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Abstract

We construct a path distribution representing the kinetic part of
the Feynman path integral at discrete times similar to that defined
by Thomas [1], but on a Hilbert space of paths rather than a nuclear
sequence space. We also consider different boundary conditions and
show that the discrete-time Feynman path integral is well-defined for
suitably smooth potentials.
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1 Motivation and basic set-up

1.1 Feynman path integral as a path distribution

In the Lagrangian formulation of quantum mechanics one defines the action
of a particle as an integral of the Lagrangian over the time duration of the
motion:

S(xf , tf ; xi, ti) =

∫ tf

ti

dt L(x(t), ẋ(t), t).

In general, the Lagrangian L(x(t), ẋ(t), t) depends explicitly on the time,
as well as on the position x(t) and the velocity ẋ(t) of the particle. For
one-dimensional motion, the Lagrangian has the form

L(x(t), ẋ(t), t) =
m

2
ẋ(t)2 − V (x(t), t) ,

where the first term is the kinetic energy term and V (x(t), t) is the external
potential. The time-evolution of a wave function Ψ(x, t) is then given by

Ψ(xf , tf) =

∫
K(xf , tf ; xi, ti) Ψ(xi, ti)dxi, (1.1)

where the propagator K(xf , tf ; xi, ti) is given by a path integral of the form

K(xf , tf ; xi, ti) =

∫
eiS(xf ,tf ;xi,ti)/~D[x(t)]. (1.2)

Here D[x(t)] indicates a putative “continuous product” of Lebesgue measures
D[x(t)] =

∏
t∈(ti,tf ) dx(t). (Note that the action S above is a functional of the

path x(t).) It is a formidable mathematical challenge to make sense of this
path-integral concept. Feynman himself interpreted it loosely as a limit of
multidimensional integrals. However, as Thomas[1] remarks, even the finite-
dimensional integrals are not proper integrals, though they can be defined as
improper integrals. It was already noted by Cameron[2] that the path integral
cannot be interpreted as a complex-valued measure. In fact, as Thomas [1]
and Bijma [3] show, it cannot even be interpreted as a summable distribution
because the summability order diverges as the number of integrals tends to
infinity.
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Various alternative approaches have been proposed to interpret the Feyn-
man path integral as a limit of regularised integrals, e.g. [4, 5, 6]. The ‘Eu-
clidean approach’ of ‘Wick rotating’ the time in the complex plane has led to
the development of Euclidean quantum field theory, which has been the most
successful way of constructing examples of quantum field theories. However,
this still leaves open the question as to how the path integral object should be
interpreted mathematically. DeWitt-Morette [7] has argued that it should be
a kind of distribution, but her approach was formal rather than constructive.
The Itô-Albeverio-Høegh Krohn [8] approach was more constructive. They
gave a definition of the path integral as a map from the space of Fourier
transforms of bounded measures to itself and were able to show, using a per-
turbation expansion, that this is well-defined for potentials which are also
Fourier transforms of bounded measures. Albeverio and Mazzucchi [9] later
extended this approach to encompass polynomially growing potentials. This
approach gives a mathematical meaning to the path-integral expression for
the solution of the Schrödinger equation with initial wave function, rather
than the propagator. A different approach in terms of functionals of white
noise was proposed by Hida, Streit et al. [10]. In both approaches, the space
of ‘paths’ is rather abstract.

In [1], Thomas initiated a different approach, with the aim of defining
the path integral as a generalised type of distribution, in the spirit of De
Witt-Morette, which he called a path distribution. In fact, this project is
only at the beginning stages. In [1], he constructed an analogue of the path
integral in discrete time, where the paths are sequences in a certain nuclear
sequence space. His main idea is to define the path integral as a derivative of
a measure, which we call the Feynman-Thomas measure. In this paper, we
simplify his approach by defining the path distribution on a space of paths
in a Hilbert space instead. This makes the construction more explicit and
the technical details less demanding.

In the following, we set m = 1 and ~ = 1 for simplicity. Discretising the
action to a finite subdivision σ = {t1, ..., tn} with 0 = t0 < t1 < · · · < tn < T
and x = (x1, .., xn) ∈ Rn we can consider different boundary conditions. For
Dirichlet boundary conditions (DBC) we have

x(t = 0) = 0; x(t = T ) = XT ,

and
S(XT , T ; 0, 0) = lim

n→∞
S(DBC)
n (XT , T ; 0, 0) ,
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where :

S(DBC)
n (xn+1 = XT , tn+1 = T ; x0 = 0, t0 = 0) =

=
1

2

(
(XT − xn)

2

T − tn
+

(xn − xn−1)
2

tn − tn−1

+ . . .+
(x2 − x1)

