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of the tube as predicted by Todorov and White [10].
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1 Introduction

Carbon nanotubes are single molecules of carbon consisting of a hexagonal graphite-like
lattice wound into a cylinder micrometres long and nanometres in diameter. They have great
promise for applications in many areas, for example in scanning-tunnelling microscopes, as
nanoscale transistors, and as lighting elements [1].

It is well-known that single-walled carbon nanotubes can have different configurations
depending on the way they are wound into a cylinder (their helicity). The two extremal cases
are called the armchair configuration and the zig-zag configuration. These two configurations
have markedly different electronic properties [2]: whereas the former are metallic conductors,
the latter can be metallic or semiconducting depending on their diameter. More specifically,
an (n, m) nanotube is metallic if n — m is a multiple if 3. This can be explained in terms of
their band structure. The band structure of graphite was first computed by Wallace[3] in a
tight-binding approximation. His calculation was modified by several groups to account for
the periodic boundary conditions of carbon nanotubes[4, 5, 6, 7].

In the present paper we consider only the armchair configuration. It was argued by
Todorov and White[10] that the conductivity of these nanotubes has another interesting fea-
ture, which is already suggested by the particular structure of the dispersion relations.They
made a rough calculation of the mean free path of electrons using Fermi’s Golden Rule to
show that it is unusually large for electrons near the Fermi level. They argued that this
effect is due to an averaging of the impurity distribution over the circumference of the nan-
otube. Their interesting prediction was verified experimentally by Liang et al.[11] using a
Fabry-Perot electron interferometer.

In a normal metal wire, the conductance (inverse resistance) is proportional to the cross
sectional area and inversely proportional to the length of the wire (Ohm’s law):

A
G=0—. 1.1
A (1)
The conductivity ¢ is an intrinsic property of the metal. It is proportional to the mean
free path ¢, of the electrons in the wire. The scattering of electrons is diffusive, i.e. the
coherence length is much smaller than the mean free path. In that case Ohm’s law holds

and the conductivity satisfies the Drude behaviour:
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where 7 is the mean free time an the mean free path ¢,, = vp7 is independent of the cross
sectional area. At low temperatures it is dominated by impurity scattering and depends only
on the number of impurities per unit volume.

In long thin mesoscopic conductors the coherence length is long compared to the mean
free path. In that case the theory predicts a transition as the length of the conductor
increases, from a region of ballistic transport to a localised regime, where the conductance is
exponentially small[13]. This transition is determined by the localisation length & which is
proportional to the number of conducting channels N and the scattering length £. In the
armchair nanotube, the number of available energy levels for transport near the Fermi level
is two, i.e. Ng = 2, corresponding to the two branches of the dispersion relation crossing the



Fermi level. Todorov and White argue that the scattering length in that case is proportional
to the circumference. This is therefore nearly ballistic transport. The conductance in the
ballistic regime is given by Landauer’s formula[14, 15, 16]:
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where ¢;; are the transmission coefficients.

In this paper we compute the lowest Lyapunov exponents in a tight-binding model of the
nanotube similar to the Anderson model[23] to second order in the strength of the impurities,
i.e. the standard deviation of the probability distribution, assuming independent, identically
distributed random impurities on all sites. The method used was invented by Figotin and
Pastur[19] for the one-line Anderson model, and extended in a nontrivial way by Schulz-
Baldes[20] to the quasi one-dimensional case of many linked chains. We show that for the
nanotube these exponents are of order A>N~!, where )\ is the strength of the impurities
and N is the circumference of the tube, i.e. the number of elementary hexagons in the
transverse direction. This result is similar to that of [20] for the standard Anderson model
on a strip. Since the localisation length is the inverse of the Lyapunov exponent, we see that
the scattering length is also proportional to NV as asserted by Todorov and White.

