
Bell’s inequalities, 50 years later

T. C. Dorlas

April 2, 2014

1 Hidden variables

John Stewart Bell was an Irish particle theorist working for the latter part of

his career at CERN. (For an account of his career, see [1] and [2].) However,

he is best known for his work on the foundations of quantum mechanics,

which he called his ’hobby’. His most famous paper [3], in which he intro-

duced his ‘Bell inequalities’ was published 50 years ago, so it seems appropri-

ate to review these inequalities and some of their consequences at this time.

In fact, his research into foundations started with another paper, which was

accidentally published later. This latter paper [4] was conceived much earlier

after conversations with Mandel. Bell was much impressed with the work of

Bohm [5] and de Broglie [6] who developed an alternative to the standard

version of quantum mechanics. Their work showed that it is possible to

introduce ‘hidden variables’ in non-relativistic quantum mechanics which de-

termine the quantum randomness in a way similar to statistical mechanics,

i.e. random variables which cannot be observed but cause the probabilistic

nature of the quantum measurement results. They suggested that the tra-

jectory of a particle is in fact deterministic, but is under the influence of a

random background force which cannot be controlled. Their theory seemed

to be in conflict with a theorem by Von Neumann [7] about the impossibility

of hidden variables in quantum mechanics. Of course, a mathematical the-

orem is based on certain assumptions, and Bell rather scathingly dismissed
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Von Neumann’s main assumption, namely that the sum of two observables

is also observable and its expectation value is the sum of the individual ex-

pectations.

As a counter example, he introduced a simple hidden variable model for a

single spin-1
2
particle, which might be worth considering here in some detail.

The algebra of observables of a spin-1
2
particle is given by

A = a01+ a⃗ · σ⃗,

where a0 ∈ R and a⃗ ∈ R3, and σ⃗ = (σx, σy, σz) are the Pauli matrices. In the

state ψ0 = |0⟩ (eigenstate of σz with eigenvalue 1), its expectation is

⟨a01+ a⃗ · σ⃗⟩ = a0 + a cos(α),

where α is the angle between a⃗ and the positive z-axis and a = |⃗a|. This

result can also be realised by introducing a hidden variable λ ∈ [−1
2
, 1
2
] with

uniform distribution, and a map

fα(λ) = sgn

(
λ+

1

2
cos(α)

)
.

Then

⟨a01+ a⃗ · σ⃗⟩ = E [a0 + afα(λ)] .

Actually, there is a more intuitive way of introducing a hidden variable,

namely a uniform probability distribution on the unit sphere S2. In that

case, we put

fα(θ, ϕ) = sgn (θ − α).

Then if |⃗a| = 1,

⟨⃗a · σ⃗⟩ = 1

4π

∫ π

0

dθ

∫ 2π

0

dϕfα(θ, ϕ) sin(θ).

A general state ψ corresponds to a unit vector ψ⃗ with angular coordinates

(θ0, ϕ0) according to (
ψ1

ψ2

)
=

(
e−iϕ0/2 cos(θ0/2)

eiϕ0/2 sin(θ0/2)

)
.
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Then

fa⃗(λ⃗) = sgn
(
arccos(λ⃗ · ψ⃗)− arccos(⃗a · ψ⃗)

)
. (1.1)

This is more in line with Bell’s later suggestion that the quantum state ψ

should really be considered the hidden variable and the presumed hidden

variable the actual state. The disturbance by the quantum state ψ then

causes the measured value to differ from the actual state (here λ⃗, in Bohm’s

case the position x(t)). Moreover, one can introduce a time evolution as

follows. A general Hamiltonian is an observable and be written as

H = E0 + h⃗ · σ⃗.

The constant E0 only introduces a phase in the evolution, and is therefore

irrelevant. In the Heisenberg picture, the operator A above transforms ac-

cording to

d

dt
A(t) = i[H,A(t)] = i

3∑
i,j=1

hiaj(t)[σi, σj] = −2(⃗h ∧ a⃗(t)) · σ⃗.

Thus the vector a⃗(t) rotates (precesses) in a plane perpendicular to h⃗. Now

the map f becomes time-dependent:

fa⃗(λ⃗, t) = sgn
(
arccos(λ⃗ · e⃗z)− arccos(⃗a(t) · e⃗z)

)
.

Here the unit vector λ⃗ corresponds to the hidden variable point (θ, ϕ). Since

−2(⃗h∧ a⃗) · ψ⃗ = 2a⃗ · (⃗h∧ ψ⃗), we can also consider in the Schrödinger picture,

that the state vector ψ⃗(t) rotates (in the opposite direction) with ψ⃗(0) = e⃗z.

