
DIAS-STP-10-02

IMPLEMENTING GRÖBNER BASES FOR OPERADS

VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

Abstract. We present an implementation of the algorithm for computing
Gröbner bases for operads due to the first author and A. Khoroshkin. We dis-
cuss the actual algorithms, the choices made for the implementation platform
and the data representation, and strengths and weaknesses of our approach.

1. Introduction

1.1. Summary of results. In an upcoming paper [4], the first author and Anton
Khoroshkin define the concept of a Gröbner basis for finitely presented operads. In
that paper, they prove the diamond lemma, and demonstrate that for an operad,
having a quadratic Gröbner basis is equivalent to the existence of a Poincaré–
Birkhoff–Witt basis. As demonstrated by Eric Hoffbeck [5], an operad with a PBW
basis is Koszul. Hence, an implementation of the Gröbner bases algorithm yields, in
addition to a framework for exploration of operads by means of explicit calculation,
a computer-aided tool for proving Koszulness.

In this paper, we present an implementation of the Gröbner basis algorithm
in the Haskell programming language [7]. Being designed with categorical terms,
Haskell provides a powerful framework for algorithms like that. What we end up
with is a computer sofware package which allows to compute the Gröbner basis for
a finitely presented operad, as well as bases and dimensions for components of such
an operad.

One of the main goals of this paper is to help mathematicians who want to get
familiar with this software package and use it for their needs, including changing
some algorithms or adding more functionality.1 Consequently, this is more of an
invitation to experiment with this software than a report on what it is possible to
compute. Let us comment briefly on the state of the art regarding computations.
While working on the package, we have implemented several well known operads to
test the performance. In the case when an operad is PBW, our package captures
that right away. This already is a very important achievement: having implemented
many different admissible orderings, one can check very fast whether or not an
operad is PBW for at least one of them, thus proving the Koszulness in many cases.
Note that the PBW property depends a lot not only on the choice of an admissible
ordering, but also on the choice of ordering of generators of our operad; for example,
for the operad of pre-Lie algebras, depending on the ordering, a Gröbner basis can
vary from quadratic to seemingly infinite. On the other hand, for operads that do
not have a quadratic Gröbner basis, we encountered subtle performance issues in
many cases. For operads having a relatively small finite Gröbner basis, like the
fake commutative operad AntiCom [4], the computation easily yields the correct

1The first author is a living example proving that it is possible; having been introduced to
Haskell by the second author in the process of working on this package, he now has enough
confidence to not only use the package, but to add new functions as well.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAS Access to Institutional Repository

https://core.ac.uk/display/296289175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

result, while for many other cases, like the pre-Lie operad for a “wrong” ordering,
computations with arity 6 and further take enormously long.

The actual implementation is distributed through the HackageDB repository for
Haskell software projects at

http://hackage.haskell.org/package/Operads,
software distributed through this repository are available through the automated
installation tool cabal-install.

The current documentation files are kept online at
http://math.stanford.edu/~mik/operads/.

1.2. Outline of the paper. The paper is organized as follows. In Section 2, we
recall relevant background information related to operads and Gröbner bases, on
one hand, and to types and functions in Haskell, on the other hand. In Section 3,
we discuss the way we chose to represent our data in Haskell. In Section 4, we
present algorithms used in our implementation. Finally, in the appendix, we list
Haskell constructions used throughout the paper.

1.3. Acknowledgements. We wish to express our deep gratitude to Eric Hoffbeck
and Henrik Strohmayer for both significant assistance in the construction of the
software code, and analysis of the techniques we are using. Some of the hairier
points of Haskell evaluation has been rendered clear by the helpful assistance of the
many members of the #haskell IRC channel on the Freenode IRC network.

The first author was supported by an IRCSET research fellowship. The second
author was supported by the Office of Naval Research, through grant N00014-08-
1-0931.

We are grateful to Jean–Louis Loday and Bruno Vallette who organized the
“Operads 2009” meeting in CIRM Luminy, where the work on this project was
started. The second author wishes to thank Dublin Institute for Advanced Studies
which hosted him as a visitor during the last stage of working on this paper.

2. Overview

For exhaustive information on symmetric operads, we refer the reader to mono-
graphs [9] and [10]. Here, we mainly concentrate on shuffle operads and their
relationship with symmetric operads, and definitions in the symmetric case are
chosen in the way that best suits this approach.

2.1. Operads. We denote by Ord the category of nonempty finite ordered sets
(with order-preserving bijections as morphisms), and by Fin — the category of
nonempty finite sets (with bijections as morphisms). Also, we denote by Vect the
category of vector spaces (with linear operators as morphisms; unlike the first two
cases, we do not require a map to be invertible).

Definition 1. (1) A (nonsymmetric) collection is a contravariant functor from
the category Ord to the category Vect.

(2) A symmetric collection (or an S-module) is a contravariant functor from
the category Fin to the category Vect.

For either type of collections, we can consider the category whose objects are col-
lections of this type (and morphisms are morphisms of the corresponding functors).
The natural forgetful functor f : Ord → Fin, I 7→ If leads to a forgetful functor f

http://hackage.haskell.org/package/Operads
http://math.stanford.edu/~mik/operads/

IMPLEMENTING GRÖBNER BASES FOR OPERADS 3

from the category of symmetric collections to the category of nonsymmetric ones,
Pf(I) := P(If). For simplicity, we let P(k) := P([k]).

We use the convention [k] = {1, 2, . . . , k} in this paper.

Definition 2. • Let P and Q be two nonsymmetric collections. Define their
shuffle composition P ◦sh Q by the formula

(P ◦sh Q)(I) :=
⊕

k

P(k) ⊗

⊕

f : I։[k]

Q(f−1(1)) ⊗ . . . ⊗ Q(f−1(k))

 ,

where the sum is taken over all shuffling surjections f , that is surjections
for which min f−1(i) < min f−1(j) whenever i < j.

