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Abstract

We study spherically symmetric solutions of an SO(5) Chern-Simons–Yang-Mills-Higgs system in 3 + 1
dimensions. The Chern-Simons densities are defined in terms of both Yang-Mills fields and a 5-component
isomultiplet Higgs. The SO(3) × SO(2) solutions are analysed in a systematic way, by employing numerical
methods. These finite energy configurations possess both electric and magnetic global charges, differing rad-
ically, however, from Julia-Zee dyons. When two or more of these Chern-Simons densities are present in the
Lagrangian, solutions with vanishing electric charge but nonvanishing electrostatic potential may exist.

1 Introduction

The ’usual’ Chern-Simons (CS) densities are defined in all odd dimensions [1], both Euclidean or Minkowskian.
This is because their definition relies on that of the Chern-Pontryagin (CP) density in one dimension higher,
which is an even dimension. Recently however, ’new’ Chern-Simons(–Higgs) [2, 3] densities in all odd and even
dimensions have been proposed. The aim of the present work is to employ such Chern-Simons–Higgs (CSH) terms
to construct solitons.

As a first application of these new CSH terms, we carry out this task in (3 + 1)-dimensional Minkowski
spacetime. This choice offers a novel example of the use of a Chern-Simons density in even spacetime dimensions,
and secondly, 3 + 1 is the most relevant physical dimension. In addition to the magnetic the magnetic flux, the
presence of a Chern-Simons terms results (as usual) in an electric flux.

Ever since the work of [4] on topologically massive SU(2) Yang–Mills (YM) theory in 2+1 dimensions, systems
in 2p+1 dimensions featuring a Chern-Simons term have been studied. Some of these are (2+1)-dimensional Higgs
models [5, 6, 7] supporting Abelian and non-Abelian vortices, while others, like [8], turn out to be truncations of
gauged supergravities [9].

Before stating the definitions of the Chern-Simons–Higgs (CSH) densities in 3 + 1 dimensions, to be employed
in the present work, we review the general definition of these new Chern-Simons densities for the sake of being
self-contained here. The definition of a Chern-Simons density ΩCS in a (2n+1)-dimensional spacetime is extracted
from the (2n+ 2)-dimensional Chern-Pontryagin densitiy ΩCP, which is by construction a total divergence

ΩCP[F ] = ∇ ·Ω[A,F ] , (1)
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A and F being the Yang-Mills connection and curvature, respectively.
The CS density is then defined as the (2n+ 2)−th component Ω2n+2, of the (2n+ 2)-component density Ω,

ΩCS[A,F ]
def
= Ω2n+2[A,F ] , (2)

in one dimension lower, namely, in 2n+ 1 dimensions. These CS densities, are gauge variant.
Since the CP densities ΩCP are defined only in even, 2n+ 2 dimensions, it follows that the corresponding CS

densities ΩCS are defined only in odd, (2n+ 1)-dimensional spacetimes.
To define Chern-Simons densities in even dimensional spacetimes, it would be natural to extract these from

the analogues of the Chern-Pontryagin densities defined in odd dimensions, which are also total divergence. These
new CP densities Ω̂CP, are by construction [2, 3] also total divergence

Ω̂CP = ∇ · Ω̂ . (3)

Such densities can be constructed by subjecting the CP density in some higher even dimension, to dimensional
descent to some (lower) residual dimension, say D + 2, which can be odd 1.

The reduced CP densities Ω̂CP in D + 2 dimensions, which are reviewed in [2], in addition to the curvature
F , depend also on a Higgs field Φ resulting from the breakdown of symmetry in the dimensional descent, as well
as on its covariant derivative DΦ. Like the CP density in the higher dimensions, they are also gauge invariant.
Their most remarkable property is that the density Ω̂ in Eq. (3) is gauge covariant in odd, and gauge variant in
even, (residual) dimensions,

Ω̂CP[F,DΦ,Φ2] = ∇ · Ω̂[F,DΦ,Φ2] , for odd D + 2 , (4)

Ω̂CP[F,DΦ,Φ2] = ∇ · Ω̂[A,F,DΦ,Φ2] , for even D + 2 . (5)

The definitions of the new Chern-Simons densities now follow naturally, as the (D + 2)-th components of Ω̂ in
Eqs. (4) and (5), respectively

Ω̂CS
def
= Ω̂D+2[F,DΦ,Φ2] , for even D + 1 , (6)

Ω̂CS
def
= Ω̂D+2[A,F,DΦ,Φ2] , for odd D + 1 , (7)

in a (D + 1)-dimensional spacetime.
In the present work, our attention is restricted to the case of D = 3, namely, to the case of four-dimensional

Minkowski spacetime, where we will construct static, spherically symmetric, solitons of a Yang-Mills–Higgs system
featuring (new) Chern-Simons terms, which carry both electric and magnetic global charges. The new CS terms
being those extracted from the dimensionally descended (from some higher even dimensions) Chern-Pontryagin
density in residual 3 + 2(= D + 2) dimensions, the gauge group and the multiplicity of the Higgs field are fixed.
This is explained in detail in Ref. [2].