Then we write

fa⃗(λ⃗, t) = sgn
(
arccos(λ⃗(t) · ψ⃗(t))− arccos(⃗a · ψ⃗(t)

)
,

where λ⃗(t) precesses in the same way as u⃗ψ(t). In this picture we can there-

fore interpret the variable λ⃗(t) as the ‘real’ spin rotating in a deterministic

way, while the measurement result is random. This is analogous to the de

Broglie-Bohm view of non-relativistic quantum mechanics of a spinless par-

ticle.

Notice that the map fα is highly nonlinear so that Von Neumann’s ar-

gument does not apply. In the mean time another argument had been put
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forward by Jauch and Piron [9]. They assume the logical structure axioms of

quantum mechanics as they were developed by Von Neumann and Birkhoff

[8]. These axioms concern yes-no measurements (corresponding to projec-

tions in quantum mechanics) and are as follows:

1. The set L of yes-no measurements has a ‘lattice structure’, i.e. there

is a partial order ≤ on L such that for all a, b ∈ L, there exists a least

upper bound a ∪ b and a largest lower bound a ∩ b.

2. For every a ∈ L there is a complement a′ ∈ L such that

(a) (a′)′ = a for all a ∈ L,

(b) a ∩ a′ = 0 and a ∪ a′ = 1 for all a ∈ L, where 0 and 1 are the

trivial measurements yielding no resp. yes with certainty;

(c) a ≤ b =⇒ b′ ≤ a′ for all a, b ∈ L.

Jauch and Piron define a state on L to be a map p : L → [0, 1] such that

1. p(0) = 0 and p(1) = 1;

2. For every sequence of disjoint propositions (an)n∈N, i.e. such that an ≤
a′m for n ̸= m,

∞∑
n=1

p(an) = p

(∪
n∈N

an

)
;

3. If for a sequence (an)n∈N, p(an) = 1 for all n ∈ N, then

p

(∩
n∈N

)
= 1.

Moreover, they assume that if a ̸= b then there exists a state p such that

p(a) ̸= p(b).

They define a dispersion-free state as a state such that p(a) = 0 or p(a) =

1 for all a ∈ L, and they then say that L admits hidden variables if every

state is an average of dispersion-free states, i.e. of the form

p(a) =

∫
Ω

pλ(a)µ(dλ) (1.2)
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for some probability measure µ on Ω and a family of dispersion-free states

pλ.

Lemma 1.1 If a proposition system L admits hidden variables, then for all

a, b ∈ L,
p(a) + p(b) = p(a ∩ b) + p(a ∪ b).

Two propositions a and b are said to be compatible if they generate a

Boolean lattice, i.e. a lattice in which the distributive law holds. With the

additional assumption that if a ≤ b then a and b are compatible, one can

show that arbitrary a, b ∈ L are compatible if and only if

(a ∩ b′) ∪ b = (a′ ∩ b) ∪ b′. (1.3)

We now write

p((a ∩ b′) ∪ b) = p(a ∩ b′) + p(b)

= p(a) + p(b′)− p(a ∪ b′) + p(b)

= p(a) + 1− p(a ∪ b′)
= p(a) + p(a′ ∩ b) = p(a ∪ (a′ ∩ b)).

By the assumption that the states separate the propositions, we conclude

that (1.3) holds.

Bell objects that this is no argument for rejecting hidden variables in

a wider sense. Namely, in the example above, if a and b are given by 1-

dimensional projections 1
2
(1+ a⃗ · σ⃗) and 1

2
(1+ b⃗ · σ⃗), and b⃗ ̸= a⃗, then a∩b = 0,

so one should have pλ(a ∩ b) = 0. But in the example, pλ(a) =
1
2
(1 + fα(λ))

and pλ(b) =
1
2
(1 + fβ(λ)) both equal 1 at the same time for certain values of

λ.

2 Bell inequalities and the EPR paradox

Einstein, Podolsky and Rosen (EPR) [10] proposed a famous ‘Gedankenex-

periment’ to argue that quantum mechanics cannot be a complete theory.

5



Although they used momentum and position operators for two particles, it

is now usually presented in terms of spin-coordinates of two spin-1
2
particles,

as suggested by Aharonov and Bohm [11]. In this formulation one considers

an entangled state of the two particles, e.g. the singlet state

ψs =
1√
2
(|01⟩ − |10⟩).

(Here the first index labels the state of one particle, the second that of the

other, and |0⟩ and |1⟩ are the eigenstates of σz.) The particles can be arbitrar-

ily far apart. Measuring the spin of one particle, e.g. with σz ⊗ 1, collapses

the state to |01⟩ or |10⟩, thus also determining the spin of the other. EPR

found this problematic because in the standard interpretation of quantum

mechanics the state of the other particle was indeterminate before the mea-

surement, which seemed to imply action at a distance. They suggested that

this means that quantum mechanics is incomplete: there should be ‘hidden

variables’ which in fact determine the state of the two particles. The situa-

tion would then be analogous to a coin having been cut in half so that one

half is heads, the other tails, and the two halves given to two people (‘Alice’

and ‘Bob’ in modern parlance) in closed boxes. Then once Alice opens her

box, the content of Bob’s box is instantaneously known. The difference is

that in this case the contents of the boxes is in fact predetermined, even if

they are unknown to Alice and Bob.