For general background, we note that the Anderson model has been studied extensively,
see e.g. the books by Figotin and Pastur[19] and by Carmona and Lacroix[22]. We mention
the main features. In his seminal paper[23], Anderson argued that in 3 dimensions, a tight
binding model with random impurities should have a so-called mobility edge, a critical energy
above which all eigenstates are localised, and do not contribute to the conductivity. This
claim has in fact still not been proven mathematically. However, in 1961, Mott and Twose[24]
argued that in one dimension all eigenstates should be localised. This was proven in 1976 by
Pastur et al.[25]. It was extended to the case of many linked chains by Lacroix[26, 27]. These
proofs rely on the transfer matrix formalism, and assume that the chains are infinite. In 1985
it was proved by Frohlich et al.[29] and by Delyon et al.[30], based on earlier work by Fréhlich
and Spencer[28], that in higher dimensions there is indeed localisation at high energies or
large disorder. Various results about the smoothness of the density of states have also been
proven. In the one-dimensional case, the invariant measure was investigated by Bovier and
Klein[35] after initial approximate calculations by Kappus and Wegner|[33] and Derrida and
Gardner[34]. The latter showed that there is an anomaly in the invariant measure at A — 0
in the sense that the measure is not continuous at the band centre (E = 0) as A — 0, and
has non-analytic singularities at other energies. It was finally proved by Campanino and
Klein[36] that there is an asymptotic expansion for the invariant measure at £ = 0 (and the
other anomalous energies) in powers of A. In [38] the invariant measure for the case of two
linked chains was considered. In a generic case, it could be computed exactly, in others only
a differential equation could be derived. It was found that there are anomalies at £ = 0 as
well as at other band edges. Notice that Schulz-Baldes[20, 21] also find singularities in the
lowest Lyapunov exponent at these energies.

The paper is organised as follows. In Section 2 we describe the tight-binding model
for the armchair nanotube, compute the dispersion relations and the density of states for
the model. In Section 3 we introduce the transfer matrix for the model and compute its
spectrum and eigenfunctions in the case of no disorder. This leads to an identification of the



channels and a suitable change of basis. In Section 4, the two lowest Lyapunov exponents are
evaluated to lowest order in the disorder parameter A\ using a generalisation of the method
of Figotin and Pastur[19] elaborated by Schulz-Baldes[20] in the case of the Anderson model
on a strip. Some of the more detailed calculations are deferred to appendices in Sections 5

and 6.

2 The Model

The hexagonal lattice is a regular Bravais lattice with translation vectors a; and as; and a
basis of two points as in Figure 1 below. Choose a black point as the origin and let b =
%(al +ay). The black points are of the form nja; +mnsa, and the white points b+nja; +nsas
with nq,ny € Z.
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Figure 1: Armchair nanotube with N = 2

The armchair nanotube is obtained by imposing periodic boundary conditions such that
points x are identified with x + Na; + Nas. Denote the armchair nanotube by A. We define
a tight-binding Hamiltonian on H, = [*(A) in the usual way:

(Hyy)(x) = — > U(y) + AV (x)¥(x). (2.1)

y nearest neighbour of x

where the real numbers V' (x) are some realization of a set of bounded, centered, independent

random variables with common variance E(V?(x)) = o2.

 Let Ay correspond to the black points of A and Hy = 12(Ay) ® C2. We identify H, with
‘H through the map ¢ — ¥ where

o= (2) ()



with the identification ¥(ny; + N,ny + N) = ¥(ny,ny). On Ha, Hy becomes H, where

~ B 0 1 Y1 (n) + Y1 (ng + 1,n9) + ¥1(n1,ne + 1)
(H0)(n) = = ( 10 ) ( a(n) + Yo(ng — 1,m9) + 1 (g, ny — 1) )

A ) () e

It is more convenient to straighten out the nanotube by taking A = Z x {0,1,...,2N —1}
as in Figure 2. Let (n,m) with n € Z and m € {0,1,...,2N — 1} be the coordinates of
the lattice points. Then the black points correspond to n — m even and the white points to
n —m odd. H) is then given by

(HxY)(n,m) = —¢p(n+1,m)—¢v(n—1,m) —yn,m+(=1)""")+ AV (n,m)y(n,m) (2.4)
where ¥(n,m +2N) = (n,m).

mo, 4

where Vi(n) = V(n) and Va(n) = V(n').
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Figure 2 : Straightened nanotube with N = 2: dark lines indicate bonds

For the case A = 0 the spectrum and the density of states are easily computed. Define
the Fourier Transform of ¥, ¥ € Hy := L*(0,27) ® C* @ C? by

2N—-1

7 _ 1 ikn mi T Y(n,m)
W(k,q>_m% > efne <¢<n’m+1>>. (2.5)

m =0//n —meven

Then for n — m even,

(w(gvb%(,%@m) = ¢217T—N2§__:1 / ke e ik, ) (2.6)