In this preliminary work, the multiplet structure in the 3 + 1 dimensional model is chosen to be the most
economical one consistent with the possibility of constructing soliton solutions in these dimensions, and, such that
the “new Chern-Simons” density is nonvanishing. In the present work the descent resulting in the CS density in
3+1 dimensions starts from the n-th Chern-Pontryagin density in 2n dimensions and ends in D+2 = 5 dimensions,
for n = 3, 4 and D = 3. Following Ref. [2], the (residual) YM field Fµν = (Fij , Fi0) and the Higgs field Φ are both
4× 4 antihermitian matrices which we choose to take their values in the chiral Dirac representation of SO(6).

This most economical choice is

Fµν = Fαβ
µν Σαβ , (8)

Φ = φα Σα6 , α = i, 4, 5; i = 1, 2, 3 , (9)

(Σαβ ,Σα6) being the 4×4 chiral representation matrices of SO(6). The spin matrices Σµν = (Σαβ ,Σα6) used here
are

Σµν = −1

4
Σ[µ Σ̃ν] , (10)

1This descent does not have to be down to an odd residual dimension, D + 2, as is the case in the present work. The residual
dimension D + 2 can just as well be even.
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with
Σi = −Σ̃i = iγi , Σ4 = −Σ̃4 = iγ4 , Σ5 = −Σ̃5 = iγ5 , Σ6 = +Σ̃6 = 1I,

defined in terms of the usual Dirac gamma matrices (γi, γ4, γ5), i = 1, 2, 3.
There is a tower of dynamical CS densities on (3 + 1)-dimensional Minkowski spacetime that one can employ.

Each of these is arrived at via the dimensional reduction of the n−th Chern-Pontryagin density on K5 × S2n−5,
n ≥ 3. The CS density on Minkowski M4 is then defined as the 5−th component of the density on the residual
space K5, in one dimension lower. Here, we display the first two members of this tower, pertaining to n = 3 and
n = 4, respectively,

Ω
(1)
CS = i ǫµνρσTrΦFµν Fρσ , (11)

Ω
(2)
CS = i ǫµνρσTr

[

Φ

(

η2 FµνFρσ +
2

9
Φ2 FµνFρσ +

1

9
FµνΦ

2Fρσ

)

−2

9
(ΦDµΦDνΦ−DµΦΦDνΦ+DµΦDνΦΦ)Fρσ

]

, (12)

where ǫµνρσ is the Levi-Civita tensor in Minkowski spacetime.
Inasfar as Eqs. (11) and (12) present CP violating dynamics, the (Higgs) scalar may be interpreted as an

axion [10, 11] like scalar.

2 The models and field equations

The models considered will feature the Chern-Simons terms Ω
(1)
CS and Ω

(2)
CS, Eqs. (11)-(12), augmented by the

Yang-Mills-Higgs (YMH) sector. As explained in the Introduction of this preliminary work, we will choose the
YMH sector to be the usual one consisting of the traces of squares of the SO(5) YM curvature, Eq. (8), and the
covariant derivative of the Higgs field, Eq. (9), plus the usual quartic Higgs potential.

The Lagrangian densities we will consider are

L = LYMH + κ1 Ω
(1)
CS + κ2 Ω

(2)
CS , (13)

where Ω
(1)
CS and Ω

(2)
CS are given by Eq. (11) and Eq. (12), respectively, and,

LYMH = Tr

[

1

4
F 2
µν − 1

2
DµΦ

2 − λ

2
(Φ2 + η21I)2

]

, (14)

where Dµ = ∂µ + [Aµ, ·]. Here κ1 and κ2 represent the corresponding CS coupling constants, λ is the Higgs
potential coupling constant, and η denotes the vacuum expectation value of the Higgs field.