Bell realised that as far as measurements of the z-component of the spins

is concerned, the EPR experiment is in fact classical and one cannot ob-

jectively decide about the existence of hidden variables. To do this, it is

necessary to consider more general measurements. For hidden variables to

be a genuine possibility, they should be able to explain more general measure-

ments. Assuming the existence of a general hidden variable in the form of a

probability measure he proceeded to derive an inequality regarding general

measurements, which is not satisfied for quantum states, and hence provides

a possible experimental test of the existence of hidden variables. Here we de-

rive the slightly more general inequalities due to Clauser et al. [12]. Suppose

there is a probability measure µ on a space Ω of hidden variables determin-

ing the results A and B of measurements of the spin components of the two
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particles in directions a⃗ and b⃗ respectively, i.e. A(⃗a, λ) and B(⃗b, λ). Here

the crucial assumption is that of locality, i.e. the outcome A(⃗a, λ) does not

depend on b⃗ and vice-versa B(⃗b, λ) does not depend on a⃗. We know that

each measurement results in one of the values ±1. Consider the correlation

given by

E (⃗a, b⃗) :=

∫
Ω

A(⃗a, λ)B(⃗b, λ)µ(dλ).

(In fact, the measuring instruments could also have hidden variables. We

then need to replace A and B by averages over these instrument variables

and |A|, |B| ≤ 1 rather than = ±1.) Now, varying the instrument settings,

we have

E (⃗a, b⃗)− E (⃗a, b⃗′) =

∫
Ω

A(⃗a, λ)[B(⃗b, λ)−B(⃗b′, λ)]µ(dλ)

=

∫
Ω

A(⃗a, λ)B(⃗b, λ)[1± A(⃗a′, λ)B(⃗b′, λ)]µ(dλ)

−
∫
Ω

A(⃗a, λ)B(⃗b′, λ)[1± A(⃗a′, λ)B(⃗b, λ)]µ(dλ).

Using |A|, |B| ≤ 1, we get

|E (⃗a, b⃗)− E (⃗a, b⃗′)| ≤ 2±
∫
Ω

[A(⃗a′, λ)B(⃗b′, λ) + A(⃗a′, λ)B(⃗b, λ)]µ(dλ)

or

|E (⃗a, b⃗)− E (⃗a, b⃗′)|+ |E (⃗a′, b⃗) + E (⃗a′, b⃗′)| ≤ 2. (2.4)

On the other hand, consider the quantum expectation of AB = (⃗a·σ⃗)⊗ (⃗b · σ⃗)
in the state ψ0 =

1√
2
(|01⟩ − |10⟩). A simple calculation shows that

⟨σi ⊗ σj⟩ = −δi,j for i, j = x, y, z.

Hence

⟨(⃗a · σ⃗)⊗ (⃗b · σ⃗)⟩ = −a⃗ · b⃗. (2.5)

Thus

|⟨(⃗a · σ⃗)⊗ (⃗b · σ⃗)− (⃗a · σ⃗)⊗ (⃗b′ · σ⃗)⟩|
+|⟨(⃗a′ · σ⃗)⊗ (⃗b · σ⃗) + (⃗a′ · σ⃗)⊗ (⃗b′ · σ⃗)⟩| = |⃗a · (⃗b− b⃗′)|+ |⃗a′ · (⃗b+ b⃗′)|.

(2.6)
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This is clearly maximal if a⃗ is in the direction of b⃗− b⃗′ and a⃗′ in the direction

of b⃗+ b⃗′, in which case it equals |⃗b− b⃗′|+ |⃗b+ b⃗′| =
√
2− 2 cos β+

√
2 + 2 cos β,

where β is the angle between b⃗ and b⃗′. This in turn is maximal when β = π/2

and the maximum value is 2
√
2 > 2. In this optimal case, therefore, the above

inequality is violated.

In the mean time many experiments have confirmed with increasing con-

fidence that the Bell inequality is not satisfied and and in some cases that

the quantum mechanical bound is closely approximated. Most experiments

have been done with photons, see e.g. [13, 14, 16, 17, 18, 19, 20]. Notice that

in order to properly test the nonlocality, in the above experiments the direc-

tions of polarisation analysers were changed while the photons were in flight.