2

t2 − t1
+

x2
1

t1

)
.(1.3)

Alternatively, we can impose mixed boundary conditions (MBC):

x(t = 0) = 0; ẋ(t = T ) = vT

in which case the action depends on the initial position and the final velocity
S = S(vT , T ; xi, ti), so that

S(vT , T ; 0, 0) = lim
n→∞

S(MBC)
n

(
xn+1 − xn

tn+1 − tn
= vT , T ; x0 = 0, t0 = 0

)
,

where

S(MBC)
n

(
xn+1 − xn

tn+1 − tn
= vT , tn+1 = T ; x0 = 0, t0 = 0

)
= (1.4)

=
1

2

(
v2T (T − tn) +

(xn − xn−1)
2

tn − tn−1
+ . . .+

(x2 − x1)
2

t2 − t1
+

x2
1

t1

)
. (1.5)

The corresponding Feynman distributions are as follows

F (DBC)
σ =

1√
2iπ(T − tn)

exp

[
i

2

(
(XT − xn)

2

T − tn
+

(xn − xn−1)
2

tn − tn−1

+ . . .+
(x2 − x1)

2

t2 − t1
+

x2
1

t1

)] n∏

j=1

(
dxj√

2iπ(tj − tj−1)

)
(1.6)

and

F (MBC)
σ = exp

[
i

2

(
(xn − xn−1)

2

tn − tn−1
+ . . .+

(x2 − x1)
2

t2 − t1
+

x2
1

t1

)]

×
n∏

j=1

dxj√
2iπ(tj − tj−1)

, (1.7)

for the (MBC) with vT = 0.
The Fourier transform of Fσ is obtained by computing the covariance

matrix as the inverse of the coefficient matrix. In the case of mixed boundary
conditions this yields

F̂ (MBC)
σ =

〈
exp

[
i

n∑

k=1

ξkxk

]
, F (MBC)

σ

〉
= e−

i
2
〈ξ,Kσξ〉, (1.8)
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〈ξ,Kσξ〉 =
∑

Ki,jξiξj with Ki,j = min (ti, tj). (1.9)

The case of Dirichlet boundary conditions is slightly more complicated:

F̂ (DBC)
σ =

〈
exp

[
i

n∑

k=1

ξkxk

]
, F (DBC)

σ

〉
=

1√
2iπT

e
− i

2

(

〈ξ,K(T )
σ ξ〉+X2

T
/T

)

,

(1.10)

〈ξ,K(T )
σ ξ〉 =

∑
K

(T )
i,j ξiξj with K

(T )
i,j = min (ti, tj)

(
1− 1

T
max(ti, tj)

)
.

(1.11)

Remark. Notice in particular that 〈1 , F (MBC)
σ 〉 = 1 whereas

〈1 , F (DBC)
σ 〉 = 1√

2iπT
e−

i
2T

X2
T in accordance with [11].

Both F
(DBC)
σ and F

(MBC)
σ are summable distributions of sum-order n+1

by Theorem 3.1 of [1].
As in [1], we now change our point of view and fix tn− tn−1 = 1 and seek

to define a limiting distribution on a space of sequences (xi)
∞
i=1 as n → ∞.

Note that in this case Kij = min (i, j) by (1.9). Rather than on a nuclear
sequence space, however, we will construct a path distribution on a Hilbert
space of sequences.

1.2 Feynman-Thomas Measure on Rn

The main idea of [1] is to define the path ‘integral’ as a path distribution
obtained as the derivative of a measure. Because the order of the distribution
is 2 in each variable we need to take 2 derivatives in each variable. We
therefore define the differential operators

D(n) =

n∏

i=1

(
1− α2

i

∂2

∂x2
i

)
, (1.12)

where the positive constants are arbitrary. It has a corresponding Green’s
function Mα given by

M (n)
α (x1, . . . , xn) =

n∏

i=1

1

2αi
e−|xi|/αi , (1.13)

that is,
D(n)M (n)

α = δ(x1) . . . δ(xn). (1.14)

We can now define the path distribution F (n) given by (1.7) as the deriva-
tive

F (n) = D(n)µ(n) (1.15)
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of a bounded complex-valued measure µ(n) which according to (1.14) is given

by the convolution product M
(n)
α ∗F (n). To determine this convolution prod-

uct, we use the representation

1

2α
e−|x|/α =

∫ +∞

0

ds

β
e−s/β e

−x2/2s

√
2πs

, with β = 2α2 . (1.16)

This can be obtained by Fourier transformation:

∫ +∞

0

ds

β
e−s/β e

−x2/2s

√
2πs

=

∫ +∞

0

ds

β
e−s/β

∫

R

dk

2π
eikxe−sk2/2

=

∫

R

dk

2πβ

eikx

β−1 + k2/2
,

which implies (1.16) using the residue theorem. The representation (1.16)
yields an explicit formula for what we may call the Feynman-Thomas measure
on the finite sequence space Rn:

