A "quantum spherical model" with transverse magnetic field.

I. Lyberg

School of Theoretical Physics, Dublin Institute for Advanced Studies ilyberg@stp.dias.ie

December 19, 2012

1 Introduction

The Quantum Ising Model with a transverse magnetic field is well known [1] [2]. In one dimension it has the Hamiltonian

$$\mathcal{H}_{N} = -J \sum_{n=1}^{N} \sigma_{n}^{x} \sigma_{n+1}^{x} + B \sum_{n=1}^{N} \sigma_{n}^{z} + H \sum_{n=1}^{N} \sigma_{n}^{x}, \qquad (1)$$

where J > 0 is the coupling constant and $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices. *B* and *H* are transverse and longitudinal magnetic fields, respectively. The partition function is

$$Z_N = \operatorname{tr} e^{-\beta \mathcal{H}_N} \tag{2}$$

where β is the inverse temperature. In the case where H = 0 this model has been exactly solved [1] [3]. The free energy is [2]

$$f(\beta, J, B) = -\lim_{N \to \infty} \frac{1}{\beta N} \log Z_N$$
$$= -\frac{1}{2\pi\beta} \int_0^{2\pi} \log 2 \cosh \beta \Delta(x) \, dx \tag{3}$$

where

$$\Delta(x) = \sqrt{J^2 + B^2 - 2BJ\cos x}.$$
(4)

In particular the ground state energy is given by

$$f_{\infty}(J,B) = \lim_{\beta \to \infty} f(\beta, J, B) = -\frac{1}{2\pi} \int_0^{2\pi} \Delta(x) \, dx.$$
 (5)

In this limit there is a critical point in B at B = J. The correlation function

$$\langle \sigma_j^x \sigma_k^x \rangle = \lim_{N \to \infty} \frac{\operatorname{tr} \, \sigma_j^x \sigma_k^x e^{-\beta \mathcal{H}_N}}{Z_N} \tag{6}$$

can be written as a Toeplitz determinant of size |j - k| just as the correlation function of the two dimensional classical Ising model [4], but only in the limit $\beta \to \infty$. In fact the correlation function $\lim_{\beta\to\infty} \langle \sigma_j^x \sigma_k^x \rangle$ is the same as the diagonal correlation function $\langle \sigma_{jj}\sigma_{kk} \rangle$ of the two dimensional classical Ising lattice for $T < T_c$, the ratio B/J in the one dimensional quantum model corresponding to $(\sinh 2E_1/k_{\rm B}T \sinh 2E_2/k_{\rm B}T)^{-1}$ in the two dimensional classical model. (Here E_1 and E_2 are the coupling constants in the horizontal and vertical directions, respectively). In particular the limit of infinite separation is given by [3]

$$\lim_{|j-k|\to\infty} \lim_{\beta\to\infty} \langle \sigma_j^x \sigma_k^x \rangle = \begin{cases} \{1 - (B/J)^2\}^{1/4} & \text{if } B < J, \\ 0 & \text{if } B \ge J, \end{cases}$$
(7)

which is most easily proved using Szegö's theorem [5] [6].

2 The quantum spherical model

In analogy with (1) we define a partition function of a (*d*-dimensional) isotropic quantum spherical model on a lattice Λ as follows:

$$Z_{N} = \int_{[0,\infty)^{N}} \int_{[0,2\pi)^{N}} \int_{[0,\pi]^{N}} e^{\sum_{j,k\in\Lambda} \langle jk\rangle} \beta Jr_{j}\cos\theta_{j}r_{k}\cos\theta_{k}}$$

$$e^{\sum_{j\in\Lambda}\beta(Br_{j}\sin\theta_{j}\cos\varphi_{j}+Hr_{j}\cos\theta_{j})}$$

$$\prod_{l=1}^{N} r_{l}^{2}\sin\theta_{l} \ d^{N}\theta \ d^{N}\varphi \ \delta\left(\sum_{m=1}^{N} r_{m}^{2}-N\right) d^{N}r$$

$$= \int_{\mathbf{R}^{3N}} e^{\sum_{\langle jk\rangle}\beta Jz_{j}z_{k}+\sum_{j}\beta(Bx_{j}+Hz_{j})} \delta\left(\sum_{k=1}^{N} (x_{k}^{2}+y_{k}^{2}+z_{k}^{2})-N\right) d^{3N}\mathbf{x}(8)$$