• Let P and Q be two symmetric collections. Define their (symmetric)
composition P ◦ Q by the formula

(P ◦ Q)(I) :=
⊕

k

P(k) ⊗Sk

⊕

f : I։[k]

Q(f−1(1)) ⊗ . . . ⊗ Q(f−1(k))

 ,

where the sum is taken over all surjections f .

Each of these compositions gives a structure of a monoidal category on the
category of the corresponding collections. The same definitions can be given if
we replace Vect by another symmetric monoidal category. For our purposes, an
important replacement for Vect will be the category of finite sets (with arbitrary
mappings as morphisms).

Definition 3. (1) A shuffle operad is a monoid in the category of nonsymmet-
ric collections with the monoidal structure given by the shuffle composition.

(2) A symmetric operad is a monoid in the category of symmetric collections
with the monoidal structure given by the (symmetric) composition.

Definition 4. A shuffle permutation of the type (k1, . . . , kn) is a permutation in
the symmetric group Sk1+...+kn

which preserves the order of the first k1 elements,
the second k2 elements,. . . , the last kn elements, and satisfies

σ(1) < σ(k1 + 1) < σ(k1 + k2 + 1) < . . . < σ(k1 + . . . + kn−1 + 1).

Proposition 1. The number of shuffle permutations of the type (k1, . . . , kn) is
equal to

k1k2 · . . . · kn

(k1 + k2 + . . . + kn)(k2 + . . . + kn) · . . . · kn

(

k1 + k2 + . . . + kn

k1, k2, . . . , kn

)

.

When implementing shuffle permutations, one can use the following simple idea:
In a shuffle permutation, the number whose image is k1 + . . .+kn should clearly be
the maximal one in its block. Moreover, if this block is of size 1, it should be the
last one to comply with the ordering condition on the first elements of blocks. This
implies an obvious recursive algorithm to generate a list of shuffle permutations
with given sizes of blocks: put the maximal image in the end of each allowed block,
and for each such choice list all shuffle permutations where the corresponding block
contains one element less than prescribed.

4 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

Definition 5. (1) Let O be a shuffle operad, β ∈ O(n), α1 ∈ O(k1), . . . ,
αn ∈ O(kn). Assume that σ ∈ Sk1+...+kn

is a shuffle permutation of the
type (k1, . . . , kn). Denote by Bs, s = 1, . . . , n, the sth block of [k1+ . . .+kn]
(on which σ is monotonous). Then we define

β(α1, . . . , αn)σ = ◦(β ⊗ σ(α1) ⊗ . . . ⊗ σ(αn)) ∈ O(k1 + . . . + kn),

where σ(αs) is the image of αs under the isomorphism between O(ks) and
O(σ(Bs)), and ◦ : O ◦sh O → O is the monoid product map.

(2) Let O be a symmetric operad, β ∈ O(n), α1 ∈ O(k1), . . . , αn ∈ O(kn). Let
σ ∈ Sk1+...+kn

be an arbitrary permutation. Denote by Bs, s = 1, . . . , n,
the sth block of [k1 + . . . + kn] (of size ks). Then we define

β(α1, . . . , αn)σ = ◦(β ⊗ σ(α1) ⊗ . . . ⊗ σ(αn)) ∈ O(k1 + . . . + kn),

where σ(αs) is the image of αs under the isomorphism between O(ks) and
O(σ(Bs)), and ◦ : O ◦ O → O is the monoid product map.

It turns out that the forgetful functor f is a monoidal functor between the cat-
egory of symmetric operads and the category of shuffle operads. Consequently, to
study various questions of linear algebra for symmetric operads, it is sufficient to
forget the full symmetric structure because the shuffle structure already captures
everything. See [4] for more details.

2.2. Trees. Assume that we are given a collection of disjoint finite sets M(n), n ≥ 1.
A (rooted) tree is a non-empty directed graph T of topological genus 0 for which
each vertex has at least one incoming edge and exactly one outgoing edge. We
allow for some edges of a tree to be bounded by a vertex at one end only. Such
edges are called external. Each tree has one outgoing external edge, the output or
the root, and several ingoing external edges, called leaves. All vertices of the tree
should be decorated by elements of sets from the collection M ; for a vertex with
n inputs, the element used for the decoration should belong to M(n). Usually, we
consider such trees with some additional structure: for a tree with n leaves, we
require the leaves to be labelled by [n]. For each vertex v of a tree, the edges going
in and out of v will be referred to as inputs and outputs at v. A tree with a single
vertex is called a corolla. There is also a tree with a single input and no vertices
called the degenerate tree. Trees are originally considered as abstract graphs but
to work with them we need some particular representatives that we now are going
to describe.

For a tree with labelled leaves, its canonical planar representative is defined as
follows. In general, an embedding of a (rooted) tree in the plane is determined
by an ordering of inputs for each vertex (the leftmost one being the smallest, the
rightmost — the largest). To compare two inputs of a vertex v, we find the minimal
leaves that one can reach from v via the corresponding input. The input for which
the minimal leaf is smaller is considered to be less than the other one. Planar rep-
resentatives of decorated trees will be referred to as tree monomials. The collection
of all tree monomials whose vertices are labelled by the collection M is denoted
by FM . For some constructions, we shall need nonsymmetric tree monomials, that
is planar trees with decorations of internal vertices but no labelling of leaves (or,
when it is needed for compositions, the trivial labelling of leaves in the increasing
order from the left to the right suggested by the planar embedding).

