, 2;

F6 := 110E6F0 + 21E4F2 ,

6F8 := 1309E8F + 235E6F2 .

For F0 = H, the expansions

F2(q) = q11/60
(
11 + 131q2

+ 191q3
+ 251q4

+ 311q5
+ 742q6

+ 862q7
+ 1473q9

+ O(q10)
)

F6(q) = q11/60
(
341 − 1, 327, 699q2 − 11, 366, 119q3 − 49527739q4 − 153310159q5 − 418324358q6

+ O(q7)
)

F8(q) = q11/60
(
649 − 112, 420q+ 6, 348, 609q2

+ 173, 671, 679q3
+ 1, 424, 241, 669q4

+ O(q5)
)

(and similar expansions for F0 = G) have been found previously by [2] though the

coefficients have not been identified with standard modular forms.

Proof. According to Proposition 1, we have for a, b ∈ {1, 2},

〈1〉
g=2

a,b (q, q̂, ε) = 〈1〉a〈1〉
∧

b −
2

c
ε2〈T 〉a〈T 〉

∧

b −
7

31c
ε6〈L4L21〉a〈L4L21〉

∧

b

−
5ε8

8952c
〈(6L6L2 +

21

5
L4L4)v〉a〈(6L6L2 +

21
5

L4L4)v〉

∧

b
+ O(ε10) .
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We have

〈T (z)T (0)〉 =
∑

n∈Z

zn−2〈LnL2v〉 .

Comparison with

〈T (z1)T (z2)〉 =
c

2
℘2

12〈1〉 + 2℘12〈T 〉 −
π2

15
E4c〈1〉

[4, and references therein] yields:

〈L4L2v〉 =
2c

189
π6E6〈1〉 +

2

15
π4E4〈T 〉

〈L6L2v〉 =
c

270
π8E8〈1〉 +

4

189
π6E6〈T 〉

〈L4L4v〉 =
7c

315
π8E8〈1〉 +

48

189
π6E6〈T 〉

We conclude that for the other quasi-primary fields listed in Proposition 1, we have

〈(7L4L2 − 2L6)v〉1 = (2πi)6 F6

21600

〈(6L6L2 +
21

5
L4L4 − 7L8)v〉1 = − (2πi)8 1309E8F0 + 235E6F2

756000
.

�

In order to compute the higher order terms (i.e., the one-point function of quasi-

primary fields of conformal weight h ≥ 12), N-point functions for N ≥ 3 are required.

Theorem 2. [4] Let S (z1, . . . , zN), N ∈ N, be the set of oriented graphs with vertices

z1, . . . , zN (which may or may not be connected), subject to the condition that every

vertex has at most one ingoing and at most one outgoing line, and none is a tadpole

(with the incoming line being identical to the outgoing line). We have

〈T (z1) . . .T (zN)〉g=1
=

∑

Γ∈S (z1,...,zN)

F(Γ) ,

where for Γ ∈ S (z1, . . . , zN),

F(Γ) :=

(
c

2

)♯loops ∏

(zi,z j)∈Γ

℘i j

〈⊗

k∈Ec
N

T (zk)

〉

r

.

Here (zi, z j) ∈ Γ is an oriented edge,

EN := {1 ≤ j ≤ N |∃ i such that (zi, z j) ∈ Γ} ,

and Ec
N

denotes its complement in {1, . . .N}. Moreover, for all n ∈ N,
〈
T (zk1

) ⊗ . . . ⊗ T (zkn
)
〉

r

with ki ∈ Ec
N

for i = 1, . . . , n, is a modular form of weight 2n.
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Example 5. For 〈1〉 = 〈1〉
g=1
a with a ∈ {1, 2}, and for 〈T 〉 given by eq. (8), we have

〈1〉r = 〈1〉

〈T (z)〉r = 〈T 〉

〈T (z1)T (z2)〉r = −
π4

15
E4c〈1〉

〈T (z1)T (z2)T (z3)〉r = −
4π6

45
E6c〈1〉 +

14π4

25
E4〈T 〉

〈T (z1)T (z2)T (z3)T (z4)〉r = −
1, 468π8

10, 125
E2

4c〈1〉 +
1, 792π6

1, 575
E6〈T 〉 .

We discuss the fifth solution, which is characterised by properties of ϕ.

Theorem 3. We have

〈1〉
g=2
ϕ (q, q̂, ε) = ε−1/5 (

η η̂
)−2/5

{
1+

13

8, 208, 000
(2πi)8ε4E4Ê4

+ ε6(2πi)12 989

33, 591, 075, 840
E6Ê6 + O(ε8)

}
.