We will seek solutions with both magnetic and electric global charges for the systems Eq. (13), to which we
will loosely refer as dyons in the following. But what we have proposed here is quite different from the Julia-Zee
(JZ) dyon [12]. In the latter, the electric component A0 of the gauge connection and the Higgs field Φ both take
their values in the algebra of the same gauge group, SO(3), while here A0 and Φ have entirely different multiplet
structures as implied in Eqs. (8)-(9). It should be emphasised that the main difference is not that here we have
the gauge group SO(5) instead of SO(3) of the JZ dyon, but rather that the electric component of the gauge
connection results from the Chern-Simons dynamics exploited in [5, 6].

The equations of motion resulting from the variations of the Lagrangian with respect to the YM potential and
the Higgs field are

DµF
µν + [Φ, DνΦ] = 2 i κ1 ε

µνρσ {Fρσ, DµΦ} , (15)

DµD
µΦ− λ{Φ, (Φ2 + η21I)} = i κ1 ε

µνρσ Fµν Fρσ , (16)

respectively. { , } denotes the anticommutator. These equations, Eqs. (15) and (16), are written only for the
Lagrangian with κ2 = 0 in Eq. (13). This is because the expressions for the right-hand sides of the corresponding
equations for κ2 6= 0 are very cumbersome.

3



It is clear from the Gauss-Law equation, namely for the ν = 0 component of Eq. (15), that when the Chern-
Simons coupling constants vanishes, so will the component A0 of the gauge connection, resulting in a vanishing
electric charge. This is a typical feature of Chern-Simons-Higgs dyons [5, 6, 7].

The electric field here, Ei
def.
= Fi0 is in general a non-Abelian quantity, leading to the definition of the flux.

This definition is equivalent (up to a sign) to the general definition of electric charge for non-Abelian fields [13, 14]
computed as

QYM =
1

4π

∮

S∞

[

−
3

∑

i=1

Tr(F 2
i0)

]1/2

dS , (17)

Likewise, our definition of the non-Abelian magnetic charge is given by

P YM =
1

4π

∮

S∞

[

−
3

∑

i=1

Tr(F̃ 2
i0)

]1/2

dS , (18)

where F̃ is the Hodge dual of the gauge field.
It should be emphasised here that the magnetic charge Eq. (18) is a global charge, and not a topological charge.

The reason is that our Higgs multiplet here is a 5-component isovector, rather than the 3-component isovector
in the case of the usual t’Hooft-Polyakov monopole. Indeed, unlike the monopole, of the Georgi-Glashow model
in which the gauge field breaks down to an Abelian field due to the symmetry breaking mechanism, here, our
definition of the magnetic flux in Eq. (18) does not involve the Higgs field.

The monopole charge of the Georgi-Glashow model is

µ =
1

4π
εijk

∫

S∞

TrΦFij dSk , (19)

which presents a lower bound on the energy integral. This is not the case with the solutions in this work.
Nothwistanding, one might refer to these solutions loosely as dyons, understanding that in the soliton literature
the word dyon normally implies topological stability for the magnetic sector.

3 Imposition of spherical symmetry and one dimensional subsystems

3.1 The general case

The static spherically symmetric Ansatz for the Higgs field Φ and the YM connection Aµ = (A0, Ai) reads

Φ = 2η
(

φM ΣM6 + φ6 x̂j Σj6

)

, (20)

A0 = −(εχ)M x̂j ΣjM − χ6 Σ45 , (21)

Ai =

(

ξ6 + 1

r

)

Σij x̂j +

[(

ξM

r

)

(δij − x̂ix̂j) + (εAr)
M x̂ix̂j

]

ΣjM +

+A6
r x̂i Σ45 , (22)

in which i, j = 1, 2, 3 and M = 4, 5. We can label the functions (φM , φ6) ≡ ~φ, (χM , χ6) ≡ ~χ, (ξM , ξ6) ≡ ~ξ and

(AM
r , A6

r) ≡ ~Ar like four isotriplets ~φ, ~χ, ~ξ and ~Ar, all depending on the 3-dimensional spacelike radial variable r.
ε is the two dimensional Levi-Civita symbol.