Here J > 0, $B \ge 0$ and H > 0. δ signifies the Dirac distribution. The notation $\langle jk \rangle$ means that j and k are nearest neighbors on Λ . Unlike the

Quantum Ising Model with H = 0, in this model the critical point is B = 2Jd(in the limit $H \to 0$). In fact, it will be shown that in this limit the ground state free energy $f_{H,\infty} := -\lim_{\beta \to \infty} \lim_{N \to \infty} (N\beta)^{-1} \log Z_N$ is given by

$$f_{0,\infty} = \lim_{H \to 0} f_{H,\infty} = -\begin{cases} Jd + B^2/4Jd & \text{if } B \le 2Jd, \\ B & \text{if } B > 2Jd. \end{cases}$$
(9)

We shall now give a proof of (9).

2.1 The case B > 2Jd

We use the method of steepest descent to prove this result, following the calculation by Baxter [7]. We let H = 0 in (8). Clearly the integrand in (8) may be multiplied by a factor $\exp a(\sum_{k=1}^{N} (x_k^2 + y_k^2 + z_k^2) - N)$ without changing the partition function Z_N . Using the identity

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{isx} ds, \qquad (10)$$

together with (8) and letting a > 0, we get

$$Z_N = \frac{\pi^{N-1}}{2} \int_{\mathbf{R}^N} \int_{-\infty}^{\infty} \left(\frac{1}{a+is}\right)^N \exp\frac{N(\beta B)^2}{4(a+is)}$$
$$\exp\left[\sum_{\langle jk \rangle} \beta J z_j z_k + \sum_j (a+is)(1-z_j^2)\right] ds \ d^N z \tag{11}$$

after integrating over \mathbf{x} and \mathbf{y} . Let \mathbf{V} be the symmetric matrix such that

$$\mathbf{z}^T \mathbf{V} \mathbf{z} = (a+is) \sum_{j=1}^N z_j^2 - \beta J \sum_{\langle jk \rangle}^N z_j z_k.$$
(12)

In this way (11) can be written as

$$Z_N = \frac{\pi^{N-1}}{2} \int_{\mathbf{R}^N} \int_{-\infty}^{\infty} \left(\frac{1}{a+is}\right)^N \exp\frac{N(\beta B)^2}{4(a+is)} \exp\left[-\mathbf{z}^T \mathbf{V} \mathbf{z} + N(a+is)\right] ds \ d^N z.$$
(13)

We now choose the constant a so large that all the eigenvalues of **V** have positive real part. This allows us to change the order of integration, and we may now write (13) as

$$Z_N = \frac{\pi^{3N/2-1}}{2} \int_{-\infty}^{\infty} \left(\frac{1}{a+is}\right)^N (\det \mathbf{V})^{-1/2} \\ \exp\left[\frac{N(\beta B)^2}{4(a+is)} + N(a+is)\right] ds.$$
(14)

We need to calculate the eigenvalues of \mathbf{V} . Since \mathbf{V} is cyclic, this is easily done. We let the lattice be *d*-dimensional hypercubic, so that

$$N = L^d \tag{15}$$

for some positive integer L. It now follows from (12) that the eigenvalues are

$$\lambda(\omega_1, ..., \omega_d) = a + is - \beta J \sum_{j=1}^d \cos \omega_j$$
(16)

where each ω_j takes the values $\{2\pi k/L\}_{k=0}^{L-1}$, and $a > \beta Jd$. The determinant of **V** is the product of its eigenvalues, so

$$\log \det \mathbf{V} = \sum_{\omega_j \ : \ 1 \le j \le d} \log \lambda(\omega_1, ..., \omega_d).$$
(17)

Clearly

$$Z_N = \frac{\beta J}{2\pi i} \left(\frac{\pi}{\beta J}\right)^{3N/2} \int_{c-i\infty}^{c+i\infty} e^{N\phi(w)} dw, \qquad (18)$$

where

$$\phi(w) = \beta J w - \frac{1}{2} g(w) + (\beta B)^2 / 4\beta J w,$$
(19)

 $c = (a - \beta J d) / \beta J$ and

$$g(z) = 2\log w + \frac{1}{N}\sum_{\omega_j}\log\left(w - \sum_j\cos\omega_j\right).$$
(20)