Initially, in [13], the measurement directions were fixed beforehand, then in

[14] this was done in a periodic manner, whereas in later experiments it was

done at random. Experiments have also been done with other particles, e.g.

neutrons: see [21]. These experiments are very difficult and the challenge

posed by Bell’s inequality has thus strongly stimulated the advancement of

experimental techniques.

Remark 1. It is easy to see that P[A(⃗a) = s,B(⃗b) = s′] only depends on

ss′ and hence

P[A(⃗a) = s, B(⃗b) = s′] =
1

4
(1− s s′a⃗ · b⃗).

Thus, the measurement of (⃗a · σ⃗)⊗ (⃗b · σ⃗) is essentially a measurement of the

spin of one particle w.r.t. a state determined by the measurement direction

of the other. Nonlocality seems quite obvious from this point of view.

Remark 2. Notice also that if we admit signed measures, then we can

realise these probabilities as

P[A(⃗a) = s, B(⃗b) = s′] =

∫
1A(a⃗,λ)=s1B(⃗b,λ)=s′ µ(dλ). (2.7)

Indeed, by the above remark, it suffices if

⟨(⃗a · σ⃗)⊗ (⃗b · σ⃗)⟩ =
∫
A(⃗a, λ)B(⃗b, λ)µ(dλ).

8



Let us put λ = (λ⃗1, λ⃗2) and define

A(⃗a, λ⃗) = sgn (λ⃗ · a⃗) and B(⃗b, λ⃗) = sgn (λ⃗ · b⃗).

Then we compute∫
S2×S2

sgn (λ⃗1 · a⃗)sgn (λ⃗2 · b⃗) λ⃗1 · λ⃗2dλ⃗1dλ⃗2,

where dλ⃗ denotes normalised Lebesgue measure. This is clearly rotation-

invariant, so we can take a⃗ = e⃗z and b⃗ = sin γ e⃗x+cos γ e⃗z. Changing variables

to

λ⃗′2 =

cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ

 λ⃗2

we have

λ⃗1 · λ⃗2 = cosϕ1 sin θ1(cos γ cosϕ
′
2 sin θ

′
2 + sin γ cos θ′2)

+ sinϕ1 sin θ1 sinϕ
′
2 sin θ

′
2

+cos θ1(− sin γ cosϕ′
2 sin θ

′
2 + cos γ cos θ′2).

W.r.t. these variables

A(⃗a, λ⃗1) = sgn (
π

2
− θ1) and B(⃗b, λ⃗2) = sgn (

π

2
− θ′2).

As this is independent of ϕ1 and ϕ
′
2, the integrals over ϕ1 and ϕ

′
2 of the terms

involving cosϕ1 or cosϕ′
2 vanish. Hence∫

S2×S2

sgn (λ⃗1 · a⃗)sgn (λ⃗2 · b⃗) λ⃗1 · λ⃗2 dλ⃗1dλ⃗2

=
1

4

∫ π

0

dθ1

∫ π

0

dθ′2sgn (
π

2
− θ1)sgn (

π

2
− θ′2) cos γ cos θ1 cos θ

′
2 sin θ1 sin θ

′
2

=
1

4
cos γ.

The measure

µ(dλ) = −4λ⃗1 · λ⃗2 dλ⃗1dλ⃗2

therefore satisfies (2.7).

This is somewhat reminiscent of Feynman’s integral, which is also a

complex-valued measure in the finite-dimensional case: see [22].
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3 Quantum information

3.1 Entanglement

Of course, the essential feature of the singlet state ψs is that it is entangled :

it cannot be written as a tensor product. This crucial feature of general

quantum states was highlighted (and named) by Schrödinger in two papers,

one in German [23] and one in English [24], in reaction to the EPR paper.

He reasoned that entanglement is in fact the crucial distinguishing feature of

quantum mechanics and is also at the root of the nature of measurement. In

order to illustrate the absurdity of the situation, he introduced his famous

cat.

In fact, it is easy to see that any entangled state violates the Bell inequal-

ity. Namely, an arbitrary state on C2 ⊗ C2 can be written in the form

ψ = λ1|0⟩ ⊗ |0⟩′ + λ2|1⟩ ⊗ |1⟩′,

where λ1, λ2 ≥ 0, λ21 + λ22 = 1 and |0⟩, |1⟩ and |0⟩′, |1⟩′ are orthogonal bases.

This is obviously entangled unless λ1λ2 = 0. Considering the expectation

value

E (⃗a, b⃗) = ⟨ψ | (⃗a · σ⃗ ⊗ b⃗ · σ⃗′ |ψ⟩,

where σ⃗′ represent the Pauli matrices on the basis {|0⟩′, |1⟩′}, we have

|E (⃗a, b⃗)− E (⃗a, b⃗′)|+ |E (⃗a′, b⃗) + E (⃗a′, b⃗′)|
= |az(bz − b′z) + 2λ1λ2(ax(bx − b′x)− ay(by − b′y))|
+|az(bz + b′z) + 2λ1λ2(ax(bx + b′x)− ay(by + b′y))|.