Definition 1.1 The Feynman-Thomas measure µ(n) on Rn is defined by

µ(n)(dx1 . . . dxn) = M (n) ∗ F (n)(dx1 . . . dxn)

=

(∫

[0,+∞)n
ν(n)(dS(n))GA(n)(x1, . . . , xn)

)
dx1 . . . dxn

(1.17)

where we integrate over the variables s1, .., sn

ν(n)(dS(n)) =

n∏

i=1

1

βi
e−si/βidsi with βi = 2α2

i . (1.18)

and where GA(n) is the convolution product of (x1, .., xn) 7→
∏n

j=1(2πs)
−1/2e−x2

j/2s

with F (n)(dx1, .., dxn). Then, using (1.8) and (1.16), the Fourier transform
of the complex Gaussian GA(n)(x1, .., xn) is given by

ĜA(n)(ξ1, .., ξn) = e−〈A(n)ξ(n),ξ(n)〉/2 (1.19)

where ξ(n) = (ξ1, . . . , ξn) ∈ Rn and where A(n) = S(n) + iK(n), S(n) =

diag(s1, . . . , sn) and K
(n)
i,j = min (i, j). Notice that A(n) is a complex sym-

metric matrix with positive real part which implies that it is invertible [1].
Hence, by computing the inverse Fourier transform, we get

GA(n)(ξ1, .., ξn) =
1√

(2π)n det (A(n))
e−〈(A(n))−1x(n),x(n)〉/2 , (1.20)
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It was shown in [1] that µ(n) is a bounded complex-valued measure on
Rn. The aim of this work is to prove that there exists a measure µ on an
infinite dimensional Hilbert space of paths, given by the projective limit of
the finite-dimensional measures µ(n), i.e. µ = lim←−µ(n).

2 Hilbert spaces of paths

2.1 Regularized-l2 spaces

We introduce a family of Hilbert spaces of sequences labelled by a real pa-
rameter γ:

l2γ = {(ξi)∞i=1 ∈ R
∞|

∞∑

i=1

iγ ξ2i < +∞}. (2.21)

This is a Hilbert space with inner product given by

(ξ, ζ)γ =
∞∑

i=1

ξi ζi i
γ (2.22)

(Notice that obviously l20 = l2.)
We have the obvious lemmas

Lemma 2.1 The set of vectors {e(γ)i }∞i=1, given by the sequences

(
e
(γ)
i

)
j
= δi,jj

−γ/2,

is an orthonormal basis of the Hilbert space l2γ.

and

Lemma 2.2 The Hilbert spaces l2γ and l2−γ are dual w.r.t. the duality bracket

〈ξ , ζ ′〉 =
∞∑

i=1

ξi ζ
′
i,

where ξ = (ξi)
∞
i=1 ∈ l2γ and ζ ′ = (ζ ′i)

∞
i=1 ∈ l2−γ.

We shall construct the Feynman-Thomas measure µ on a space l2−γ for
a γ > 0 large enough. The advantage of the Hilbert space approach is that
we can use the following theorem due to V. Sazonov for the existence of the
projective limit, the proof of which is quite simple: see the Appendix and
[12].
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Theorem 2.3 (V. Sazonov) Let (µ(N))N∈N be a projective system of bounded
measures on the dual H′ of a separable Hilbert space H, i.e. there is an
orthonormal basis {ei}∞i=1 of H with dual basis {e′i}∞i=1 such that µ(N) is a
bounded (in general complex-valued) measure on the span of {e′1, . . . , e′N},
such that for M > N , π′

N (µ
(M)) = µ(N), where π′

N is the projection onto the
span of {e′1, . . . , e′N}. Assume that there exist positive measures νN such that
|µ(N)| ≤ νN and which are uniformly bounded:

sup
N∈N
||νN || < +∞,

and such that the Fourier transforms ΦN : H → C given by

ΦN(ξ) =

∫
ei〈πN (ξ), x〉νN (dx),

(where πN is the projection on the span of {e1, . . . , eN}) are equicontinuous at
ξ = 0 in the Sazonov topology, i.e. for all ǫ > 0 there exists a Hilbert-Schmidt
map u ∈ B(H) such that

||u ξ|| ≤ 1 =⇒ |ΦN(ξ)− ΦN (0)| ≤ ǫ ∀N ∈ N.

Then there exists a unique bounded Radon measure µ on H′
σ, where the sub-

script σ denotes the weak topology, such that π′
N(µ) = µ(N) for all N ∈ N.