IMPLEMENTING GRÖBNER BASES FOR OPERADS 5

Compositions of trees are defined as follows. Given a tree β with n leaves,
trees α1, . . . , αn with k1, . . . , kn leaves respectively, we define the composition
β(α1, α2, . . . , αn) as the tree obtained by grafting the tree α1 to the leaf of β
labelled by 1, the tree α2 with leaf labels shifted by k1 to the leaf of β labelled
by 2, . . . , the tree αn with leaf labels shifted by k1 + . . . + kn−1 to the leaf of β
labelled by n. If, in addition, σ is a shuffle permutation of [k1 + . . .+kn] of the type
(k1, . . . , kn), we can define the shuffle composition β(α1, α2, . . . , αn)σ; to compute
it, we first compute the nonsymmetric composition of our trees and then apply σ
to the leaf labels of the resulting tree.

Remark 1. Let us emphasize two practicalities. First of all, the data type for
trees chosen for an implementation should be easily adjustable for performing com-
positions. Second, it is important here that we apply the permutation, not its
inverse; usually, action of permutations on functions and mappings uses inverses,
however, since operads are contravariant functors, we do not need that. One should
be careful, and remember it when implementing the action of permutations.

Proposition 2 ([4]). (1) The collection of trees FM is closed under shuffle
compositions.

(2) Every tree in FM can be obtained from corollas by iterated shuffle compo-
sitions.

The collection FM is the free shuffle operad generated by the nonsymmetric
collection M in the category of finite sets; its linear span is the free shuffle operad
generated by the linear span of M in the category of vector spaces.

Here and below by a divisor of a nonsymmetric tree monomial T we mean a non-
symmetric tree monomial T ′ whose underlying tree is embedded into the underlying
tree of T in such a way that the labellings of vertices are the same.

For a tree monomial α with the underlying nonsymmetric monomial T and a
divisor T ′ of T , let us define a tree monomial α′ that corresponds to T ′. Its vertices
are already decorated, so we just need to take care of the leaf labelling. For each
leaf l of T ′, let us consider the smallest leaf of T that can be reached from l. We
then number the leaves according to these “smallest descendants”: the leaf with
the smallest possible descendant gets the label 1, the second smallest — the label 2
etc.

Definition 6. For two tree monomials α, β ∈ FV , we say that α is divisible by β, if
there exists a nonsymmetric divisor of α for which the corresponding tree monomial
α′ is equal to β.

Remark 2. Checking divisibility is important for the Gröbner bases algorithm.
Thus, one has to put effort in finding an efficient implementation. Our approach
is recursive; it is very much motivated by the choice of the platform. Preliminary
experiments suggest that even though Haskell is very clever when it comes to han-
dling recursive algorithms properly, for operads with seemingly infinite Gröbner
bases a recursive approach often makes it impossible to handle elements of large
arities efficiently enough. Thus, a non-recursive program computing Gröbner bases
would be helpful; in particular, it would be very important to find a reasonably
fast non-recursive algorithm for divisibility checking, in the spirit of algorithms of
Knuth–Morris–Pratt [8] and Boyer–Moore [2] for string divisibility.

Proposition 3 ([4]). A tree monomial α is divisible by β if and only if α can be
obtained from β by iterated shuffle compositions with corollas.

6 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

Assume that α is divisible by β. Take some sequence of shuffle compositions with
corollas that produces α from β. This sequence can be applied to any tree monomial
with the same number of leaves as β; we abuse the notation a little bit and denote
that operation on tree monomials by mα,β , omitting the reference to the subtree
of α which describes the corresponding divisor. This operation depends only on α
and the specific subtree corresponding to the divisor β, but not on any particular
sequence of compositions that creates α from β, so for the fixed occurrence of β
in α, this operation is well defined.

Remark 3. Being able to compute the operations mα,β in the most efficient way is
crucial for the Gröbner bases algorithm. This means that much thought should be
put in the data representation philosophy; keeping the divisibility information in a
logical way helps to be efficient. We chose the approach where a divisor is replaced
by a “black hole” (or, in other words, by a new corolla); this way the operation
mα,β corresponds to the simple insertion of a tree in the hole. We explain it in
more detail in Section 3.3.3.

Definition 7. A tree monomial γ is called a common multiple of two tree mono-
mials α and β, if it is divisible by both α and β. Tree monomials α and β are said
to have a small common multiple, if they have a common multiple for which the
number of vertices of the underlying tree is less than the total number of vertices
for α and β, and the embeddings of α and β in this common multiple cover all its
vertices.

Remark 4. Computation of small common multiples is one of the most frequently
used operations in the Gröbner basis algorithm. Our approach (described in detail
below) shares certain similarities with the algorithm that lists all shuffle permuta-
tions of the given type, even though is a little bit more sophisticated.

2.3. Gröbner bases. In this section, we work with shuffle operads over Vect de-
fined by generators and relations. In other words, we study ideals of the free operad
FV [4], where V is a nonsymmetric collection. We assume that V is endowed with
a basis, a collection of sets M . We expect an ideal I to have an explicit system of
generators R which are called relations of the operad FV /J . In the case of shuffle
operads, the set of relations R consists of linear combinations of tree monomials.
To apply our methods to the case of symmetric operads, pre-processing of the in-
put data is required: first, the symmetric group action should be used to express
operadic monomials in terms of tree monomials, second, relations should generate
the corresponding ideal as a shuffle ideal. For that, it is necessary that they form
a symmetric subcollection, that is, are closed under the symmetric groups action.
For example, if we add to the set of relations the orbit of each relation (possibly
adding some redundant relations), this condition is automatically satisfied.

An ordering of tree monomials of FV is said to be admissible, if it is compat-
ible with the operadic structure, that is, replacing the operations in any shuffle
composition with larger operations of the same arities increases the result of the
composition. In Section 4.3, we shall describe some admissible orderings. All results
below are valid for every admissible ordering of tree monomials.

Definition 8. For an element λ of the free operad FV , the tree monomial α is
said to be its leading monomial, if it is the maximal monomial that occurs in the
expansion of λ with a nonzero coefficient (notation: lm(λ) = α). This nonzero
coefficient (the leading coefficient of λ) is denoted by cλ.