Since ϕ approaches $+\infty$ as w approaches 0 or $+\infty$ along the real line, ϕ has a minumum at some w_0 , $0 < w_0 < \infty$. Thus $\Re \phi$ has a maximum at w_0 along the line $(w_0 - i\infty, w_0 + i\infty)$. Since B > 2Jd, we may choose $c = w_0$. We now use the method of steepest descent (see for instance Murray [8]), by letting N approach infinity. In this way, the free energy is

$$f = -\beta^{-1} \lim_{N \to \infty} N^{-1} \log Z_N = -\frac{3}{2\beta} \ln (\pi/\beta J) - \beta^{-1} \phi(w_0).$$
(21)

Now

$$\lim_{\beta \to \infty} w_0 = B/2J,\tag{22}$$

and thus the ground state energy is

$$\lim_{\beta \to \infty} f = -\lim_{\beta \to \infty} \beta^{-1} \phi(w_0)$$
$$= -B.$$
(23)

2.2 The case $B \leq 2Jd$

In this case we let H > 0, so instead of (13) we have

$$Z_N = \frac{\pi^{N/2-1}}{2} \int_{\mathbf{R}^N} \int_{-\infty}^{\infty} \left(\frac{1}{a+is}\right)^N \exp\frac{N(\beta B)^2}{4(a+is)}$$
$$\exp\left[-\mathbf{z}^T \mathbf{V} \mathbf{z} + \mathbf{h}^T \mathbf{z} + N(a+is)\right] \, ds \, d^N z, \tag{24}$$

where $\mathbf{h} = \beta H(1, ..., 1)$. We change variables to $\mathbf{t} = \mathbf{z} - \frac{1}{2}\mathbf{V}^{-1}\mathbf{h}$, and rotate the axes in $(t_1, ..., t_N)$ to make **V** diagonal. Thus we get

$$Z_N = \frac{\pi^{N/2-1}}{2} \int_{-\infty}^{\infty} \left(\frac{1}{a+is}\right)^N (\det \mathbf{V})^{-1/2} \exp \frac{N(\beta B)^2}{4(a+is)} \exp\left[\mathbf{h}^T \mathbf{V}^{-1} \mathbf{h}/4 + N(a+is)\right] ds.$$
(25)

Thus

$$Z_N = \frac{\pi^{N/2}}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{N\phi(w)} dw, \qquad (26)$$

where $a + is - \beta Jd = \beta Jw$ and

$$\phi(w) = \beta J(w+d) + \frac{(\beta H)^2}{4\beta Jw} + \frac{(\beta B)^2}{4\beta J(w+d)}$$

- $\log \beta J(w+d) - \frac{1}{2} \sum_{\omega_j} \log (\beta J(w+d) - \beta J \sum_j \cos \omega_j).$ (27)

We proceed in the same way as before, taking the limit $N \to \infty$ and then $\beta \to \infty$. In this case $w_0 \to 0$ as $H \to 0$. The free energy is thus

$$f = -Jd - \frac{B^2}{4Jd}.$$
(28)

This ends the proof.

3 Discussion

Comparison of (5) and (9) shows that the susceptibilities of the two models at B = 0 are equal when d = 1; that is $-\partial^2 f_{\infty}/\partial B^2|_{B=0} = 1/2J$ and $-\partial^2 f_{0,\infty}/\partial B^2|_{B=0} = 1/2Jd$. While the Quantum Ising Model has only been exactly solved in the one dimensional case, the quantum spherical modelcan be solved in any finite dimension.

Acknowledgements The authour would like to thank Prof. T. Dorlas for many discussions.

References

- E. Lieb, T. Schultz and D. Mattis. Two Soluble Models of an Antiferromagnetic Chain. Ann. Phys., 16, 407 (1961).
- [2] D. C. Mattis. *The theory of magnetism made simple*. World Scientific, New Jersey (2006).
- B. M. McCoy. Spin Correlation Functions of the X-Y Model. Phys. Rev., 173, 531 (1968).
- [4] B. Kaufman and L. Onsager. Crystal statistics. III. Short-range order in a binary Ising model. Phys. Rev. 76, 1244 (1949).
- [5] E. W. Montroll, R. B. Potts and J. C. Ward. Correlations and spontaneous magnetization of the two dimensional Ising model. J. Math. Phys., 4, 308 (1963).
- [6] U. Grenander and G. Szegö. *Toeplitz Forms and Their Applications*. University of California Press. Berkeley (1958).
- [7] R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press, London (1982).
- [8] J. D. Murray. Asymptotic Analysis. Springer-Verlag, New York (1984).