Proof. By Proposition 2,

〈1〉
g=2
ϕ (q, q̂, ε) = ε−1/5

{
〈ϕ〉〈ϕ〉
∧

+
5 · (52)2

5, 928
ε4〈L4w〉〈L4w〉

∧

+ ε6 6, 125

6, 539, 268
〈(3L3L3 −

684

35
L6)w〉〈(3L3L3 −

684
35

L6)w〉

∧

+ O(ε8)
}
.

We list the partial results: By eq. (9) we have

〈L4w〉 = −
(2πi)4

1200
E4η

−2/5

〈L6w〉 =
(2πi)6

30, 240
E6η

−2/5 .

Sorting out the terms ∝ z1z2 in eq. (10) yields:

〈L3L3w〉 =
5

3, 024
(2πi)6E6η

−2/5 .

We conclude that for the quasi-primary fields listed in Proposition 2, we have

〈(52L4 − 25L1L3)w〉 = − (2πi)4 13

300
E4η

−2/5

〈(4L1L5 + 3L3L3 −
684

35
L6)w〉 = − (2πi)6 989

176, 400
E6η

−2/5 .

�

The g = 2 partition function is

Zg=2
=

∑

a,b=1,2

|〈1〉
g=2

a,b |
2
+ λ|〈1〉

g=2
ϕ |

2 ,

where λ ∈ R is such that Zg=2 is modular.
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2.2 Results in the ρ formalism

We consider a torus with modulus τ and two punctures separated from one another by

a pair of disjoint neighbourhoods with local coordinates z1 and z2 respectively, which

vanish at the respective puncture. The torus is self-sewed by imposing the condition

z1 z2 = ρ

for some ρ > 0. For any of the two local coordinates, we define z̃ = z/ρ. This gives

rise to local representatives of a field ψ denoted by ψ̃(z̃). Let {ψi}i≥0 be an orthonormal

basis of FV with the Shapovalov metric, where ψ0 = 1 and L0ψi = hiψi for i ≥ 0. For

k ≥ 0, we have

2

c
‖ ∂kT ‖2=

k!(k + 3)!

3!
= 1,

1

4
,

1

40
,

1

720
,

1

20, 160
, . . . .

The choice of a Rogers Ramanujan function 〈1〉
g=1
a on the torus with a ∈ {1, 2} gives

rise to a 0-point function

〈1〉
g=2
a =

∑

i≥0

〈ψi(z1)ψ̃i(z̃2)〉
g=1
a . (14)

for genus g = 2. Since

∂̃kT̃ (z̃) = ρ2+k∂kT (z) , k ≥ 0 ,

where ∂ = ∂/∂z and ∂̃ = ∂/∂z̃, eq. (14) becomes an expansion in powers of ρ,

〈1〉
g=2
a =

∑

i≥0

ρhi〈ψi(z1)ψi(z2)〉
g=1
a . (15)

Note that upon setting three ramification points equal to 0, 1,∞, respectively, for every

choice of a, either side of the equation depends on three parameters. On the l.h.s. we

have the remaining three ramification points for genus g = 2. On the r.h.s., we are free

to choose the difference z1 − z2, the perturbation parameter ρ and the modulus τ (or the

remaining ramification point) of the torus.

For the vacuum sector, the first non-trivial term in the series of eq. (15) occurs for

weight h = 6.

Propos. 6. We have

〈(7L4L2 − 2L6)(z1)(7L4L2 − 2L6)(z2)〉 = 7 {12g(z12)〈T 〉 + f (z12)c〈1〉} ,

where

f (z12) = − 151, 831℘6
12 +

303, 662

5
π4E4℘

4
12 +

1, 813, 300

189
π6E6℘

3
12 −

71, 057

15
π8E2

4℘
2
12

−
1, 046, 828

945
π10E4E6℘12 −

5, 768

135
π12E2

6 +
1, 706

125
π12E3

4 ,

and

g(z12) = 5, 765℘5
12−

88, 643

45
π4E4℘

3
12−

294, 326

945
π6E6℘

2
12+

4, 192

45
π8E2

4℘12+
77, 542

4725
π10E4E6.
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Proof. Using the contour integral method and sorting out the coefficient of z4w4 in

〈T (z + z1)T (w + z2)〉 yields

〈L6(z1)L6(z2)〉 =
{400

243
π12E2

6 −
14

27
π12E3

4

+
380

9
π10E4E6℘12 +

539

3
π8E2

4℘
2
12 −

1, 100

3
π6E6℘

3
12 − 2, 310 π4E4℘

4
12 + 5, 775℘6

12

}
c〈1〉

+

{88

27
π10E4E6 +

56

3
π8E2

4℘12 −
200

3
π6E6℘

3
12 − 420 π4E4℘

3
12 + 1, 260℘5

12

}
〈T 〉 .