Maximising over a⃗ and a⃗′ we get√
(bz − b′z)

2 + 4λ21λ
2
2((bx − b′x)

2 + (by − b′y)
2)

+
√
(bz + b′z)

2 + 4λ21λ
2
2((bx + b′x)

2 + (by + b′y)
2).

Taking for example b⃗ = e⃗x and b⃗′ = e⃗z, this is 2
√
1 + 4λ21λ

2
2 > 2 unless

λ1λ2 = 0.
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In general, quantum systems are in a mixed state, so it is interesting to

wonder to what extent Bell inequalities are satisfied for mixed states. Mixed

states are given by density matrices ρ, i.e. non-negative matrices with trace

equal 1. A natural generalisation of an entangled mixed state is a non-

separable state: A state ρ on HA⊗HB is called separable if it can be written

as a convex combination of product states,

ρ =
m∑
i=1

ciρ
(1)
i ⊗ ρ

(2)
i . (3.8)

Indeed, it is easy to see that such states admit a hidden-variable model for

the correlations between A and B and Bell’s inequalities hold. However, it

was discovered by Werner [25] that there exist non-separable states which

nevertheless satisfy Bell’s inequalities and even admit a classical (hidden

variable) model. His example is as follows:

ρW =
1

6


1 + q 0 0 0

0 2− q 2q − 1 0

0 2q − 1 2− q 0

0 0 0 1 + q

 , (3.9)

where q ∈ [−1, 1]. (In fact, his construction is valid for higher dimensions,

which is relevant in connection with an argument using Gleason’s theorem

demonstrating the impossibility of hidden variables, which is only valid for

d > 2.) Now, q = Tr (V ρW ), where V is the exchange operator

V =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

It is easy to see that if ρ is of the form (3.8) then Tr (ρ V ) ≥ 0, so ρW is not

separable if q < 0.

A hidden variable model for this state in the form∫
Ω

fA(a, λ) fB(b, λ)µ(dλ) = Tr (ρW Pa ⊗Qb), (3.10)
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where Pa is the eigenprojection of A for the eigenvalue a, and similarly Qb

for B, can be constructed as follows. We can assume that A and B are 1-

dimensional projections, A = 1
2
(1+ a⃗ · σ⃗) and B = 1

2
(1+ b⃗ · σ⃗), and take the

measure space Ω to be the unit sphere S2 with normalised Lebesgue measure

as before, and define

fA(λ⃗) = Tr (APλ⃗)

and

fB(λ⃗) = 1{λ⃗: b⃗·λ⃗<0}.

Then the left-hand side of (3.10) equals∫
S2

1

2
(1 + a⃗ · λ⃗) 1{λ⃗: b⃗·λ⃗<0}dλ⃗.

To compute this, we may assume b⃗ = e⃗z and a⃗ given by polar angles (θa, ϕa)

and a⃗ · λ⃗ = cos θa cos θ + cos(ϕa − ϕ) sin θa sin θ, so∫
S2

1

2
(1 + a⃗ · λ⃗) 1{λ⃗: b⃗·λ⃗<0}dλ⃗

=
1

4π

∫ π

π/2

sin θ dθ

∫ 2π

0

dϕ
1

2
{1 + cos θa cos θ + cos(ϕa − ϕ) sin θa sin θ}

=
1

4
− 1

8
cos θa.

On the other hand, the right-hand side of (3.10) is

Tr

[
ρW

1

2
(1+ a⃗ · σ⃗)⊗ 1

2
(1+ b⃗ · σ⃗)

]
=

1

4

(
1 +

2

3
(q − 1

2
)⃗a · b⃗

)
.

It follows that q = −1
4
and the state is not separable. Since it admits a

classical model (3.10) Bell’s inequalities (and generalisations) are satisfied,

and these inequalities are therefore insufficient to conclude that a state is

classically correlated (separable).

Remark. This representation is not entirely satisfactory since the function

fA(λ) is not an indicator function, i.e. it does not take values in σ(A).

However, this can be remedied by writing 1
2
(1 + a⃗ · λ⃗) in the form (1.1):

1

2
(1 + a⃗ · λ⃗) =

∫
1{λ⃗′: (λ⃗′−λ⃗)·⃗a<0}dλ⃗

′.
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Moreover, replacing fB by

fB(λ⃗) = 1{λ⃗:u<b⃗·λ⃗<u+1}

we obtain ∫
S2

1

2
(1 + a⃗ · λ⃗) 1{λ⃗: b⃗·λ⃗∈(u,u+1)}dλ⃗

=
1

4
(1 + (u+

1

2
) cos θa).