To determine the projective limit of the complex-valued measures µ(n)

above, we apply this theorem to auxiliary positive measures which dominate
|µ(n)|.

2.2 Construction of auxiliary measures on Rn

We want to construct an auxiliary measure µaux to give a majorisation of the
modulus of the Feynman-Thomas measure µ, see Definition 1.1. Indeed, if we
can prove that this auxiliary measure is strongly concentrated on an Hilbert
space l2−γ for some γ > 0 (i.e. defines a Radon measure µaux on this space; this
is the case if its total mass is concentrated on a compact set up to arbitrary
ǫ > 0: see e.g. [13]), then it follows that µ is also strongly concentrated
on l2−γ since |µ| ≤ µaux. (We remark that the covariance K = limn→∞K(n)

must then be considered as a map K : l2γ → l2−γ with kernel Ki,j = min(i, j),
so that 〈ξ , K ξ〉 =

∑
i,j Ki,jξi ξj.) The auxiliary measure µaux will be the

projective limit of the measures µ
(n)
aux given by

µ(n)
aux(dx1 . . . dxn) =

∫

Rn
+

|GA(n)(x1, .., xn)| ν(n)(dS(n)) dx1 . . . dxn (2.23)
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where GA(n(x1, .., xn) and ν(dS(n)) are defined in Definition 1.1.
The Fourier transform with respect to x of the auxiliary measure is defined
by:

Φn(ξ) =

∫
µ(n)
aux(dx1 . . . dxn) e

i〈x(n),ξ(n)〉 (2.24)

The aim is now to show that the measures µ
(n)
aux on l2−γ satisfy the condi-

tions of Sazonov’s theorem. Then it follows that the projective limit

µ = lim←−µ(n)

exists on l2−γ w.r.t. the weak topology.
Evaluating (2.23) using (1.20) we have

µ(n)
aux(dx1 . . . dxn) =

∫

Rn
+

ν(n)(dS(n)) exp

[
−1
2
〈x(n),ℜe

(
(A(n))−1

)
x(n)〉

]

× dx1 . . . dxn

(2π)n/2
∣∣∣
√

det(S(n) + iK(n))
∣∣∣

(2.25)

where x(n) = (x1, . . . , xn). To compute the Fourier transform, we need to

determine B(n) =
(
ℜe(A(n))−1

)−1
. Omitting the superscripts for simplicity,

we have
A−1 = S−1/2

(
I + iS−1/2KS−1/2

)−1
S−1/2.

With C = S−1/2KS−1/2,

(I + iC)−1 = (I + C2)−1(I − iC)

and since C is real,

(ℜe(A)−1)−1 = S1/2(ℜe(I + iC)−1)−1S1/2

= S1/2(I + C2)S1/2 = S +KS−1K.

Thus
B(n) =

(
ℜe(A(n))−1

)−1
= S(n) +K(n)(S(n))−1K(n) , (2.26)

which is a positive definite symmetric matrix. We also compute

∫
|GA(n)(x)| dnx =

√
detB(n)

√
| detA(n)|

.

Using

| detA| = (detS)| det(I + iC)| = (detS) det(I + C2)| det(I − iC)|−1

9



and
detB = (detS) det(I + C2)

we have
∫
|GA(n)(x)| dnx =

√
| det(I − i(S(n))−1/2K(n)(S(n))−1/2)|. (2.27)

The Fourier transform with respect to the sequence x(n) is then (see (2.23),
(2.24), (2.25), (2.27)) :

Φn(ξ) =

∫

Rn
+

ν(dS(n))e−〈ξ(n),B(n)ξ(n)〉/2
√
| det(1− i(S(n))−1K(n))|, (2.28)

where we integrate over the variables s1, .., sn and where ξ(n) = (ξ1, ..ξn) and
where B(n) = S(n)+Γ(n), with Γ(n) = K(n)(S(n))−1K(n). In the following two
subsections we verify that the conditions for Theorem 2.3 are satisfied on the
Hilbert space H′ = l2−γ for γ > 0 large enough, i.e. that ||µ(n)

aux|| is uniformly
bounded, and that Φn(ξ) is equicontinuous w.r.t. the Sazonov topology on
H = l2γ. For the latter it suffices if the quadratic form ξ 7→ 〈ξ(n), B(n)ξ(n)〉 is
equicontinuous in the Sazonov topology on l2γ for a.e. S.