Sorting out the coefficient of (z − z1)2 in 〈T (z)T (z1)T (4)(z2)〉 yields

〈L4L2(z1)L6(z2)〉 =
{896

81
π12E2

6 −
32

9
π12E3

4

+ 288 π10E4E6℘12 + 1, 232 π8E2
4℘

2
12 −

7, 520

3
π6E6℘

3
12 − 15, 840 π4E4℘

4
12 + 39, 600℘6

12

}
c〈1〉

+

{
−

448

9
π10E4E6 − 288 π8E2

4℘12 + 960 π6E6℘
2
12 + 6, 144 π4E4℘

3
12 − 18, 144℘5

12

}
〈T 〉 .

Sorting out the coefficient of (z − z1)2(w − z2)2 in 〈T (z)T (z1)T (w)T (z2)〉 yields

〈L4L2(z1)L4L2(z2)〉 =
{ 4, 936

59, 535
π12 E2

6 −
134

3, 375
π12E3

4

+
388

135
π10E4E6℘12 +

19

15
π8E2

4℘
2
12 −

860

27
π6E6℘

3
12 −

934

5
π4E4℘

4
12 + 467℘6

12

}
c〈1〉

+

{2, 728

4, 725
π10E4E6 +

32

5
π8E2

4℘12 +
904

45
π6E6℘

2
12 +

2, 524

15
π4E4℘

3
12 − 588℘5

12

}
〈T 〉 .

From this follows the claimed equation. �

We list the first few terms in eq. (15).

k coefficient of ρk/c

0 c〈1〉

2 4P1〈T 〉 + (P2 −
1
90

E4π
4)c〈1〉

3 −6P2〈T 〉 − 5P3c〈1〉

4 12P3〈T 〉 + 21P4c〈1〉

5 28P4〈T 〉 − 84P5c〈1〉

6 1
217
〈(7L4L2 − 2L6)(z1)(7L4L2 − 2L6)(z2)〉 + 72P5〈T 〉 + 330P6c〈1〉

where 〈1〉 = 〈1〉
g=1
a , a ∈ {1, 2}, and 〈T 〉 is is given by eq. (8). The Pi are polynomials in

℘ = ℘12 defined by

P1 = ℘

P2 = ℘2 − 1
9
E4π

4

P3 = ℘3 − 1
5
E4π

4℘ − 4
135

E6π
6

P4 = ℘4 − 4
15

E4π
4℘2 − 8

189
E6π

6℘ + 1
135

E2
4
π8

P5 = ℘5 − 1
3
E4π

4℘3 − 10
189

E6π
6℘2
+

2
135

E2
4
π8℘ + 22

8,505
E4E6π

10

P6 = ℘6 − 2
5
E4π

4℘4 − 4
63

E6π
6℘3
+

11
495

E2
4
π8℘2

+
76

10,395
E4E6π

10℘

− 2
22,275

E3
4
π12
+

16
56,133

E2
6
π12 .
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For N ≥ 2, N-point functions involving ϕ(z) can be properly defined for Φ(z, z̄)

only. On the torus, they may fail to be elliptic in z. In order to deal with this problem,

we assume that z takes on a fixed value, or varies little about a fixed value. We show

below that 〈ϕ(z)ϕ(0)〉 satisfies a third order ODE in z, soΦ(z, z̄) defines a 3-dimensional

representation of the lattice translation group. In order to continue eq. (15) to a =

3, 4, 5, we must assume that 〈ϕ(z1)ϕ(z2)〉a is translationally invariant. In particular,

〈ϕ(z)ϕ(0)〉a is an even function of z.

Propos. 7. Let z0 = 0 and let z2 be fixed. We have

〈T (z1)ϕ(z2)ϕ(0)〉g=1
= h{℘12 + ℘10 − ℘20}〈ϕ(z2)ϕ(0)〉

+ {ζ01 + ζ12 + ζ20}〈ϕ
′(z2)ϕ(0)〉 +

5

2
〈ϕ′′(z2)ϕ(0)〉 .

Proof. By the OPE of T (u) ⊗ ϕ(z) and T (u) ⊗ ϕ(0), respectively,

〈T (u)ϕ(z)ϕ(0)〉 = h℘(u − z)〈ϕ(z)ϕ(0)〉 + ζ(u − z)〈ϕ′(z)ϕ(0)〉 + regular for u → z

= h℘(u)〈ϕ(z)ϕ(0)〉 + ζ(u)〈ϕ(z)ϕ′(0)〉 + regular for u → 0

The Weierstrass zeta function fails to be periodic w.r.t. the torus periods ω1, ω2 but

satisfies

ζ(z + mω1 + nω2) − ζ(z) = 2m ζ(
ω1

2
) + 2n ζ(

ω2

2
) , m, n ∈ Z .

Thus the difference ζ(u− z) − ζ(u) defines an elliptic function of u, while the sum does

not. It follows that we necessarily have1

〈ϕ(z)ϕ′(0)〉 = −〈ϕ′(z)ϕ(0)〉 .