This covers the range q ∈ [−1
4
, 0] when u ∈ [−1

2
,−1].

In fact, in the case of a pair of spin-1
2
particles, a necessary and sufficient

condition for a state to be of the form (3.8) was introduced by Peres [26].

Introducing the partial transpose ρT2 by

⟨ik | ρT2 | jl⟩ = ⟨il | ρ | jk⟩, (3.11)

we say that ρ is positive under partial transposition if ρT2 is also a positive

definite matrix. It is clear that this is a necessary condition for a state to be

separable, i.e. of the form (3.8). It was shown by Horodecki et al. [27] that

for the case of spin-1
2
particles, it is also sufficient. However, this is not so

for higher-dimensional cases.

3.2 Quantum teleportation

It is nowadays recognised that entanglement can in fact be a useful resource

for quantum operations. An example of this is quantum teleportation. This

is a scheme for moving a quantum state from one place to another using

a shared entangled state, but transmitting only classical information. It

assumes that quantum states can be accurately and reliably manipulated,

i.e. it is possible to apply well-defined unitary evolutions. The original

example due to Bennett et al. [28] is as follows:

Assume that Alice wants to send a general qubit state ψ = α|0⟩+β|1⟩ to
Bob, and they each possess one half of a singlet state ψs. Alice first performs
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a CNOT operation on ψ and her half of the Bell state, i.e. the unitary

UCN =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


in the basis {|00⟩, |01⟩, |10⟩, |11⟩}. The resulting combined state is:

UCNψ ⊗ ψs =
1√
2
(α|0⟩ ⊗ (|01⟩ − |10⟩) + β|1⟩ ⊗ (|11⟩ − |00⟩)) .

Next she applies a Hadamard operation to the first qubit: UH ⊗ 1, with

UH =
1√
2

(
1 1

1 −1

)
.

This yields

1

2
(α(|0⟩ ⊗+|1⟩)⊗ (|01⟩ − |10⟩)

+ β(|0⟩ − |1⟩)⊗ (|11⟩ − |00⟩)) (3.12)

=
1

2
(|00⟩ ⊗ (α|1⟩ − β|0⟩)− |01⟩ ⊗ (α|0⟩ − β|1⟩)

+ |10⟩ ⊗ (α|1⟩+ β|0⟩)− |11⟩ ⊗ (α|0⟩+ β|1⟩)) . (3.13)

Finally she performs a measurement on her parts of the combined state re-

sulting in one of the terms in brackets of (3.12). If her measurement results

in (1, 1) then Bob’s state is just ψ. Otherwise, she needs to transmit her

measurement result to Bob, who can then perform a suitable unitary trans-

formation himself to bring the state back to ψ. For example, if the result is

(1, 0) the third term results and he needs to act with σx.

Notice that the inverse operation UCN(UH ⊗ 1) maps the standard basis

to the basis {ψk}3k=0 consisting of ‘Bell states’

ψ0,1 =
1√
2
(|00⟩ ± |11⟩)

ψ2,3 =
1√
2
(|01⟩ ± |10⟩).

One can therefore also say that Alice simply performs a measurement w.r.t.

this basis.
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One can wonder if teleportation of states is possible using more general

entangled states between Alice and Bob. In that case, the teleportation is

obviously not going to be perfect. As for general quantum channels, one

therefore introduces the concept of fidelity of transmission. If Alice wants

to transmit a (pure) state ψ to Bob, but the state received by Bob is the

(mixed) state ν, then the fidelity is defined the overlap

Fψ = ⟨ψ | ν |ψ⟩ = Tr (ν Pψ).

Now, suppose Alice performs a measurement w.r.t. the Bell basis {ψk}3k=0,

obtaining one of the results k = 0, 1, 2, 3 with probability pk. She sends this

result to Bob, as above, who performs a unitary transformation Uk to obtain

the state νk. The expected value of the fidelity is then

E(Fψ) =
3∑

k=0

pk Tr (νk Pψ).

A measure of the efficiency of this procedure is given by the average of this

quantity over possible states ψ:

F =

∫
E(Fψ)dψ =

3∑
k=0

pk

∫
Tr (νk Pψ) dψ. (3.14)

If ρ is the shared entangled state and Pk = |ψk⟩⟨ψk| (k = 0, 1, 2, 3) are the

projections corresponding to the measurement basis, then Bob’s output state

νk is

νk =
1

pk
Tr 1,2 [(Pk ⊗ Uk)(Pψ ⊗ ρ)(Pk ⊗ U∗

k )]

and the probabilities pk are

pk = Tr [(Pk ⊗ 1)(Pψ ⊗ ρ)].