On 7:(, ﬁo becomes ro where

(o) (k,q) = Alk, @) (k, q). (2.7)
where ”
Alk,q) = = ( 1+ 262113’ cos k o 26W(;N ot ) ' (2:8)
The spectrum is therefore described by the bands :
{£E(k,q) | k€ (—m,7), ¢=0,...,N} (2.9)
where, introducing the notation o, = 47,
E(k,q) = (1 + 4cos a,cos k + 4 cos® k)'/2. (2.10)
Note that F(k, ¢) has a minimum equal to sin o, and therefore in the interval (sin §, —sin )
there are only the bands corresponding to ¢ = 0 and ¢ = N which become zero at i%’r and
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Figure 3 : dispersion law for A =0 with N =6

The (generalized) eigenstates of the hamiltonian at energy E = +E(ko, qo) in Fourier space
read :

i 1
\I/iE(ko,qo)(ka Q) = 5(l€ — /{0)5((] - C_Io) ( :Fe_m(ko’qo) > (2.11)

where a(kg, qo) = arg(1 + 2e™wo cos(kp)). In real space, the eigenstates are given by :

¢j: ko, n,m —ikon . —ima 1
(¢ B(ko.qo) ( )) _ oikong—imag, o (2.12)

+E(ko,q0) (TL, m+1



where n — m is even.

It is no surprise to see that this corresponds to two plane waves with the same wave
vector and a global phase shift. One of them is supported by the black sublattice and the
other by the white sublattice. To compute the density of states one has to be a bit careful.
The bands have the symmetry F(ko, qo) = E(—ko, qo) = E(ko,2N —qo). Moreover, if ¢ < N,
one has F(=x|ko|, q0) = E(£(|ko| —7), N —qo). A direct computation using (2.12) then shows
that for gg < N :

\I/j:E(j:\kOqu)(n, m) = \IliE(i(\kd—W),N-&-qo)(n? m) (2'13)
Hence, only the bands with ¢ € {0,...,N — 1} have to be taken into account for the
computation of the density of states. The other bands are redundant because they give the
same eigenstates. The density of states, p(FE), is thus given by :

N—-1

p(E) = 3 pulE), (2.14)

q=0
where the density of states for the g-branch is given by

B = o %

koe(—m,m):xE(ko,q)=FE

1 E
= — | | 1(sin2a 5—4cos o )(EQ)
2m \ 24/E? — sin® a /1 — ¢, (E)? v ‘

|E] 2
+ ; 1 sin? ag, 5+4coso<q)(E ) (216)
2¢/E? —sin® a /1 — c_(E)? (

1
c+(E) = —3 [cos ag & 1/ E% — sin® aq} : (2.17)

Note that, as a consequence of the symmetry FE(+£|k|,q) = E(£(|k] — 7),q), one has
pN—q(E) = py(E). The density of states can thus also be written :

dk

EGD (2.15)

k=ko

where

S

p(E) = = > vip(B) (2.18)

q=0

where v, = 1 if ¢ € {0, 5}, and v, = 2 otherwise.

As for the Anderson model we now identify H, with Hy = [3(Z) ® C*¥ writing Uy(n) =
v(n,k—1), k=1,2,...,2N. With this definition, the components of ¥(n) correspond to
the values taken by the original wave function ¢ of the straightened nanotube at the points
of the n'* vertical line written from the bottom up, as in Figure 2. If one defines the three



2N x 2N matrices:

0O -1 0 0 0 0
-1 0 0 0 0 0
0O 0 0 -1 0 0
Wo— 0O 0 -1 0 0 0 7
O 0 0 0 0 -1
0O 0 0 0 -1 0
0O 1 0 0 0 O
0O 0 1 0 0 O
O 0 0 1 0 O
g_ 0O 0 0 0 0 O
0O 0 0 0 0 1
1 0 0 0 0 O
and
V(n,0) 0 0 0 0 0
0 V(n,1) 0 0 0 0
0 0 V(n,2) 0 0 0
Vn) = 0 0 0 V(n,3) 0 0 7
0 0 0 0 V(n,2N — 2) 0
0 0 0 0 0 V(n,2N —1)

then the Hamiltonian on Hy becomes Hy, where:
(HyU)(n) = W(n)¥(n) — U(n—1) — U(n+1) + AV (n)¥(n)
where:

W(n) = {WEEW if p(n) =1, (2.19)

| W= SWST!if p(n) = —1.