Defining the map B = S + Γ, with Γ = KS−1K, which is the inverse of
the real part of the inverse of A, i.e. B = (ℜe(A−1))

−1
as a map: l2γ → l2−γ,

the Fourier transform of the limiting auxiliary measure µaux on l2−γ will be
given by

Φ(ξ) =

∫
ν(dS)e−〈ξ,Bξ〉/2√| det(1− iS−1K)|, ξ ∈ l2γ. (2.29)

2.3 Uniform boundedness

It is clear from (2.23) and (2.27) that the norm of the measure µ
(n)
aux is given

by

||µ(n)
aux|| =

∫
ν(dS(n))

√
| det(1− i(S(n))−1K(n))|. (2.30)

Lemma 2.4 We have
sup
n∈N
||µ(n)

aux|| < +∞,

if the following condition holds

sup
n∈N

n∑

i=1

κ
(n)
i < +∞

10



where

κ
(n)
i =

√√√√
n∑

j=1

|Ki,j|2
βiβj

. (2.31)

Proof: We omit the superscripts n as before. Define K̃i,j =
Ki,j√
βiβj

and

s̃i = si/βi. Then

κi =

√√√√
n∑

j=1

|K̃i,j|2.

Rescaling, we have
∫

ν(dS(n))
√
| det (I − i(S−1/2KS−1/2) | =

=

∫

Rn
+

dns̃ e−(s̃1+···+s̃n)

√
| det

(
I − i(S̃−1/2K̃S̃−1/2

)
|

=

∫

Rn
+

dns̃ e−(s̃1+···+s̃n)

√
| det

(
I − i(S̃−1K̃

)
|.

This can be estimated as in [1] by means of the Hadamard inequality (see
e.g. [14])

| det(A(n))| ≤
n∏

i=1

√√√√
n∑

j=1

|Ai,j|2. (2.32)

It follows that (omitting the tilde on s)

∫

Rn
+

dns e−(s1+···+sn)

√
| det(I − iS−1K̃)| ≤

n∏

i=1

∫ ∞

0

ds e−s(1 + κ2
i s

−2)1/4.

(2.33)
Using

(1 + x)1/4 ≤ 1 + x1/4

for s ≤ κi and
(1 + x)1/4 ≤ 1 + x/4

for s > κi, we obtain

∫ ∞

0

ds e−s(1 + κ2
i s

−2)1/4 ≤ 1 + k
1/2
i

∫ ki

0

e−ss−1/2ds+
1

4
k2
i

∫ +∞

ki

e−ss−2ds

≤ 1 +
9

4
κi ,

11



since e−s ≤ 1. Therefore

∫
ν(dS(n))

√
| det (I − i(S−1/2KS−1/2) | ≤

n∏

i=1

(
1 +

9

4
κi

)
≤ exp

[
9

4

n∑

i=1

κi

]
.

(2.34)
�

Corollary 2.5 Set Ki,j = i ∧ j and assume βi = ciδ for come c > 0 and
δ > 0. Then

sup
n∈N
||µ(n)

aux|| < +∞ if δ >
5

2
.

Proof.

(κ
(n)
i )2 =

n∑

j=1

|K̃ij|2 = c−2

n∑

j=1

(i ∧ j)2

iδjδ
(2.35)

= c−2i−δ
i∑

j=1

j2−δ + c−2i2−δ
n∑

j=i+1

j−δ (2.36)

We use the following estimates:

i∑

j=1

j2−δ 6 1 +

∫ i

1

dzz2−δ =
2− δ

3− δ
+

i3−δ

3− δ

∞∑

j=i+1

j−δ 6

∫ ∞

i

dzz−δ =
i1−δ

δ − 1

with the condition δ > 2 (and δ 6= 3).
If δ < 3 then it follows that the both terms in (2.35) behave like i3−2δ and

hence supn∈N
∑n

i=1 κ
(n)
i < +∞ if

∑∞
i=1 i

3
2
−δ < +∞, i.e. δ > 5/2. If δ ≥ 3 the

first term dominates and behaves like i−δ (or i−3 ln i) and the sum
∑n

i=1 κ
(n)
i

is also bounded. �

2.4 Equicontinuity of the quadratic forms

It remains to determine when the quadratic form 〈Bξ, ξ〉 is continuous in the
Sazonov topology. Since

|〈Bξ, ξ〉| ≤ |〈ξ, Sξ〉|+ |〈ξ,Γξ〉|,

12



it suffices to find two Hilbert-Schmidt maps uS and uΓ such that:

|〈ξ, Sξ〉| ≤ ||uSξ||2,

|〈ξ,Γξ〉| ≤ ||uΓξ||2.
Here we note that by unitary equivalence, the image Hilbert space is arbi-
trary. We construct the maps uR, uΓ : l2γ → l2.

