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Numerical Evidence for ap, — ip, Paired Fractional Quantum Hall Stateat v = 12/5
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We provide numerical evidence supporting a Bondersong8tiand (BS) non-Abelian hierarchy state as a
candidate for the observed= 12/5 quantum Hall plateau. We confirm the existence of a gappegiripeess-
ible v = 12/5 quantum Hall state with shiff = 2 matching that of the BS state. The exact ground-state
of the Coulomb interaction state on the sphere is shown te fage overlap with the BS ground-state trial
wavefunction. The analysis of the BS states is extendedet@ithical descendants of general paired states in
the weak-pairing phase at= 5/2.

PACS numbers: 73.43.-f, 71.10.Pm, 05.30.Pr, 03.65.Vf

Fractional quantum Hall (FQH) physics in the lowest Lan-are constructed by successively condensing minimal charge
dau level is well understood in terms of the Laughlin st@s[ Abelian quasiparticles and projecting them into new FQH
and the Haldane—Halperin (HH) hierarchy statés![2, 3], Whic states. They can be succinctly described as Ising(1) x|,
can equivalently be described using Jain’s composite famimi where the coupling constart -matrix haskKy,, = 2 cor-

(CF) approach[[4]:|5]. The first appearance of an evenresponding to the MR parent state afids the topological
denominator fractional plateau at= 5/2 made it clear that charge spectrum. Some of these states can also be described
the physics of the second Landauélgevtzl Zag) could be everusing an equivalent CF type formulatidﬂ[l?]. Among these
more interesting. Numerical studi ,L7,.8, 9] support the N A | S :
non-Abelianp, — ip, paired Moore—Read (MR) statE[lO] is the BS state with{ = 1 9 } , which is a candidate for
(and its particle-hole conjugat®R) as the correct descrip- v = 12/5. It has the CF type ground-state wavefunctlon [31]
tion of ther = 5/2 FQH state. At first, it seemed that this

exceptional filling fraction was just an anomaly that appdar \IJ(EBS) = PrrL {Pf[ _ ! } xi’x_g} 1)
amongst other “standard” odd-denominator FQH states-at ° Zi T A
7/3,8/3, and14/5 [11,[12]. Later, & = 12/5 plateau also = ¢MRgER )

2
emerged_L_l|3], and it was numerically shown that in addit@mn t 3
the Abelian HH state, the particle-hole conjugate of the-nonWhere P, is lowest Landau level projectiony,, is the
Abelian3-clustered Read—Rezayi (RR) st , 15] is also avavefunction ofr filled Landau levelsq, < 0 corresponding
viable candidate for this filling fraction. In fact, it hasdre to negative qux),\IngR) is the bosonicv = 1 MR ground-
shown numerically that pairing/clustering is generalllere state wavefunction, and’(f':) is the standard = 2/3 CF
vant in the7/3 < v < 8/3 range [16]. Recently, a non- ground-state wavefunction. This BS state has shift 2 on
Abelian hierarchy of states constructed overithe 5/2 MR {10 sphere, where
state was proposed to describe all the 2LL FQH states [17]. ’
These Bonderson-Slingerland (BS) states exhibit the same Ny=v"'N.—S )
pairing as the parent MR state, thus suggesting that thegshys
of ther = 5/2 “anomaly” could in fact be representative of
all 2LL states. There has been much recent interest in non- :
Abelian FQH states due to theotential use for topoldbica rfespectlvely, have§ = 4 and =2 on the sphere. In order

an

i i to study the validity of the BS state and to compare it with
protected quantum computat [ 19]. While &R State " ihese other candidates for= 12/5, we used a combination

- NGy powerful numerical techniques on the sphere: exact diag-
alone, the BS states cannot, requiring at least one suppleme

— onalization, variational Monte Carlo, and the density ixatr

tal udr?grct)te(itetd gﬁte. Hent(I:ea_t#e Hl_til BSI’ mfa?r: 12/5 renormalization group (DMRG) method.
candidale states have vastly difterent 'evels ot utl itycfoan- A necessary signature of a FQH state is the existence of a
tum computation, and discovering which of these actually oc L

. : . LoD ) charge excitation gap
cur in experiments will be quite significant. In this Letter,
we provide numerical evidence establishing the BS state as a A(Ng) = En, 41+ En,—1 —2EN, (4)
competitive candidate at= 12/5.