The parametrization used in the Ansatz, Eqs. (20)-(22), results in a gauge covariant expression for the YM
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curvature Fµν = (Fij , Fi0) and the gauge covariant derivative of the Higgs DµΦ = (DiΦ, D0Φ)

Fij =
1

r2

(

|~ξ|2 − 1
)

Σij +
1

r

[

Drξ
6 +

1

r

(

|~ξ|2 − 1
)

]

x̂[iΣj]kx̂k +
1

r
Drξ

M x̂[iΣj]M ,

Fi0 = −1

r
ξM (εχ)M Σij x̂j +

1

r

[

ξ6(εχ)M − χ6(εξ)M
]

ΣiM

−
{

(εDrχ)
M +

1

r

[

ξ6(εχ)M − χ6(εφ)M
]

}

x̂ix̂jΣjM −Drχ
6 x̂iΣ45 , (23)

(2η)−1DiΦ = −1

r
(~ξ · ~φ)(δij − x̂ix̂j)Σj6 +Drφ

M x̂i ΣM6 +Drφ
6 x̂ix̂j Σj6 ,

(2η)−1D0Φ = φM (εχ)M x̂j Σj6 −
[

φ6(εχ)M − χ6(εφ)M
]

ΣM6 ,

in which we have used the notation

Drξ
a = ∂rξ

a + εabcAb
r ξ

c , Drχ
a = ∂rχ

a + εabcAb
r χ

c , Drφ
a = ∂rφ

a + εabcAb
rφ

c ,

as the SO(3) covariant derivatives of the three triplets ~ξ, ~χ and ~φ with respect to the one dimensional, and hence

trivial, SO(3) gauge connection ~Ar.
Substituting Eq. (20) and Eqs. (23) in the CS densities, Eqs. (11)-(12), the resulting reduced one dimensional

CS Lagrangian for the first CS term, Eq. (11), is

ω
(1)
CS = −8κ1 η

[

(|~ξ|2 − 1) ~φ ·Dr~χ− 2(~ξ × ~χ) · (~φ×Dr
~ξ)
]

, (24)

and that for the second CS term, Eq. (12), is

ω(2) = −16

3
κ2η

3

( |~φ|2 − 3

2

[

(|~ξ|2 − 1) ~φ ·Dr~χ− 2(~ξ × ~χ) · (~φ ×Dr
~ξ)
]

−
[

(|~ξ|2 − 1)(~φ× ~χ) · (~φ ×Dr
~φ)

−(~ξ · ~φ)2 ~φ ·Dr~χ+ 2(~ξ · ~φ)
(

(~φ× ~χ) · (~φ×Dr
~ξ) + (~ξ × ~χ) · (~φ×Dr

~φ)
)

])

, (25)

where ω
(i)
CS = κir

2Ω
(i)
CS.

For completness, we give also the expression of the corresponding expression of the reduced YMH static
Lagrangian (LYMH = r2LYMH, Eq. (14)):

LYMH = −1

2

(

2 |Dr
~ξ|2 + 1

r2

(

|~ξ|2 − 1
)2

)

+
1

2

(

r2 |Dr~χ|2 + 2 |(~ξ × ~χ)|2
)

+2 η2 r2
(

|(~φ× ~χ)|2 −
[

|Dr
~φ|2 + 2

r2
(~ξ · ~φ)2

])

− 2λ η4 (1− |~φ|2)2 , (26)

the first line pertaining to the YM fields and the second to the Higgs.
The variation with respect to the trivial SO(3) gauge connection ~Ar does not give rise to an equation of motion,

but rather gives constraint equations. Furthermore, the SO(3) freedom in this Ansatz results in an invariance at

the fixed point of the 2-sphere, due to which only two of the components of each of the three triplets (~ξ, ~χ, ~φ) are
independent functions. We thus end up with 6 equations of motion for the functions of r,

~ξ = (w̃, 0, w) , ~χ = (Ṽ , 0, V ) , ~φ = (h̃, 0, h) , (27)

in addition to the constraint equations.

3.2 The SO(3)× SO(2) case

To simplify the picture, in what follows, we shall construct only those solutions for which

w̃ = Ṽ = h̃ = 0 , (28)
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i.e., our solutions describe the SO(3) × SO(2) submultiplet of the SO(5) Yang-Mills field. These solutions will
possess both electric and magnetic fields. Moreover, they will describe finite energy solutions, by virtue of the
chosen asymptotic values of the fields, consistent with analyticity. With these asymptotic values, also the electric
and magnetic fluxes Eqs. (17) and (18), are nonvanishing.