Lemma 2.6 The quadratic form 〈Sξ, ξ〉, ξ ∈ l2γ, for some γ > 0, is con-
tinuous in the sense of Sazonov topology for ν−almost every S = (si)i≥1

if

∑

i

βi

iγ
< +∞. (2.37)

Proof:

Let S = (si)i≥1. Then,

|〈Sξ, ξ〉| = |〈
√
Sξ,
√
Sξ〉| = ||

√
Sξ||2l2 ,

since S is diagonal and positive. We therefore choose uS =
√
S and obtain

||uS||2HS = ||
√
S||22,γ =

∞∑

i=1

||uSe
(γ)
i ||2

=

∞∑

i=1

||√sii−γ/2ei||2 =
∞∑

i=1

si
iγ
.

This converges for ν−almost every S if :

∞∑

i=1

∫
si
iγ
ν(dS) =

∞∑

i=1

∫ ∞

0

dsi
βi

si
iγ
e−si/βi =

∞∑

i=1

βi

iγ
< +∞.

�

Lemma 2.7 The quadratic form 〈ξ,Γξ〉, ξ ∈ l2γ for some γ > 0 is continuous
w.r.t. the Sazonov topology for ν−almost every S if

∞∑

i=1

√√√√
∞∑

j=1

|Ki,j|2
βijγ

< +∞. (2.38)

13



Proof. Since Γ = KS−1K, we have

|〈ξ,Γξ〉| = |〈S−1/2Kξ, S−1/2Kξ〉| = ||S−1/2Kξ||2

because S is diagonal and positive and K is symmetric. Therefore we choose
uΓ = S−1/2K and have the following condition:

||uΓ||2HS = ||S−1/2K||22,γ < +∞ for ν − a.e.S (2.39)

We compute the Hilbert-Schmidt norm:

||uΓ||2HS =
∞∑

i=1

||S−1/2Ke
(γ)
i ||2

=

∞∑

i=1

||
∞∑

j,k=1

s
−1/2
j Kj,kk

−γ/2δikej ||2

=
∞∑

i=1

∞∑

j=1

1

sj
|Kj,i|2i−γ .

Since ∞∑

i=1

ai < +∞ =⇒
∞∑

i=1

a2i < +∞

it suffices if
∞∑

i=1

1√
si

√√√√
∞∑

j=1

|Ki,j|2
jγ

< +∞.

Now, ∫ ∞

0

1√
s
e−s/β ds

β
=

√
π

β

so the condition (2.38) follows. �

3 Existence of the Feynman-Thomas measure

on l2−γ

Theorem 3.1 Consider the map K : l2γ → l2−γ with Ki,j = i∧ j, and assume
γ > 7

2
. Then there exists a unique path distribution FK on l2−γ such that

F̂K(ξ) = e−i〈Kξ,ξ〉/2 given by FK = Dµ where D =
∏∞

i=1

(
1− βi

2
∂2

∂x2
i

)
and

where µ is a bounded Radon measure strongly concentrated on l2−γ w.r.t. the
weak topology.

14



Proof. It suffices to prove that the auxiliary measures satisfy the condi-
tions of Sazonov’s theorem. By the above lemmas, it suffices if the following
conditions hold:

βi = iδ with δ >
5

2
;

∞∑

i=1

βi

iγ
< +∞;

and
∞∑

i=1

√√√√
∞∑

j=1

|Ki,j|2
βijγ

< +∞.

The first two conditions hold if γ > 7
2
and the proof of the the Corollary 2.5

then shows that the last condition is also fulfilled. �

Corollary 3.2 Suppose that the potential V : R→ R belongs to E (2)(R), i.e.
it is twice continuously differentiable with bounded first and second deriva-
tives. Moreover, let (λj)

∞
j=1 be a sequence of positive constants such that∑∞

j=1 βjλj < +∞, where the constants βj satisfy the conditions of the above

lemmas, in particular if βj = c iδ with δ > 5/2. Then the Feynman ‘path
integral’ 〈

exp

[
−i

∞∑

j=1

λjV (xj)

]
, F

〉

exists.

Proof. This follows from the theorem since

〈
exp

[
−i

∞∑

j=1

λjV (xj)

]
, F

〉
=

〈
D exp

[
−i

∞∑

j=1

λjV (xj)

]
, µ

〉

where µ is the Feynman-Thomas measure. It therefore suffices if

D exp
[
−i
∑∞

j=1 λjV (xj)
]
is bounded. But

D exp

[
−i

∞∑

j=1

λjV (xj)

]
=

=

∞∏

j=1

{
1 +

1

2
βj

(
iλjV

′′(xj) + λ2
j(V

′(xj))
2
)}

exp

[
−i

∞∑

j=1

λjV (xj)

]
.

and
∑∞

j=1 βjλ
2
j < ∞ since

∑∞
j=1 βjλj < ∞ implies that λj → 0 as j → ∞.