IMPLEMENTING GRÖBNER BASES FOR OPERADS 7

Remark 5. Whereas in the previous section we only worked with trees, from now
on we use linear combinations of trees. Thus, it is important to implement working
with tree polynomials, that is, linear combinations of tree monomials. The main
requirement is that obtaining the leading monomial and the leading coefficient,
being the most frequently used operations on polynomials, should be easy.

Definition 9. Assume that f and g are two elements of FV for which the leading
monomial of f is divisible by the leading monomial of g. The element

rg(f) := f −
cf

cg

mlm(f),lm(g)(g),

is called the reduction of f modulo g.

Definition 10. Assume that f and g are two elements of FV whose leading mono-
mials have a small common multiple γ. We have

mγ,lm(f)(lm(f)) = γ = mγ,lm(g)(lm(g)).

The element
sγ(f, g) := mγ,lm(f)(f) −

cf

cg

mγ,lm(g)(g),

is called the S-polynomial of f and g (corresponding to the common multiple γ;
note that there can be several different small common multiples).

In most classical literature on Gröbner bases, reductions are thought of as some-
thing different from S-polynomials. In our definition, S-polynomials include the
reductions as a particular case. However, as we shall see below, the Buchberger’s
algorithm makes use of reductions on their own, and so they cannot be eliminated
from the story.

Definition 11. Let J be an ideal of the free operad. G is called a Gröbner basis
of J , if for every f ∈ J the leading monomial of f is divisible by the leading
monomial of some element of G .

The main fact about Gröbner bases that makes them so useful is that the tree
monomials that are not divisible by leading monomials of a Gröbner basis form a
basis for the quotient of the free operad modulo J . Thus, knowing a Gröbner
basis for the defining relations of an operad allows to obtain important information
about this operad.

Recall the Buchberger’s algorithm for operads [4]. Its input is a set R of relations
between elements of the free shuffle operad FV . It repeatedly applies the following
step:

Step of the Buchberger’s algorithm: Compute all pairwise S-
polynomials of elements of R. Reduce all these elements modulo R
until they cannot be reduced further. Extend R by joining these
reductions to it. If there are no new elements joined, terminate. (If
there are new elements, the step is repeated for the newly obtained
set R.)

2.4. Haskell. Haskell [7] is a purely functional programming language with a pow-
erful type system. Programming in Haskell has a declarative feel to it, in the sense
that functions are defined by declaring equations for function evaluation — the
equations are then used by the compiler with the first matching equation in the
source code used for every application in the source code.

8 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

We have built the implementation we are discussing in Haskell, and will use
occasional source code excerpts for illustration through the paper. See the appendix
for the list of all the Haskell-specific functions in use in our code examples.

2.4.1. Types. Haskell depends on a strong adherence to its type system. Hence,
any entity in the language possesses a type. There are types that are complete in
themselves — such as Bool, Int, and types that are assembled from component
types — such as the type [a] for lists containing elements of the type a. Functions,
too, are first class citizens of the language, with a function taking input of type a
and returning output of type b having type a −> b.

Real power in the Haskell treatment of data types appears with the freedom
to declare your own types. The most complete way to do this is with the data
declaration. This allows, easily, for both record and union types; where a record
contains one value of each of the specified values, and a union contains one value
out of the specified values.

As an example, similar to the datatype for trees that we will discuss at length in
Section 3.1, a rooted tree is either a leaf node, or a root node with a list of subtrees.
The arity of the root node will be precisely the length of the list of subtrees. And
a node of arity 0 could be considered a leaf.

Thus, we may define a tree data type using the declaration

data Tree = Leaf | Node [Tree]

Here, Tree is the resulting data type, and Leaf and Node are constructors for
elements of the data type. A typical tree might look like:

Node [Node [Leaf , Leaf] , Node [Leaf , Leaf , Leaf]]

The corresponding tree shape is shown in Figure 1.

Figure 1. A tree shape

This data type has been defined completely using the union type: a tree is either
a leaf, or a node carrying a list of subtrees. We can extend the type using the record
type construction into something that can carry labels both on leaves and vertices,
making it usable to represent the decorated trees we use for representing operads.

Thus, we can introduce two type variables, to make the resulting tree type ver-
satile, and define a tree type that takes labels of any type for the nodes, and labels
of any type — independent of the node type — for the leaves by:

data Tree a b = Leaf a | Node b [Tree]

Here, an element of the type Tree is either a leaf, equipped with a value of type
a, or a node, equipped with a value of type b as well as a list of subtrees.

Hence, an example of type Tree Int Char would be:

IMPLEMENTING GRÖBNER BASES FOR OPERADS 9

Node b [Node c [Leaf ’ 1 ’ , Leaf ’ 3 ’] ,

Node a [Leaf ’ 2 ’ , Leaf ’ 4 ’ , Leaf ’ 5 ’]]

The corresponding decorated tree is shown in Figure 2.

b

c a

’1’ ’3’ ’2’ ’4’ ’5’

Figure 2. A decorated tree

2.4.2. Functions. The second important part of understanding the way Haskell
works is the functions. A function is defined by its type, and by what it makes to the
input arguments it takes. Haskell views a function with several input parameters as
a function taking one value and returning a function expecting one less parameter.
Thus (+) is a function that when applied to the value 2 will return a function (2+)
that in turn increases its parameter by 2.

A function specification in Haskell has two components. First off is the (optional)
type declaration. An example, taken from our source code:

operadicBuchberger : :

(Ord a , Show a , TreeOrdering t , Fractional n) =>

[OperadElement a n t] −> [OperadElement a n t]

This type declaration alone tells us a number of things about the function,
and the parameters it takes and returns. First comes the name of the function:
operadicBuchberger. It is the top level function to run the Buchberger algorithm
on a set of operadic relations. Next is the :: — signifying that a type declaration
follows.