is the relation between the number of flux quaitgaand the
number of electrond/.. The HH andRR states at = 12/5,

at the correspondingy,, given in Eq. [B), whereE\,, is the
The BS hierarchy stateﬂl?] built over the MR stateground-state energy (in units ef //y, wherely = \/hc/eB
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5V1 tion to the actual ground-state in the form of a matrix prdaduc
state. The accuracy is completely under control and it is dic
FIG. 1: The charge excitation gaps for a system\of = 14 elec-  tated by the number of DMRG stateskept in the truncation.
trons. a) A scan of gaps as a function of magnetic flux. Shdtsee |y this work, we use up tex = 4000 states for the larger sys-
sponding to candidate states are labeled. b) A variatioh@pseu- o, gizes, giving estimated errors in the energies perefect
dopotentialdV; around the Coulomb point at fluxes corresponding 5
tov = 12/5 at shiftsS = 4, 2, and—2, on the_order ob x 10~ in the worst cases.
In Fig.[IR), we show a scan of the charge gap as a func-
tion of magnetic flux, forN. = 14 at the Coulomb point.
We can identify different states according to their shié; |

. . : beling thev = 5/2 MR state, they = 12/5 HH, BS, and
is the magnetic length) for the given valuel§j, fluxes. A /n RR states, and the — 7/3 L, 5 state. We find gaps for

is the energy gap of a quasihole-quasielectron pair, where Vv — 12/5 states aiS — 2 (as referenced earlier ih [17]) and

is the number of fundamental quasiholes produced per flux, _ . . )
(n — 2 for the HH, BS, ancRR states ab — 12/5.) As = —2, but not atS = 4. In Fig.[Ib), we show the behav

ther = 12/5 candidate states that are being considered al” of the charge gap as a function of the pseudopotelitial

h distinct shifts. th ist f ch b varied around the Coulomb point, faf, = 14. This exhibits
ave distinct snitts, the existence of charge gaps can e Usg, generally observed behavior where increasindestroys
to help identify which states are competitive. It is, howeve

also important to remember that finite systems can run intthe non-_Abehan clustered states (BS &R) and stabilizes
the aliasing problem, where two states with different fglin the Abelian state (HH). We note that tie= 2 ar_1d—2 gtates
fractions share the saylme valueld for a givenN, both show a stro_ng gap in the same rangélaf, including at
e the Coulomb point{V; = 0). These threer = 12/5 states

In a recent numerical StudﬂZO] W|th f|n|te |a.yer WIdthS, a Satisfy theL2 =0 condition of FQH ground_states when their
v = 12/5 state withS = 2 was clearly identified, with charge gaps are positive, untlv; < —0.02.
gaps given for up tV. = 14. Second Landau level flux scans o further investigate the characteristics of the= 12/5
were only performed foiV, = 10 and12 in Ref. [20], and,  state withS = 2, we calculate the pair correlation func-
unfortunately, at these system sizes there are aliasirfiaen  tjon ¢ (1) obtained from exact diagonalization. The results
between = 12/5 states withS = 4 andS = —2andther = 4t the Coulomb point are displayed in Fj. These exhibit
5/2 MR andv = 7/3 Laughlin (L7/3) states, respectively. strongly damped long-distance oscillations indicativamfn-
In order to overcome these aliasing difficulties, we used th‘i’:ompressible state, further corroborating that this iséed
DMRG technique of Ref[[8] (see also [21]) to study systemg good FQH state. We also see a slight “shoulder” at small
sizes of up taV, = 18 electrons. r, which becomes more pronounced®s decreases. Such

The DMRG technique belongs to the family of variational shoulders are present for the MR and RR states [14, 22], and
methods, and includes ingredients of exact diagonali@atioare considered a characteristic of non-Abelian clustesds
and numerical renormalization group. However,anpriori The preceding discussion of the spectral properties of the
assumptions about the physics of the variational wavefomct Coulomb Hamiltonian in the 2LL reveals clear evidence of the
are made. The algorithm relies on a truncation of the Hilberexistence of an incompressible state at 12/5 with S = 2,
space in such a way that the loss of information is minimizedconsistent with the BS state. However, finding such a state
The resulting variational wavefunction is the best apprad  at the same filling fraction and shift as a proposed candidate
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wheregi (z:) = Ji‘lpm [¢x (z:) J;] are the projected CF or-
bitals, andJ; = Hk# (z; — z). To obtain a paired state at
the shift of the BS state, an effective field with flux quanta
is required for these CFs. The pair-wavefunction then aegui
a phase of-27 when two CFs are braided, which we denote
asp, — ipy, Or negative p-wave pairing. Our simulations are
undertaken on the sphere, where the expansion inGBrdn<{
volves monopole harmonics (for details, see [26], App. A).
As for the paired state at= 5/2, the number of relevant pa-
rametersgy, on the sphere is smam[g] — only up 5ofor the
system sizes considered.

Fig.Bb) shows results for the overlaps of BS states with pair

0.4_0‘_02‘ ‘0 wavefunctions optimized such as to yield maximum overlap
with the exact ground-state at = 12/5 and shiftS = 2.
Comparing to the results in Fi@a), we find that the re-
gion of large overlaps with the exact ground-state becomes
wider, while the overlap peaks increase significantly arnifi sh
to slightly higherdV;. The overlaps now reach as high as
0.990(2) for N. = 8 and climb t00.92(3) for our largest sys-
tem (V. = 14) atoV; = 0.02.