�
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Remark. In particular, one can take λj = e−ǫ j for small ǫ > 0. This is
quite common procedure in scattering theory, known as ‘adiabatically switch-
ing off’ the potential.

4 Concluding remarks

We have defined the Feynman ‘path integral’ with the initial condition x0 = 0
at t = 0. It is straightforward to modify this definition to allow for a general
boundary condition x(t) = xk at t = k for an arbitrary integer k. Formally,
one then has

F (MBC)
n = exp

[
i

2

∞∑

n=k+1

(xn − xn−1)
2

] ∞∏

i=k+1

(
dxi√
2iπ

)
. (4.40)

Denoting

Ψk(xk) =

〈
exp

[
−i

∞∑

j=k

V (xj)λj

]
, F (MBC)

n

〉
, (4.41)

Ψk plays the role of a wave function at time k. There is then an obvious
recursion relation:

Ψk(xk) =

∫
exp

[
i

2
(xn − xn−1)

2 − iV (xk)λk

]
Ψk+1(xk+1)

dxk+1√
2iπ

. (4.42)

This equation is the analogue of the integrated Schrödinger equation in the
negative-time direction, i.e. Ψt = ei(t

′−t)HΨt′ (t
′ > t). (It might therefore

have been better to define the Feynman path integral from −∞ to k instead.
This would represent an incoming wave from t = −∞ to the present.) Note
that the integral kernel in (4.42) defines an operator on the space E (∞)(R) of
infinitely differentiable functions with bounded derivatives (if V has bounded
first and second derivatives). This follows easily by integration by parts,
which is the essence of the distributional approach.

Note that in the Albeverio - Høegh Krohn approach they assume that V
is the Fourier transform of a measure, and expand e−i

∫

V (x(t))dt. Assuming
that Ψk+1 is also the Fourier transform of a measure, i.e.

V (x) =

∫
eixyν(dy) and Ψk+1(x) =

∫
eixyµk+1(dy),

16



we can do the same here:

Ψk(xk) =

∞∑

n=0

(−i)n
n!

∫
ν(dy1) . . .

∫
ν(dyn)e

i(y1+···+yn)xk

×
∫

µk+1(dy)

∫
dxk+1√
2iπ

eiyxk+1e
i
2
(xk+1−xk)

2

=
∞∑

n=0

(−i)n
n!

∫
ν(dy1) . . .

∫
ν(dyn)e

i(y1+···+yn)xk

×
∫

µk+1(dy)e
− i

2
y2+iyxk

=

∫
µk(dy)e

ixky,

where

〈f, µk〉 =
∞∑

n=0

(−i)n
n!

∫
ν(dy1) . . .

∫
ν(dyn)

∫
µk+1(dy)e

− i
2
y2f(y1+· · ·+yn+y)

defines a bounded measure.
It is also of interest to consider the more general boundary condition at

T → +∞. Taking x0 arbitrary, we define the classical path xi = x0 + v i,
where v = limT→+∞ vT is the limiting velocity. Replacing xi by xi+xi in the
MBC action (1.4) it becomes

S(MBC)
n =

i

2

(
v2(T − tn) +

n∑

i=1

(xi + xi − (xi−1 − xi−1))
2

ti − ti−1

)

=
i

2

n∑

i=1

(xi − xi−1)
2

ti − ti−1
+

i

2
v2T + iv(xn − x0).

The second term on the right-hand side corresponds to the kinetic energy of
a particle with velocity v. The factor eivxn represents an outgoing wave with
this velocity and e

i
2
v2T eivxn its free evolution. One defines the kernel of the

(adjoint) wave operator (Ω−)∗ at momentum kout = v (remember that ~ = 1
and m = 1 so that v = ~k

m
= k) by omitting these factors and then taking

17



n→∞. In the discrete-time case we obtain

(Ω−)∗(kout, x0) =

∫
D[x(t)] exp

[
i

2

∞∑

j=1

(xj − xj−1)
2

]

× exp

[
−i

∞∑

j=1

V (xj + x0 + kout j)λj − ikoutx0

]

=

〈
exp

[
−i

∞∑

j=1

V (xj + x0 + koutj)λj − ikoutx0

]
, F

〉
.

In scattering theory, one usually considers a time interval which is un-
bounded in both directions. One then needs nontrivial boundary conditions
at both ends. We put

F (sc)
n = exp

[
i

2

n∑

j=−n+1

(xj − xj−1)
2

]
n∏

j=−n+1

dxj√
2iπ

. (4.43)

Then the limit F (sc) = limn→∞ F
(sc)
n is defined as a path distribution as above

and the scattering matrix is defined by

S(kout, kin) =

〈
exp

[
−i

∞∑

j=−∞
V
(
xj + x0 + kin(j ∧ 0) + kout(j ∨ 0)

)
λj

]

×e−i(kout−kin)x0, F (sc)

〉
. (4.44)

In this case of course we must take λj = e−ǫ|j|. If V decays sufficiently fast
for |x| → +∞, it is known that the limit ǫ→ 0 exists.