Following the name and the :: , we give an (optional) list of assumptions on the
type variables involved in constructing all types of the type declaration: we need a
to be a type that can be sorted and printed, we need t to be a TreeOrdering, i.e.
an implementation of the monomial ordering algorithms we use. Finally, we expect
n to be a numeric type implementing a field.

Following the expectations follows the symbol =>, signifying the start of the
actual type declaration. And we read off that the function has type
[OperadElement a n t] −> [OperadElement a n t], or in other words that
operadicBuchberger takes a list of operad elements with a certain type of vertex
labels (signifying the operations in the free operad), a certain type of coefficients
and a certain monomial ordering.

After the type declaration, a sequence of equational declarations follow, contain-
ing the bulk of the function definition. As a function is called, these equations are
processed in the order they are stated until one is found such that the left hand
side of the equation matches the parameters submitted to the call. Once a match
is found, the code on the right hand side is executed and the result is returned as
the value of the function call.

10 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

Again, an example may be in order. We can write a function for the Tree type
we described above that allow us to recognize leaves:

i s L e a f : : Tree a b −> Bool

i s L e a f (Leaf l e a f l a b e l) = True

i s L e a f (Node node labe l subt r e e s) = False

3. Internal representations

Data representations and algorithms go hand in hand. A good algorithm will
suggest a data representation that makes the steps of that algorithm easier; a good
data representation will make the algorithms handling the data obvious and efficient
from the storage methods. We have tried to find representations for the data types
required for the Gröbner basis algorithms that will make the subtasks we have
identified easy to implement efficiently.

We discuss representation for decorated trees in Section 3.1. The elements of a
free operad in the category Vect are formal linear combinations of decorated trees,
and the representation of these is discussed in Section 3.2. Next up is the special
type trickery needed to represent the black hole trees first introduced in Remark
3 on page 6. We introduce two coproduct types useable for tagging vertices of
trees while preserving some or all of the vertex tags in Section 3.3.1. This way,
we can designate a corolla a black hole, or an embedding point in a small common
multiple. We discuss the small common multiple structures in Section 3.3.2 and
the black hole tagging in Section 3.3.3. Finally, we discuss the representation we
use for permutations in Section 3.4.

3.1. Decorated trees. We recall that the free operad is built with trees decorated
at the corollas with elements of the generating collection and with leaves decorated
with an ordered set.

While we expect the trees representing the basis of a free operad to have integer
leaf labels, some of the lower level tasks are easier if we can also represent trees
with other types of leaf labels. Hence, we will define one underlying tree type,
PreDecoratedTree, and derive another tree type, DecoratedTree representing the
basis elements of free operads.

Hence, we will build our software with the decorated tree as our fundamental
building block. We represent trees using a data type that encodes internal vertices
and leaves as different, allowing each to carry a label. This guides us to the data
type declaration

data (Ord a , Show a) =>

PreDecoratedTree a b =

DTLeaf ! b |

DTVertex {

vertexType : : ! a ,

subTrees : : ! [PreDecoratedTree a b]}

deriving (Eq, Ord, Read , Show)

This is essentially the same as the tree type we discussed at the end of 2.4.1.
It is decorated with more expectations, and some Haskell idioms to automatically
generate functionality. Hence, the deriving clause will make the tree type auto-
matically allow equality checks, sorting and methods to serialize and deserialize

IMPLEMENTING GRÖBNER BASES FOR OPERADS 11

the data into strings. The sorting induced by the deriving clause, however, is
not in general a monomial ordering, and we introduce further types in the code to
introduce admissible monomial ordering.

Furthermore, the vertexType and subTrees clauses automatically generate func-
tions that allow us to extract the node label and the list of subtrees from a corolla.

Since we occasionally, but not very often, will feel a need to decorate the leaves
with something different from integers, we define our tree type as a different type
from the type we use with the users in the end. We define a type synonym
DecoratedTree a that stands for PreDecoratedTree a Int, so that the user should
only ever have to see DecoratedTree occuring.

We also define a number of utility functions for operations on these trees: meth-
ods to apply a function to each node label, and to apply a function to each leaf label,
as well as functions to easily construct corollas and leaves, and to easily determine
the arity of a corolla and the total number of leaves of a tree.

One pattern that reoccurs a lot here is the basic tree recursion shape. We give,
here, as an example, the code to apply a function to each vertex label:

vertexMap : :

(Ord a , Show a , Ord b , Show b) =>

(a −> b) −> PreDecoratedTree a c −> PreDecoratedTree b c

vertexMap f (DTLeaf i) = DTLeaf i

vertexMap f (DTVertex t t s) =

DTVertex (f t) (map (vertexMap f) t s)

There is some boiler plate — the type variables a and b have to match the
assumptions needed to build a tree. But then the code just states that applying
f to the node labels if you encounter a leaf just returns the leaf unchanged. If,
however, you encounter a vertex, you apply the function to the label and construct
a new vertex with the new label and with the results from applying the function
recursively to all subtrees.

This structure faithfully reproduces planar rooted trees with leaf and node labels.
Using the ordering on the leaf labels, we can represent any symmetric node-labeled
tree this way. Using only the tree monomials from the free shuffle operad, finally,
means placing restrictions on the permutations the leaf labels are allowed to display.
Specifically, at any vertex, the minimal leaves of all its subtrees need to occur in
sorted order in its list; this is exactly the choice of a planar representative from
Section 2.2. Hence, in Figure 3, the left tree is a valid tree monomial, whereas the
right tree is not. The points where the assumption fails are denoted by filled circles.

3.2. Operad elements. Recall that an element of the free operad in the category
of vector spaces over a field is a formal linear combination of decorated trees. To
represent operad elements, thus, we need to be able to represent formal linear
combinations — sorted according to the appropriate monomial ordering.

Representing this computationally in Haskell is a three-step process. First, we
represent monomial orderings. Then, we represent trees equipped with a monomial
ordering. Finally, we use the Data.Map Haskell standard library implementation to
represent a partially defined function taking decorated trees to coefficient values.