Forv = 5/2, the weakly paired states are continuously
connected|]9] to a CF Fermi-liquid state (similar to the one

is still only circumstantial evidence, and more direct evide ~ atv = 1/2) atlargedV;, where the CF formulation becomes
is necessary to establish the BS state as an accurate descNE_tua"y exact. At = 12/5, the HH state occurs at a different
tion. We therefore consider the overlap of the ground-stat&hift, so it comes as no surprise that the overlap of the B8 sta
wavefunction of Eq ) with the exact ground-state wavefunc- decreases for largd/;. We find a discontinuous drop to zero
tion obtained for the same shift on the sphere. As shown if the overlap in some case&/( = 10 and14), indicating
Fig.Ba), these overlaps reach as highas9(2) for N, = 8  level crossings in the ground-state.

and remain as large @s33(2) for the largest system consid- ~ The large overlaps between the BS ground-state and the
ered (V, = 14) at§V; = 0. Again, we manipulated the first €xact ground-state at = 12/5 with S = 2, together with
pseudopotential coefficiefif, around the Coulomb potential the evidence for a gapped, incompressible non-Abelian FQH
of a thin 2DEG in 2LL to obtain a simple parametrization of State at this filling factor and shift, clearly establish $8

the relevant interactions. The largest values of the opexta ~ State as a strong candidate for the observed 12/5 FQH
obtained at slightly positive values 6§, ~ 0.01. The nu- state [1B], joining the ranks of HH arRR as the primary con-
merical evaluation of the overlap integral was undertaken b tenders. Naturally, we would like to pit these states agains
a Monte-Carlo sampling o® = [ d(z1,. . ., 28) UlacPuial each other to see which emerges victorious. However, this

in position space. The composite fermion p@r‘_f':) of the IS not so easily accomplished with numerics. For example,

. . 3 . Pince these states have different shifts on the sphere ame c
trial state in Eq.[Z) was generated as a Slater determinant o . . . .
S : . . not directly compare energetics, e.g. it would not be valid t
individually projected CF orbnal@S] at negative effiget claim the larger gap exhibited in Figb) favorsRR over BS
flux [@]. The rate-limiting step is the evaluation of the eixa ger gap '

: . : : In order to compare the energetics in a somewhat meaning-
wavefunction, which requires calculating a number of 3late o . .
ful way, we attempt a finite size scaling to the thermodynamic

determinapts equal to J.[he dimension of the Hilbert-sub&spacnmit' where the shift becomes irrelevant. When comparing
JL\){LfolerJec;edec;nto f|xicL129_ 205 or our largest system, states at different shifts, we use the rescaled magnetithen
e = 1% Wehavep,—o = 1.9 10" _ ¢, = \/N./vNylo and units of energy? /£, which compen-
The MR state may be regarded as one representative of %%tes for finite size effects in spherical systeln_lls [27].
entire family of weakly paired CF staté}@ 25]. Similattyis In Fig.[d, we plot the rescaled ground-state energies per
holds true for the BS states that are derived from the MR statg actron at the Coulomb point for the shifts corresponding
by condensation of quasiparticles. Other representatives
either class of paired states can be obtained explicitlyay-v
ing the pair wavefunctior[[9]. In this variational approac
we introduce a number of parametegsto replace the pair-
wavefunction as follows:

L. Lo
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FIG. 3: Squared overlaps fav. = 8, 10, 12, and14 between the
exact diagonalization ground-state and: a) the BS groteté-wave-
function of Eq. [2), and b) the BS ground-state with optirdipair-

wavefunction of Eq.[(5). Error bars represent the statibtimcer-
tainty of the Monte-Carlo sampling of the overlap integral.

to the candidatesr = 12/5 states, and use a least-squares
fit to linearly extrapolate to the thermodynamic limit. Even
though theRR state has lower energy in finite systems, the
ground-state energies per electron in the thermodynamit; i
E/N. = —0.3416(5), —0.342(3), and—0.3421(5) for S =

4, 2, and—2, respectively, are very close and within extrap-

Pf{ 1 ] . pf ng S (z) i (z)] . (®) olation errors of each other [32], so there does. not appear to
Zi = Zj " be a clear preference between them. Hence, it is likely that
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FIG. 4: Finite-size scaling of ground-state energies pectebn as a
function of 1/N. for v = 12/5 states withS = 4, 2, and—2 at the
Coulomb point.

the physical effects of finite layer thickness and Landaellev
mixing will play an important role in determining which stat

is actually favored and experimentally realized, and a more

thorough analysis of such factors is certainly warranted.

Another way to more directly compare different states of
the same filling fraction is to examine them on the torus,

where all states trivially have zero shift. The numericaftkvo
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