5 Appendix

Here we give a proof of Sazonov’s theorem based on [15]. We use a special
case of Prokhorov’s theorem [16] (see also [13]):

Theorem 5.1 (Prokhorov) Consider a separable Hilbert space H with or-
thonormal basis (en)n∈N, and let (µN)N∈N be a projective sequence of (in
general complex-valued) measures on H. Assume that supN∈N ||µN || < +∞,
and that for all ǫ > 0, there exists a weakly compact set K ⊂ H such that

|µN |(πN(K)c) < ǫ ∀N ∈ N.

18



(Here πN (K)c denotes the complement of πN(K) in πN (H).) Then there
exists a bounded projective limit measure µ = lim←−µN on Hσ such that µN =
πN (µ).

This theorem is proved by remarking that Hσ is a completely regular
topological space and therefore has a Stone-Čech compactification. Using
the Riesz-Markov theorem, it then follows that it suffices to define

〈F, µ〉 =
∫

H
F dµ

for all bounded continuous functions F on Hσ. One then defines 〈F, µ〉 =
limN→∞

∫
F ◦ jN dµn, where jN : H(N) →H is the canonical inclusion of the

span H(N) of {e1, . . . , eN} into H. The limit exists by Prokhorov’s condition
and the uniform continuity of F on compacta as in [17].

We also use a simple lemma from [15]:

Lemma 5.2 Let ν be a probability measure on RN and assume that for a
given ǫ > 0, there exists a positive definite N ×N matrix A such that

〈ξ, Aξ〉 ≤ 1 =⇒
∣∣∣∣1−

∫
ei〈ξ,x〉ν(dx)

∣∣∣∣ ≤ ǫ.

Then, for all R > 0,

ν (BN (R)c) ≤ c

(
ǫ+

2

R2
Tr (A)

)
,

where c > 0 is an absolute constant and BN(R) = {x ∈ RN : ||x|| ≥ R}.
Proof. Since for ||x|| ≥ R, e−||x||2/(2R2) ≤ e−1/2, we have

(1− e−1/2)ν(BN (R)c)

≤
∫

RN

(
1− e−||x||2/(2R2)

)
ν(dx)

=

∫
dξ

(2πR−2)N/2
e−R2||ξ||2/2

∫
(1− ei〈ξ, x〉)ν(dx)

=

∫
1{ξ: 〈ξ,Aξ〉≤1} · · ·+

∫
1{ξ: 〈ξ,Aξ〉>1} . . .

≤ ǫ

∫
dξ

(2πR−2)N/2
e−R2||ξ||2/2 + 2

∫

{ξ: 〈ξ,Aξ〉>1}

dξ

(2πR−2)N/2
e−R2||ξ||2/2

≤ ǫ+ 2

∫ N∑

n,m=1

ξnAnmξme
−R2||ξ||2/2 dξ

(2πR−2)N/2

= ǫ+ 2
N∑

n=1

Ann

∫
ξ2ne

−R2||ξ||2/2 dξ

(2πR−2)N/2
= ǫ+

2

R2
Tr (A).
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Proof of Sazonov’s theorem Let ǫ > 0. By Prokhorov’s theorem, we
need to prove that there exists a (weakly) compact set K ⊂ H′ such that
|µN |(π′

N(K)c) < ǫ for all N . Given η > 0, there exists a Hilbert-Schmidt
map u on H such that

||uξ|| ≤ 1 =⇒ |ΦN (ξ)− ΦN (0)| < η,

where

ΦN(ξ) =

∫
ei〈πN (ξ), x〉νN (dx).

Set
K = {x ∈ H′ : ||x|| ≤ R}.

This set is weakly compact by the Banach-Alaoglu theorem. Now, if ξ ∈
H(N), the span of {e1, . . . , eN}, then

||uξ||2 =
∞∑

n=1

N∑

m,m′=1

unmunm′ξmξm′ = 〈ξ, Aξ〉

where

Amm′ =

∞∑

n=1

unmunm′ = 〈em, uTu(em′〉.

Hence A ≥ 0 and by the lemma applied to the probability measure νN =
νN/||νN ||,

νN(BN (R)c) ≤ c ||νN || (η +
2

R2
Tr (A)) ≤ c ||νN || (η +

2

R2
||u||2HS).

Taking R = ||u||HS

√
2η and η = ǫ/(2c supN∈N ||νN ||), we have, since πN (K) =

BN (R), |µ(N)|(πN(K)c) ≤ ǫ. �
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