Following Horodecki et al. [29], we write ρ in terms of the basis of Pauli

matrices:

ρ =
1

4

(
1+ r⃗ · σ⃗ ⊗ 1+ 1⊗ (s⃗ · σ⃗) +

3∑
n,m=1

tnmσn ⊗ σm

)
. (3.15)
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Putting Pψ = 1
2
(1+ a⃗ · σ⃗), we have

pkνk =
1

8

{
Tr [Pk(1+ a⃗ · σ⃗)⊗ (1+ r⃗ · σ⃗)Pk]1

+Tr [Pk((1+ a⃗ · σ⃗)⊗ 1)Pk]Uk(s⃗ · σ⃗)U∗
k

+
3∑

n,m=1

tnmTr [Pk((1+ a⃗ · σ⃗)⊗ σn)Pk]UkσmU
∗
k

}
.

We now use

⟨ψ0,1 |σn ⊗ σm |ψ0,1⟩ = ±δn,1δm,1 ∓ δn,2δm,2 + δn,3δm,3

⟨ψ2,3 |σn ⊗ σm |ψ2,3⟩ = ±δn,1δm,1 ± δn,2δm,2 − δn,3δm,3.

The result is:

pkνk =
1

8
{(1 + a⃗ ·Dkr⃗)1+ Uk ((s⃗ · σ⃗) + a⃗ ·DkT σ⃗)U

∗
k} , (3.16)

whereDk are diagonal matrices: D0 = diag(+1,−1,+1),D1 = diag(−1,+1,+1),

D2 = diag(+1,+1,−1), D3 = diag(−1,−1,−1). The unitary transformation

Uk affects a rotation of the vector s⃗:

Uk(s⃗ · σ⃗)U∗
k = (Oks⃗) · σ⃗.

Averaging over ψ according to the uniform measure over a⃗ ∈ S2, we have∫
S2

(⃗a · Aa⃗) da⃗ =
1

3
Tr A

and taking the trace using Tr σi = 0, we get

F =
1

8

3∑
k=0

pk

(
1 +

1

3
Tr DkTOk

)
. (3.17)

We need to maximise this expression over all possible choices of Uk, or equiv-

alently Ok (k = 0, 1, 2, 3). Since each Dk is a reflection, each term has the

same maximum and

max
{Uk}

F = max
O

1

2
(1− 1

3
Tr TO).
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Note that if ρ = ρ(1)⊗ρ(2) is a product state and we write ρ(1) = 1
2
(1+r⃗·σ⃗),

ρ(2) = 1
2
(1+ s⃗ · σ⃗), where in general |r⃗| ≤ 1 and |s⃗| ≤ 1, then tnm = rnsm and

hence

F = max
O

1

2

(
1− 1

3
⟨s⃗, Or⃗⟩

)
=

1

2

(
1 +

1

3
|r⃗| |s⃗|

)
≤ 2

3
.

For separable states, therefore, the maximum is 2/3, attained for a pure

product state.

In order that a general entangled state ρ improves on this, we need

Tr (TO) < −1. This is the case if det(T ) < 0 and ||T ||1 > 1 because in

that case we can define O by −Tψ 7→ |T |ψ.

Horodecki et al. [30] show that the states ρ can be written as ρ = (U1 ⊗
U2)ρ̃(U1⊗U2)

∗, where ρ̃ has a diagonal matrix T belonging to the tetrahedron

with corners

t⃗0 = (−1,−1,−1), t⃗1 = (−1, 1, 1), t⃗2 = (1,−1, 1), t⃗3 = (1, 1,−1).

It follows from this that ||T ||1 > 1 is in fact a necessary and sufficient con-

dition. Moreover, they also show that the diagonal matrices for separable

states belong to the octahedron with corners

o⃗±
1 = (±1, 0, 0), o⃗±

2 = (0,±1, 0) and o⃗±
3 = (0, 0,±1).

This implies that all non-separable states are useful for state teleportation

in the sense that F > 2/3. For example, for Werner’s state, which can be

written as

ρW =
1

4

(
1+

2

3
(q − 1

2
)

3∑
i=1

σi ⊗ σi

)
,

||T ||1 = |2q−1| > 1 for all q ∈ [−1, 0), i.e. whenever the state is not separable,

even if Bell’s inequalities hold. This was first remarked by Popescu [31].

3.3 Quantum channels

State teleportation is a special example of a quantum channel. Information is

transmitted in the form of quantum states. This can be classical information
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(bits) or quantum information (quantum states or qubits). (In the case of

teleportation, the shared quantum state can be seen to be the channel, but

in addition classical side-information is transmitted.)