The electric field leads in general to a non-Abelian flux. In the restricted case we are considering (w̃ = Ṽ =
h̃ = 0), the electric field is proportional to Σ45 , so it is the SO(2) submultiplet of the SO(5) field, Eq. (23),
namely, the quantity ∂rχ

6 = V ′ appearing in front of the algebra basis Σ45. This leads us to a natural definition
of the electric charge Q of the solution as

Q = lim
r→∞

r2
dV

dr
. (29)

This definition, which is equivalent (up to a sign) to the general definition of electric charge for non-Abelian fields
[13, 14], and is computed from Eq. (17) as

QYM = lim
r→∞

r2

√

∣

∣

∣

∣

d~χ

dr

∣

∣

∣

∣

2

+
2

r2
|~ξ × ~χ|2 , (30)

which for our restricted case reduces to QYM = |Q|.
Likewise, the (scalar) magnetic fluxin the restricted case we are considering is computed from Eq. (18) as

P YM = lim
r→∞

√

√

√

√

(

1−
∣

∣

∣

~ξ
∣

∣

∣

2
)2

+ 2r2

∣

∣

∣

∣

∣

d~ξ

dr

∣

∣

∣

∣

∣

2

. (31)

For this restricted case and taking into account the asymptotic behaviour of the solutions (see next section), one
can see that the magnetic charge is P YM = 1.

We emphasised at the end of the previous section that the (scalar) magnetic charge is a global charge, and not
the topological charge (19) of the t’Hooft-Polyakov magnetic monopole. Indeed, one can readily evaluate the flux
integral Eq. (19) for the spherically symmetric fields Eqs. (20), (21), and (22) (and not only for the restricted case
w̃ = Ṽ = h̃ = 0), which turns out to vanish. Our magnetic charge is not a topological charge.

Let us close this section by mentioning that within this SO(3) × SO(2) truncation, the system with the first

CS term, Ω
(1)
CS, is effectively described by a YMH-Maxwell system,

L = Tr

[

1

4
F2

µν −
1

2
DµΦ

2 − λ

2
(Φ2 + η21I)2

]

− 1

4
f2
µν + iκ1ǫ

µνρσfµνTr ΦFρσ , (32)

where this time Fµν and Φ are SO(3) fields. The SO(3) and U(1) fields interact only via the CS term, the U(1)
field being purely electric, with fr0 = V ′. In this theory, the monopole charge Eq. (19) does not vanish, such that
the solutions are topologically stable. No similar effective model could be constructed for the case of the second

CS term, Ω
(2)
CS.
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4 Restricted field equations and boundary conditions

4.1 The equations and an effective model

Substituting the Ansatz, Eqs. (20)-(22), in the field equations, Eqs. (15)-(16), (with κ2 included and together with
our gauge choice Eq. (27) and the restriction w̃ = Ṽ = h̃ = 0) the following 3 equations are obtained 2:

d2V

dr2
+

2

r

dV

dr
+

2

r2
wh

[

4κ1 + κ2(1− h2)
] dw

dr
− 1

r2
[(

4κ1 + κ2(1− h2)
)

(1− w2) + 2κ2w
2h2

] dh

dr
= 0 , (33)

d2w

dr2
+ w

[

h
(

4κ1 + κ2(1 − h2)
) dV

dr
+

1− w2

r2
− h2

]

= 0 , (34)

d2h

dr2
+

2

r

dh

dr
+

λ

2
h(1 − h2)− 2w2h

r2
− 1

r2
[(

4κ1 + κ2(1− h2)
)

(1− w2) + 2κ2w
2h2

] dV

dr
= 0 . (35)

However, Eq. (33) has a total derivative structure, which implies the existence of the first integral3

dV

dr
=

h

r

[

4κ1(1− w2) + κ2

(

(1− w2) + h2(w2 − 1

3
)

)]

. (36)

After replacing the above relation in Eqs. (34 ), (35 ), we find that the system is effectively described by the
reduced Lagrangian density

Leff = L(0)
Y MH + L(int)

Y MH , (37)

with

L(0)
YMH = w′2 +

(1− w2)2

2r2
+ w2h2 +

1

2
r2h′2 +

1

8
r2λ(1 − h2)2, (38)

L(int)
YMH =

[

κ1
2
√
2h(1− w2)

r
+ κ2

h√
2r

(

(1− h2

3
)(1 − w2) +

2

3
h2w2

)

]2

, (39)

which corresponds to SO(3) magnetic monopoles with an extra-interaction term as given by L(int)
YMH .

In order to obtain regular dyonic solutions we impose an appropriate set of boundary conditions. At the origin
the functions and their derivatives must satisfy

w|r=0 = −1 ,
dV

dr

∣

∣

∣

∣

r=0

= 0 , h|r=0 = 0 , (40)

while their asymptotic values are

w|r=∞ = 0 , V |r=∞ = 0 , h|r=∞ = 1 . (41)

The second condition in Eq. (41) fixes the gauge freedom for the electric potential. Under these conditions the
energy of the solutions4

E =

∫ ∞

0

[

(

dw

dr

)2

+
1

2

(1− w2)2

r2
+

1

2
r2

(

dV

dr

)2

+
1

2
r2

(

dh

dr

)2

+ w2h2 +
λ

8
r2(1− h2)2

]

dr , (42)

is finite.