These last functions become equivalent with formal linear combinations once we
define an arithmetic on them:

12 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

5 6 42

1 32 4 1 35 6

Figure 3. A tree monomial, and a decorated tree which is not a
tree monomial

(f + g)(α) = f(α) + g(α)

(c · f)(α) = c · f(α)

This equivalence is given by, for a function f , forming the formal linear combi-
nation

∑

f(α)α. The reverse is given by taking a formal linear combination
∑

cαα
and forming the function f : α 7→ cα.

Monomial orderings are represented as empty types — constructors without val-
ues other than having distinct constructors. These types, then, are made to imple-
ment type classes — the Haskell way to do polymorphism. Implementing a type
class means that the type class defines specific functions, and the type class imple-
mentation defines the implementation of these functions, in a separate manner for
each type that implements the type class. We pair trees with orderings using the
record type facility — a tree with an ordering is a tree paired with an ordering. A
number of easy conversion functions between ordered and non-ordered trees make
interfacing with this layering easier.

As for the partial function definition, the datatype Data.Map works for finite
such definitions by way of a lookup table: an entity of type Data.Map is a search
tree that can be queried for the value associated to a particular tree, and that works,
internally, by maintaining a balanced binary search tree. In particular, this makes
the use of Data.Map very dependent on an efficient implementation of the monomial
ordering methods, and one early adjustement we decided on was to overlay a thin,
encapsulating module around Data.Map that would cache the relevant information
needed to perform the most common monomial orderings.

This last point is worth elaborating on. We found in early implementations that
storing decorated trees in a binary search tree, and having monomial orderings de-
pending on a significant number of tree traversals in order to construct the ordering
invariants, lead to an extraordinary amount of tree traversals. In our first work-
ing implementation, we found that over 60% of the computation time was spent
traversing trees for comparisons triggered by the use of Data.Map for storage. Ev-
ery operation on such operad elements would incur many tree comparisons, each of
which would incur several tree traversals. To deal with this, we wrote a wrapper
around the storage type that would perform the tree traversals for the orderings
described in Section 4.3 once at the creation of an operad element, and store this
with the tree. Subsequent interactions with this particular element would use this
cached value for all comparisons — until the point a new element was constructed,

IMPLEMENTING GRÖBNER BASES FOR OPERADS 13

as a modification of the previous one, at which point the comparison values would
be recomputed. Using the wrapper, the proportion spent on tree comparisons and
the related building block functions dropped to less than 5%.

3.3. Trees with holes and tagged nodes. Recall that for two tree monomials
α and β such that α is divisible by β, it is possible to define the function mα,β that
reconstructs the surroundings of β in α; this function is applicable to any other
operad element of the correct arity.

An algorithm for finding divisors of trees, as the Gröbner basis algorithms makes
heavy use of, would need an efficient way to represent the data needed for such a
reconstruction. We decided to do this by representing holes punched in trees by
corollas with a specific marking.

Similar to this idea is the data representation we found to be efficient to represent
a small common multiple of two trees in such a manner that the divisor data for
both trees is easily reconstructed: such a small common multiple will have one of
the trees dividing it at the root, and the other somewhere in the tree. We found
a natural way, in Haskell, using union data types, to represent a tree with a single
vertex marked.

3.3.1. An aside on data types and labels. The union data type construction in
Haskell has a standard library implementation, with quite a bit of predefined func-
tionality: Either a b. This defines for us constructors Left and Right carrying
values of types a and b respectively.

One special case of the Either type is when one of the two types is empty. This
case has been given a name of its own: Maybe a and comes with new construc-
tors — Just taking the place of Left and Nothing taking the place of Right.

These type constructions turn out to be exactly what we need to signify marked
nodes and removed nodes.

3.3.2. Trees with marked nodes. We generate, in order to mark some of the nodes of
our tree, a new tree from the old one with changed node labels. Instead of labelling
our tree with some type a, we now label them with Either a a. This has the effect
of increasing the amount of information carried by each node — in addition to the
original node information it now also carries a binary choice for each node: is it a
Left or a Right instance of the label type?

Hence, we can in our code for generating small common multiples return a tree
labeled in Either a a, and making sure it only contains one single node labeled
Right — namely the point of attachment for the second tree. We know that one
of the two trees has to be rooted at the root of the small common multiple —
otherwise it would not cover all vertices.

The algorithm we use to find small common multiples, elaborated on in Section
4.1, has the following basic structure. In order to find small common multiples of
α1 and α2 we go through the steps:

(1) To find small common multiples of α1 and α2 sharing the common root,
traverse both trees, checking compatibility at each step and whenever one
tree yields a leaf, attach the remaining subtree of the other tree. Tag the
root of the returned small common multiple as Right label.

(2) Recurse through vertices v of α2, applying the previous step to find small
common multiples of α1 and the subtree αv

2 of α2 rooted at v. For each

14 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

such common multiple γ, form a new tree by taking α2 and replacing αv
2

with γ.

As a result, the only point where a node is tagged with the Right is when a
rooted common multiple is found, and the recursion ensures that the rest of the tree
is rebuilt so that α2 is embedded with a shared root with the common multiple.

In order to find all small common multiples, we need to perform this algorithm
once again with the trees interchanged, so that we may find small common multiples
with α1 embedded at the root.

3.3.3. Trees with holes. As for the divisor reconstruction, we have some embedding
of the tree monomial β into the tree α, and we want to retain the information of
the entire tree excepting the part that corresponds to β.

The way we do this is to collapse the embedded copy of β into a single corolla
of the correct arity, and keeping the rest of the tree intact. This corolla, then, is
marked — forgetting any original corolla type markings — to signify that it forms
an embedding point.

This marking, in turn, is achieved by changing the type of all labels from the
type a to the type Maybe a. That way, the part of the tree that needs to stay
intact is marked with Just label for what previously was marked with label, and
the corolla holding the position of the hole is marked with Nothing, distinguishing
it from the other nodes.