Information theory, initiated by Shannon, has largely been extended to

the quantum domain. In particular, there is an analogue of Shannon’s theo-

rem about the capacity of a channel [32], both for the case of classical infor-

mation and for quantum information. For classical information, the result

is due to Holevo and Schumacher and Westmoreland [34, 33]. (See also [35]

and [36].) A quantum channel can be modelled by a completely positive map

Φ : B(H) → B(K) mapping (in general mixed) states on the input Hilbert

space H to states on the output Hilbert space K. In the case of a memory-

less channel this map acts repeatedly, and a classical message is encoded by

Alice into a quantum state ρ(n) of H⊗n. The output state σ(n) = Φ⊗n(ρ(n)) is

then decoded by Bob by performing a generalised measurement. Such a mea-

surement is given by a set of positive operators (not necessarily projections)

{E(n)
j } with

∑
j E

(n)
j = 1. This is called a positive-operator-valued measure

(POVM). The probability of outcome j is then given by Tr (σ(n)E
(n)
j ). As in

the case of Shannon’s theorem, the (classical) capacity of the channel is then

given by the maximal rate

lim
n→∞

1

n
log2Nn

at which messages can be transmitted with negligible error in the limit as

n→ ∞. More precisely, one has:

Theorem 3.1 Given ϵ > 0, there exists n0 such that for all n ≥ n0 there are

at least Nn = [2n(χ(Φ)−ϵ)] product states ρ
(n)
1 , . . . , ρ

(n)
Nn

∈ B(H⊗n) and a POVM

{E(n)
j }Nn

j=1 such that Tr
(
Φ⊗n(ρ

(n)
j )E

(n)
j

)
> 1− ϵ for all j.

Here the quantity χ(Φ) is the Holevo capacity given by

χ(Φ) = sup
{ρj ,pj}

[
S

(∑
j

pjΦ(ρj)

)
−
∑
j

S(Φ(ρj))

]
,

where S is the Von Neumann entropy S(ρ) = −Tr (ρ log ρ), and the supre-

mum is over ensembles of states ρj ∈ B(H) with probabilities pj. If general

18



states ρ
(n)
j are admitted, the capacity is a limit:

lim
n→∞

1

n
χ(Φ⊗n)

but this quantity is obviously not easily computed. There are also extensions

to channels with memory: see [37] and [38].

The quantum analogue of this theorem was proved by Devetak [39]. Here,

one encodes and decodes states according to E : B(H) → B(H⊗n
P ) and D :

B(H⊗n
Q ) → B(H) and one wants to transmit an arbitrary (pure) state ϕ ∈ H

with near-perfect fidelity:

min
ϕ∈H

F
(
ϕ, (D ◦ Φ⊗n ◦ E)(|ϕ⟩⟨ϕ|)

)
> 1− ϵ. (3.18)

The analogue of Holevo’s quantity is the coherent information Ic(ρ,Φ). It is

given by

Ic(ρ,Φ) = S(Φ(ρ))− S(ρ,Φ)

where S(ρ,Φ) is the entropy exchange: see [40]. His theorem then reads as

follows:

Theorem 3.2 Given ϵ > 0 there exists n0 such that if Nn = [2n(I(Φ)−ϵ)],

where

I(Φ) = lim
n→∞

1

n
max

ρ(n)∈H⊗n
P

Ic(ρ
(n),Φ⊗n),

then for a Hilbert space H(n) of dimension Nn there are encoding and decoding

maps E and D such that (3.18) holds.

4 Quantum field theory

It is worth mentioning a generalisation of the Bell inequalities to quantum

field theories considered by Summers and Werner [41, 42]. If A and B are

commuting sub C∗-algebras of a C∗ algebra C and ω is a state on C, then
whenever A1, A2 ∈ A and B1, B2 ∈ B satisfy −1A ≤ Ai ≤ 1A and −1B ≤
Bj ≤ 1B then

χ :=
1

2
|ω(A1(B1 +B2)) + ω(A2(B1 −B2))| ≤

√
2.
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Moreover, if ω is separable then χ ≤ 1.

In the algebraic framework of relativistic quantum field theory, A and

B can be local algebras A(O1) and A(O2) where O1 and O2 are space-like

separated. Assuming in particular that there is a unitary representation U

of the translation group which acts covariantly, i.e.

U(x)A(O)U(x)−1 = A(Ox) for x ∈ R4

and a unique vacuum vector Ω, the corresponding state ϕ0 given by ϕ0(A) =

⟨Ω, |AΩ⟩ satisfies a much more stringent bound:

χ ≤ 1 + 2e−md(O1,O2),

where d(O1, O2) is the maximal time-like distance between O1 and O2, and it

is assumed that the Hamiltonian H has spectrum contained in {0}∪[m,+∞)

with m > 0. This suggests that verifying the violation of Bell’s inequality

is unrealistic in massive field theories. They also show, however, that in

case O1 and O2 are complimentary ‘wedges’, Bell’s inequality is generically

maximally violated in quantum field theories, more precisely, χ approaches√
2 for suitable sequences of observables with norm ≤ 1.
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