2The constant η may be set to any nonvanishing value by rescaling the radial coordinate r. In what follows we have chosen it to
be 1/2.

3Here ar arbitrary integration constant is set to zero as required by the finite energy conditions.
4Note that the CS term does not contribute to the energy density of the solutions.
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As implied by Eq. (36), the electric field of the solutions is induced by the CS term, the magnetic monopoles
acquiring an electric charge

Q =
2κ2

3
+ 4κ1 . (43)

Remarkably, since the signs of κ1 and κ2 are free, one may have solutions with a vanishing electric charge Q
but with a nonvanishing electric component of the gauge potential V (r) 6= 0, i.e., a nonvanishing electric field.
Note that V (r) is identically zero only if both κ1 and κ2 are zero simultaneously.

4.2 Asymptotic analysis

Unfortunately, the system with V (r) 6= 0 does not seem to possess exact solutions5. However, approximate
expressions can be written both as r → 0 and as r → ∞. The expansions at the origin of the solutions look rather
simple

w(r) = −1 + a2r
2 +O(r4) , V (r) = b0 +

1

3
h1(12κ1a2 + 3κ2a2 + κ2h

2
1)r

2 +O(r4), h(r) = h1r +O(r3), (44)

where a2, b0, and h1 are constants.
The corresponding expressions in the far field, r → ∞, are much more complicated. Interestingly, their concrete

form depends both on the value of λ and the existence or not of an electric charge Q. In the generic case, Q 6= 0
solutions, the asymptotic expansions are

w(r) = Ae−r + . . . , V (r) = −Q

r
+ . . . , h(r) = 1− 4κ1Q

λ

1

r4
+ . . . , (45)

for λ 6= 0, and

w(r) = Ar−H1e−r + . . . , V (r) = −Q

r
+ . . . , h(r) = 1 +

H1

r
+ . . . , (46)

for λ = 0, where A and H1 are constants.
However, for Q = 0 one has to distinguish among several ranges for λ. For λ > 4 we have

w(r) = Ae−r + . . . , V (r) =
2κ1A

2

r2
e−2r + . . . , h(r) = 1 +

2A2

4− λ

1

r2
e−2r + . . . , (47)

while for 0 < λ < 4 we find

w(r) = Ae−r + . . . , V (r) = −4κ1H1

r3
e−

√
λr + . . . , h(r) = 1 +

H1

r
e−

√
λr + . . . . (48)

The corresponding expression for Q = 0, λ = 4 reads

w(r) = Ae−r + . . . , V (r) =
2κ1(A

2 −H0)

r2
e−2r + . . . , h(r) = 1 +H0e

−2r + . . . , (49)

while for Q = 0, λ = 0 one finds

w(r) = Ar−H1e−r + . . . , V (r) = −2κ1H1

r2
+ . . . , h(r) = 1 +

H1

r
+ . . . . (50)

Interestingly, for these Q = 0 solutions, we observe that the electric field decays exponentially, except for the
λ = 0 case where it exhibits a dipole-like behaviour.

5A promising direction appeared to be to construct them as a perturbation around the BPS monopoles (λ = 0), by treating κi as
small parameters. However, the final linear equations could not be solved even in this case.

8



-2.0

-1.0

0.0

1.0

0.0 0.2 0.5 0.8 1.0

V
, 

w
, 

h

r/(1+r)

h

w

V

λ=2
λ=32

Figure 1: Functions w(r), h(r), and V (r) for two typical solutions with κ1 = 1, κ2 = 3 (Q = 6), and λ = 2 and 32.

5 Numerical results

The system Eqs. (34)-(35) (with V ′ given by Eq. (36)) cannot be solved analytically and one has to resort to
numerical methods to analyse its solutions. We have employed a collocation method for boundary-value ordinary
differential equations, equipped with an adaptive mesh selection procedure [17]. A compactified radial coordinate
x = r/(1 + r) has been used. Typical mesh sizes include 103 − 104 points. The solutions have a relative accuracy
of 10−10.

In Fig. 1 we exhibit the functions w, h, and V for two typical solutions with κ1 = 1, κ2 = 3 (Q = 6), and
λ = 2, 32. Since Q does not vanish for these solutions, only function w shows an exponential decay.