For this reason, we introduce the type alias Embedding a, defined to be of the
type DecoratedTree (Maybe a). Hence, the division algorithm described in Section
4.2 will take the two trees α and β as parameters, and return an embedding of the
shape of α with a subtree isomorphic to β taken out. See Figure 4 for an example.

3 6

1 2 4 5 7 8 9

3 6

1 2

4 5

7 8 9

Figure 4. Taking away a subtree results in a tree with a hole

The reconstruction algorithm, on the other hand, takes a shape representing
some embedding of β in α, and a new tree monomial γ of the same arity as β, and
returns the corresponding tree mα,β(γ).

3.3.4. On data types not used. There is an alternative way to construct the trees
with a single hole, and the trees with a single tag, that gives abstract guarantees that
the resulting tree will have exactly one hole, or tag. The key here is the approach
taken with zippers [6] or with differentiating data types [1]. The derivation of
the resulting data type guarantees that the new tree has exactly one hole, which
currently is done by further tree-walks.

As an example, the resulting data type for our choice of tree representation, for
the trees with holes would be:

IMPLEMENTING GRÖBNER BASES FOR OPERADS 15

data TreeHole a b = Leaf a

| Node b [Tree a b]

| HoleParent b [Tree a b] (TreeHole a b) [Tree a b]

| Hole [Tree a b]

3.4. Permutations. Since the most common use for permutations in this project
is to label leaves of trees, and to reorder subtrees for composition, we have decided
to store our permutations as lists of images. This choice is reinforced by the lack
of need for compositions and decompositions of permutations.

This representation yields a simple method to reorder a list of objects in the
order specified by a permutation — an operation we have reason to perform often
in the code, for instance in order to decorate leaves of a labelled tree according
to their integer decorations: we pair off the elements we want to reorder with the
image list. Then we sort the pairs, giving priority to the comparison of the image
indices. Stripping off the indices, finally, gives us the reordered list of elements.
This is a code idiom we have used at several points in the code base.

4. Algorithms

With the data structures we use settled in Section 3, we now turn to the al-
gorithms that implement the core components of the Buchberger algorithm from
Section 2.3. To compute S-polynomials, we have to find all small common multi-
ples of leading terms (together with occurences the divisors in these small common
multiples), and then compute the actual S-polynomials. The latter requires many
reconstructions of trees via insertions of lower terms in the black hole. After that,
we compute reductions, which requres divisibility checks and many reconstructions
again. We discuss algorithms for all these key steps below. In Section 4.1, we adapt
the idea for finding block permutations to give us an efficient algorithm for finding
small common multiples. In Section 4.2, we meet the division algorithm, creating
the black hole trees, and the reconstruction algorithm, re-inserting a tree in the
black hole. Finally, in Section 4.3 we discuss the family of monomial orderings that
the software package implements.

4.1. Finding small common multiples. An algorithm that lists all small com-
mon multiples of two given trees α1 and α2 consists of several steps. If we forget all
leaf labels of a tree monomial, we end up with a planar tree with labelled vertices.
We earlier called such trees nonsymmetric tree monomials; they form a basis in the
free nonsymmetric operad generated by the same nonsymmetric collection as our
free shuffle operad. Describing all small common multiples is naturally split into
two steps: forgetting about leaf labels and finding a nonsymmetric small common
multiple, and then acquiring all possible leaf labellings of the resulting trees.

The first step is more or less trivial: small common multiples of two nonsym-
metric tree monomials are superpositions of the trees for which all labels of vertices
agree with each other. Thus, to list all such small common multiples, we should
go through all ways to identify the root vertex of one of the trees with a vertex of
another tree, and check that there are no contradictions between the successors of
these two vertices. This can be easily done recursively.

The second step is a bit more tricky, but still requires a straightforward recursive
algorithm. To recover all admissible leaf labellings giving a common multiple α, we
have to solve the problem of finding all possible linear orders on a poset of a special

16 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

type. The elements of that poset are leaves of the nonsymmetric tree monomial,
and we say that a < b if there exist two vertices u and v of the nonsymmetric tree
monomial such that

• a is the smallest leaf reachable from u and b is the smallest leaf reachable
from v;

• u and v are leaves of the occurence of αi in α (where i is either 1 or 2), and
u < v in the ordered leaf set of αi.

A labelling of the leaves of α makes it a small common multiple if and only if it
extends the above ordering to a linear ordering. We shall recover all such labellings
recursively. Our poset essentially consists of two intertwined and intersecting linear
orders, and the maximal element of the labelling set should label the maximal
elements of one of the two orders (under the additional condition that it cannot
occur as a non-maximal element in the other linear order). For each such option,
we are left with a similar problem where the size of the labelling set is one less, so
we can use recursion.

4.2. Divisibility and reconstructions. Finding all embeddings (as a divisor) of
β into α can be easily reduced to finding out whether or not β is embedded into α in
such a way that they share the common root. If we know how to solve this problem,
we should just solve it for all subtrees α′ of α rooted at various vertices. To solve
this problem, it suffices to recurse down the tree checking that the same holds for
all subtrees, and then check that the total leaf orderings match. At this stage, to
check that the orderings match, one can look at the planar orders of leaves and
compare them; this appears to be the best way to do it for our recursive algorithm.

Specifically, if we try to find an embedding of β into α sharing the common root,
we first verify that the root vertices share the label and arity. If this is the case,
we can pair up the subtrees βi of β and the subtrees of αi of α, and then find
rooted embeddings of each βi in each αi. If all these succeed, we expect to get as
a result from each a tree mαi,βi

for each pair with a hole punched out at the root
corresponding to a subtree looking like βi.

At this point, we need to patch things up. The root nodes match, and the
subtrees have already found embeddings. Checking the leaf orders, we then need
to merge all the subtrees with holes into a tree with hole that gets returned up to
earlier recursion levels. This is done by simply creating a new hole vertex, and then
attaching all subtrees of the hole subtrees, as shown in Figure 5.