So

〈T (u)ϕ(z)ϕ(0)〉 = h{℘(z − u) + ℘(u)}〈ϕ(z)ϕ(0)〉 + {ζ(u − z) − ζ(u)}〈ϕ′(z)ϕ(0)〉 (16)

+ terms that are regular in u.

In order for 〈T (u)ϕ(z)ϕ(0)〉 to be elliptic in u, the terms regular in u must actually be

constant. Comparison of the u0 terms in line (16) with the OPE (7) for T (u) ⊗ ϕ(0)

shows that the terms constant in u are equal to

5

2
〈ϕ(z)ϕ′′(0)〉 − h℘(z)〈ϕ(z)ϕ(0)〉 + ζ(z)〈ϕ′(z)ϕ(0)〉

(ζ is an odd function). Comparison with the terms constant in u which are obtained

from the OPE for T (u) ⊗ ϕ(z) shows that

〈ϕ′′(z)ϕ(0)〉 = 〈ϕ(z)ϕ′′(0)〉 .

�

Corollary 8. Let z0 = 0 and z1 = z. The two-point function of ϕ satisfies the ODE

25

12

d3

dz3
〈ϕ(z)ϕ(0)〉g=1

= h℘′10〈ϕ(z)ϕ(0)〉 + ℘10〈ϕ
′(z)ϕ(0)〉 , (17)

where h = −1/5.

1Alternatively, this follows from the assumption that 〈ϕ(z)ϕ(0)〉 is translationally invariant.

12



Proof. This follows from comparing the terms in line (16) which are linear in u with

the OPE (7) for T (u) ⊗ ϕ(0), using that ζ′(z) = −℘(z) for z ∈ C, and the fact that

〈ϕ(3)(z)ϕ(0)〉 = −〈ϕ(3)(0)ϕ(z)〉. �

Using that for k ≥ 0,

‖ ∂kϕ ‖2

‖ ϕ ‖2
= k!

k−1∏

n=0

(k − n −
7

5
) ∈

{
1,−

5

2
,−

25

12
,−

125

288
. . .

}
,

solving eq. (17) will allow to compute the coefficients of ρk−1/5/ ‖ ϕ ‖2 in eq. (15).

For example, 〈L4ϕ(z1)L1L3ϕ(z2)〉 sorts out the coefficient proportional to (z − z1)2(u −

z2)−1(v − z2) in 〈T (z)T (u)T (v)ϕ(z1)ϕ(z2)〉.

2.3 Outlook

Using the Frobenius Ansatz 〈ϕ(z)ϕ(0)〉 ∼ zα, the differential equation (17) imposes the

condition
25

12
α(α − 1)(α − 2) =

2

5
+ α .

on α, which produces the values 1/5, 2/5 and 12/5. The obvious solutions to the ODE

are, to leading order,

z1/5〈ϕ〉 , z2/5〈1〉 ,

but the third exponent remains to be understood.

Remark 9. Solving the ODE (17) is equivalent to solving the ODE

y4/5

(
p(x)

d3

dx3
+ f (x)

d2

dx2
+ g(x)

d

dx
+ h(x)

)
Ψ(x) = 0 ,

where

p(x) = 4

(
x3 −

π4

3
E4x −

2

27
π6E6

)
,

and

f =
6

5
p′

g =
3

100

[p′]2

p
+

9

50
p′′

h = −
33

500

[p′]3

p2
+

33

250

p′p′′

p
−

288

125
.

In particular, the ODE has simple poles at the four ramification points.

Proof of the Remark. We change to the algebraic coordinates x = ℘(z) and y = ℘′(z)

with y2
= p(x). Let ϕ̌(x) be the local representative of ϕ and let Ψ(x) = 〈ϕ̌(x)ϕ(0)〉. By

the ODE (17), 〈ϕ(z)ϕ(0)〉 = y−1/5
Ψ(x) lies in the kernel of the operator

L = y

(
p

d3

dx3
+

3

2
p′

d2

dx2
+

12

25
p′′

d

dx
+

12

125

)
,
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since d
dz
= ℘′ d

d℘
. Moreover, y−1/5 lies in the kernel of the three operators

d

dx
+

1

10

p′

p
,

d2

dx2
−

1

10


11

10

[
p′

p

]2

−
p′′

p

 ,
d3

dx3
+

1

10


231

100

[
p′

p

]3

−
33

10

p′p′′

p2
+

p′′′

p

 ,

respectively. So L(y−1/5
Ψ(x)) = y−1/5(L − 3

10
L1)Ψ(x), where

L1 = y

(
p′

d2

dx2
+

(
p′′ −

1

10

[p′]2

p

)
d

dx
+

1

3

p′′′

p
+

11

50

[p′]3

p2
−

11

25

p′p′′

p

)
.

�
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