The effect of Q on the functions is exhibited in Fig. 2, where the electric potential V is plotted for solutions
with κ2 = −12, λ = 32, and three values of κ1: 1, 2, 3 (Q =-4, 0, 4, respectively). Only the solution with Q = 0
gives rise to an exponential decay for the electric potential (since λ 6= 0).

Let us analyse the behaviour of the energy as a function of the parameters in the Lagrangian. For fixed λ, the
energy depends on the CS coupling constants κ1 and κ2. As a consequence of Eq. (43), the energy depends on Q
also. But we should emphasise again that Q is not a free parameter, but it is completely fixed once a concrete
model is chosen (namely, once λ, κ1, and κ2 are chosen). However, it is pertinent to ask what models produce
the configuration with the lowest energy. If one sets any of the two CS coupling constants to be nonvanishing, the
configuration with the lowest energy does not correspond to the electrically uncharged one. We show an example
of this in Fig. 3. Here the energy of the solutions with κ2 = −12 and λ = 32 is plotted as a function of Q (or
equivalently, κ1). It is seen that the minimal energy occurs for Q 6= 0.

One might be tempted to state that there might be a dyon whose energy was the lowest energy in this family
of models. However, that does not seem to be the case. We have explored large regions in the parameter space
(κ1, κ2) for several values of λ and the absolute minimal value of the energy is always found to be that of the
purely magnetic monopole, i.e., κ1 = κ2 = 0. We illustrate this fact in Fig. 4. There, a 3D plot of E versus κ1

and κ2 has been projected onto a κ2 = constant plane for λ = 32 solutions. Energies of solutions with the same
value of κ1 correspond to points along a vertical line. We have highlighted the energies of the Q = 0 solutions
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Figure 2: The electric potential V (r) for solutions with κ2 = −12, λ = 32, and three values of κ1: 1, 2, 3.

(blue points). Clearly the absolute minimum occurs for Q = 0 and κ1 = 0 (which means κ2 = 0).
Finally, we will address the asymptotic behaviour of the energy as a function of λ. Here we observe that the

effects of the two types of CS terms are very different. In Fig. 5 we present the energy E versus the Higgs potential
coupling constant λ in a logarithmic scale for several values of κ1 and κ2. When κ2 does not vanish, the energy
diverges with λ. However, if κ2 = 0, the energy tends to a constant value (which depends on κ1) as λ tends
to infinity, the same as for the usual, SU(2) magnetic monopoles. The expression we found numerically for the
asymptotic behaviour of the energy is

E = c1λ
1/4 + c2 + c3λ

−1/2 + . . . , (51)

where c1, c2, and c3 are constants that depend on κ1 and κ2. c1 vanishes for κ2 = 0.

6 Further remarks

The main purpose of this work was to provide an explicit construction of spherically symmetric solitons of an
SO(5) Chern-Simons–Yang-Mills-Higgs theory in 3 + 1 dimensional spacetime. To our knowledge, no Chern-
Simons solitons in even dimensional spacetime have appeared in the literature. The CS densities employed in
this paper are two of the 3 + 1 dimensional ones introduced in [2, 3], which can be defined in spacetimes of all
dimensions. In D+1 dimensions, these are defined in terms of SO(D+2) Yang-Mills field and a Higgs field taking
its values in the orthogonal complement of SO(D + 2) in SO(D + 3). In any given dimension there is an infinite
tower of such densities, and here for the case D = 3, we have considered the first two, Eqs. (11) and (12), in this
tower 6.

6These two CS densities are those extracted from the dimensional descent down to 3 dimensions of the 3rd and 4th Chern-Pontryagin
densities in 6 and 8 dimensions, respectively. Higher order CS densities result from descents of n-th CP densities in n dimensions.
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Figure 3: Energy E versus Q for solutions with κ2 = −12 and λ = 32.

The solitons presented here differ from Julia-Zee [12] dyons in that the presence of the electric component of
the gauge potential is a result of the presence of the Chern-Simons density in the Lagrangian, unlike in the case
of the former [12]. In the latter (JZ) case, both the Higgs field (of the monopole) and the ’electric’ component of
the gauge connection A0 take their values in the algebra of SO(3). Here by contrast A0 takes its values in the
orthogonal complement of SO(3) in SO(5), and the Higgs field takes its values in the orthogonal complement of
SO(5) in SO(6), i.e. it is a 5-component isovector. They are CS dyons in the spirit of those appearing in [5, 6, 7]
in 2 + 1 and [8] in 4 + 1 dimensional spacetimes, respectively. The electric and magnetic fluxes here are defined
by Eqs. (17) and (18). Unlike for JZ dyons 7, the global magnetic charge of our CS dyons is not the flux of a
topological charge density.