2

1 3 4 5

2

1 3 4 5

Figure 5. Merging subtrees with holes

IMPLEMENTING GRÖBNER BASES FOR OPERADS 17

Once we find an embedding of β, we store this embedding as a tree monomial
obtained from α by collapsing the occurrence of β into a single vertex. To recon-
struct α from that, we insert β in the “hole” in such a way that the leaves of β
match the outputs of the “hole” (order-wise).

Inserting β into the hole, specifically, means that we replace the leaves of β with
the subtrees of the hole in the tree with the hole, in the order specified by the labels
of the leaves of β, and then replace the hole and all its subtrees in the full tree with
a hole by this extended β, as shown in Figure 6.

1 3

2 2

1 3 4 5 2

1 3 4 5

Figure 6. Inserting a tree in a hole

4.3. Monomial orderings. Let us describe some admissible orderings. As one can
see, each definition will be either immediate to implement because of the storage
types we use or straightforward recursive.

Let α be a tree monomial with n inputs in the free operad FM . We associate
to α a sequence (a1, a2, . . . , an) of n words in the alphabet M , and a permutation
g ∈ Sn as follows. For each leaf i of α, there exists a unique path from the root to i.
The word ai is the word composed, from left to right, of the labels of the vertices
of this path, starting from the root vertex. The permutation g lists the labels of
leaves in the order determined by the planar structure (from left to right).

Now, to compare two tree monomials we always compare their arities first. If the
arities are equal, there are several different options of how to proceed. Sequences
of words can be compared lexicographically using either the degree-lexicographic
ordering of words, or the reverse degree-lexicographic ordering (either the longer
word is greater, or vice versa; for words of the same length the comparison is lex-
icographic). Permutations can be compared in the lexicographic or reverse lexico-
graphic order. Also, the result depends on what we compare first, the permutations
or the sequences of words. This gives rise to eight candidates for an ordering; we
name these candidates PathPerm, RPathPerm, PathRPerm, RPathRPerm,
PermPath etc. (the names are self-explanatory).

Proposition 4 ([3]). All the above orderings are admissible.

In fact, to compare words one may use any admissible ordering of the monomial
basis of the free algebra, for example, the lexicographic ordering, or the reverse
lexicographic one: the resulting ordering of tree monomials will be admissible as
well.

18 VLADIMIR DOTSENKO AND MIKAEL VEJDEMO JOHANSSON

Appendix: Haskell constructions used

Bool: The boolean truth values type. Has values True and False.
Int: The bounded integer type. Has values, on a 32 bit machine, from the

interval [−2147483648, 2147483647].
Char: The single character type.
[a]: The type of lists of elements of type a.
a → b: The type of a function from a type a to a type b.
data: The declaration of a new data type.
Ord: The type class that defines the ordering functions <, >, <=, >=, and

compare.
Eq: The type class that defines the equality testing function (==).
Show: The type class that defines the serialization function show.
Fractional: The type class that defines a type to implement a field.
(::): The syntax element indicating a type declaration.
(⇒): The syntax element delimiting type assumptions from the type decla-

ration.
(!): When occurring in a type declaration, forces strictness in the correspond-

ing part.
(|): When occurring in a type declaration, delimiting the union type compo-

nents. Hence, a type declared as data T = A Int | B Char is either an
Int with the constructor A, or a Char with the constructor B.

TreeOrdering: A type class created by our code carrying information about
the chosen monomial order.

OperadElement: The type created by our code representing, internally, a
linear combination of tree monomials with associated monomial orderings.

(+): The addition function.
deriving: Used in a data declaration. It will automatically generate imple-

mentations of the type classes listed.
map: A higher order function that applies another function to every element

in a list.

References

[1] M. Abbott, T. Altenkirch, C. McBride, and N. Ghani. ∂ for Data: Differentiating Data
Structures. Fundamenta Informaticae, 65(1-2):28, 2004.

[2] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Comm. of the

ACM, 20(10):762–772, 1977.
[3] Vladimir Dotsenko. Freeness theorems for operads via Gröbner bases. arXiv:0907.4958.
[4] Vladimir Dotsenko and Anton Khoroshkin. Gröbner bases for operads. Duke Math. Journal,

to appear.
[5] Eric Hoffbeck. A Poincaré–Birkhoff–Witt criterion for Koszul operads. Manuscripta Math.,

to appear.
[6] Gérard Huet. The zipper. Journal of Functional Programming, 7(05):549–554, 1997.
[7] S. P Jones, editor. Haskell 98 language and libraries: the revised report. Cambridge Univ Pr,

2003.
[8] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in

strings. SIAM J. Comput., 6(2):323–350, 1977.

[9] Jean-Louis Loday and Bruno Vallette. Algebraic operads. In preparation.
[10] Martin Markl, Steve Shnider, and Jim Stasheff. Operads in algebra, topology and physics,

volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, Prov-
idence, RI, 2002.

IMPLEMENTING GRÖBNER BASES FOR OPERADS 19

Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland and

School of Mathematics, Trinity College, Dublin 2, Ireland

E-mail address: vdots@maths.tcd.ie

Department of Mathematics, Stanford CA 94305, USA

E-mail address: mik@stanford.edu

	1. Introduction
	1.1. Summary of results
	1.2. Outline of the paper
	1.3. Acknowledgements

	2. Overview
	2.1. Operads
	2.2. Trees
	2.3. Gröbner bases
	2.4. Haskell

	3. Internal representations
	3.1. Decorated trees
	3.2. Operad elements
	3.3. Trees with holes and tagged nodes
	3.4. Permutations

	4. Algorithms
	4.1. Finding small common multiples
	4.2. Divisibility and reconstructions
	4.3. Monomial orderings

	Appendix: Haskell constructions used
	References