One should also point out that the various terms in the Lagrangian density, Eq. (13), have quite different
dimensions. While such a situation is not very unusual, it might nonetheless be that the qualitative features of
the solutions may be different if all terms in the model had the same dimensions. In the present context, the
Yang-Mills-Higgs (YMH) model matching the dimensions of the CS density Eq. (11) would be the sum of the
p = 1 and the p = 2 YMH model defined in Section 7.3 of [2], while the YMH model matching the dimensions of
the CS density Eq. (12) would be the p = 2 YMH model defined in Section 7.9 there [2].

As avenues for future research, we mention first that it would be interesting to construct the generalizations
of the solutions in this work beyond the particular truncation Eq. (28), i.e. with full SO(5) gauge potentials.
However, so far we have encountered numerical difficulties in constructing the most general solutions within
the Ansatz (Eqs. (20)-(22)). Another interesting direction would be to study the effects of gravity. The study
of gravitating monopoles and dyons has started immediately after the discovery of these solitons [20], and has
become a fruitful field of research (see [21] for a review). Moreover, as suggested by a number of other gravitating
models with non-Abelian Chern-Simons terms (see e.g. [18], [8], [19]), new features may occur in that case.

The inclusion of gravity effects can be approached in the standard way, by supplementing the Lagrangian
Eq. (13) with an Einstein term and solving the corresponding field equations. On general grounds, one expects the

7Non-Abelian JZ type dyons can be defined is all spacetime dimensions [2] D + 1, with D ≥ 3.
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existence of gravitating generalizations of the flat space solutions, at least for small values of Newton’s constant8.
Moreover, the regular center can be replaced by a black hole with a (small enough) radius. These solutions can
be constructed by using similar techniques as those employed in Section 5.

However, we have found more interesting to consider gravitating generalization of the solutions with an extra
dilaton field coupled with both YM and Higgs sectors, as described by the action (here we consider the first CS
model only)

S =
1

4πG

∫

d4x
√−g

[

1

4
R− 1

2
∂µϕ∂

µϕ− ec1ϕ

4
Tr(FµνF

µν)− ec2ϕ

2
Tr(DµΦD

µΦ)− iκ1√−g
ǫµνρσTr(FµνFρσ)

]

. (52)

Then, following the prescription in [15], one can show that for the SO(3)× SO(2) subsystem with

c1 = −1

2
c2 =

2√
3
, κ1 =

1

2
√
3
, (53)

the flat spacetime SO(3) BPS monopoles remain a solution of the theory. Moreover, all other fields have simple
closed form expressions in this case. Restricting again to the spherically symmetric case, the corresponding solution
has a line element

ds2 = U(r)3/2
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

− dt2

U(r)3/2
, (54)

with

U(r) = 1 +
C

r
− 2

3r2
+

4 coth r

3r
− 2

3 sinh2 r
, (55)

8One can show that the gravitating solutions still possess a first integral similar to Eq. (36) which fixes their electric field.
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where C is an arbitrary integration constant. The matter fields have the following expression

ϕ(r) =

√
3

4
logU(r), V (r) =

√
3

2U(r)
, w(r) =

r

sinh r
, h(r) = coth r − 1

r
. (56)

For C > 0, this describes an extremal black hole solution with non-Abelian hair, with an horizon located at r = 0.
However, similar to the Einstein-Maxwell-dilaton case, r = 0 is a naked singularity, since the Kretschmann scalar
diverges as 1/r as r → 0. Taking C < 0 leads again to a singular configuration (the singularity occurs this time
for some r0 > 0).

Thus the only interesing case corresponds to C = 0. The basic properties of this configuration are discussed
already in [15] (although the explicit relation Eq. (55) is not given there). As proved in [15], this solution describes
a globally regular gravitating soliton, with both electric and magnetic charges, whose mass equals the magnetic
charge.

Let us close by remarking that the SO(3) × SO(2) Ansatz in Section 3 can be generalized by including a
winding number in the SO(3) sector. This would lead to axially symmetric magnetic monopoles endowed, via the
CS term, with an extra electric charge. A similar construction to that described above would lead to closed form
gravitating solutions whose geometry is static and axially symmetric.
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