3 The transfer matrix and its spectrum

The transfer matrix for this model is the 4N x 4N matrix

W)\ (n) — E _I[QN
Ion 0
where Wy (n) = W(n) + AV (n). Since W (n) depends on the parity of n it is convenient to
introduce the two-step transfer matrix 75 (n):

Ty(n) = ( WA(?I;?[— E —%N ) ( WA(anZ—NQ —E _%N ) |



We can write
where, using the notation W, =W, — E, W, = W, — EZ we have :
Wo-Ww,: -1 W
) = (Mg TR ) (32)
and
VE@n)W, +W V(2n—-1) =V (2n
Ax(n) = A(n) + AB(n) = ( (2n) V(Qn_l)( b )>
V(2n)V(2n —1) Oy )
A . 3.3
* ( O Oa (3:3)

Since Wy (n) is a symmetric matrix for any n and A, it is easy to check that the transfer

matrix is symplectic. That is, if we define the matrix:
_( 0 —Iy
7= (1))
then the transfer matrix satisfies the equation:
Th(n, E)JTY (n, E) = J

In the remainder of this section we shall study the spectrum of the free transfer matrix 7

3.1 Reduction of the problem
Suppose that ®, € C*V is an eigenvector of Ty(E) with eigenvalue k. We write @, as
(1)
b, = =
()

with @, (1) as well as ®,(0) belonging to C2V, The eigenvalue equation for ®, then reads:

{ (Wew, ) ﬁ<1> Wy 0(0) = Kbu(1)

Wy @,(1 ) 0,(0) = £D,(0)

which gives by inserting the second equation into the first one
WoW; B, (1) = 125, (1)
Wy @x(1) = (1 + £)®,(0)

Multiplying the first equation by W, , and then inserting the second equation now gives

W(1) = g (1)

K

o
$,(0) = L2, (0)

We Wy
WOi Wei



That is, ®.(1) is an eigenvector of W, W, with eigenvalue p = @ and ®,(0) is an
eigenvector of W, W, = (W, W, )T with the same eigenvalue pu. Note that the second
condition is satisfied by W~ <i>,.;(1) and that the two conjugate eigenvalues x and ~~! of the
symplectic matrix Ty(E) give rise to the same eigenvalue p for W, W, .

_ (p=2)F/ i —4p

Conversely, let &)u be an eigenvector of W W~ with eigenvalue p and let k4 (p) = —————,

where the square root is taken on the first branch. It is then easy to check that the two
vectors @, () € C*V given by :

P
P, = 1 B
+ (1) ( E— W, o, )

are eigenvectors of Ty(E) with eigenvalues k(1) (resp. £_(u)). The problem of finding the
spectrum of Ty (E) reduces thus to finding the spectrum of W, W, .

3.2 The spectrum of W W
3.2.1 The E =0 case

In order to determine the spectrum of W W, we will first focus on the case when F = 0,
and then extrapolate to other values of . When ' = 0, we have W W, = W,.W, and this
matrix takes the simple form:

Op P 03 0y ... ... 0 P
P 0, P 0y ... ... 0y 0y
0 P 0y P ... ... 0y 0
W, = 0 0y P 0y ... ... 0y 0
O 0y 0y 0y ... ... 0y P
P 0y, 0 Oy ... ... P 0

where P, P, and 0, are the 2 x 2 matrices given by:

10\ - (00 0 0
r=foo) m=(0v) = (50)

Obviously the relations P? = P and PP =P = I, — P are satisfied. P and P are thus
orthogonal projections, and they commute. The eigenvalues p of W .W, are given by the

characteristic equation:
deth(Wewo - ILL]:[2N) =0

In order to compute the latter determinant, let us introduce the set Ms(N) of N x N block
matrices, with each block being a 2 x 2 matrix. This is just the set of N x N matrices where

the numbers have been replaced by 2 x 2 matrices. There is an obvious bijection between
the set of 2N x 2N matrices and My(N) given by the function F': M — M, where:

~ Mo_12j—1 Mag_1 95 .
M, . = - - k.gedl,....N
kJ ( Moy 251 Moy, 25 J { }
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Hence, we will use these two notions interchangeably in the sequel. We define the multipli-
cation on the left of block matrices M € My(N) by 2 x 2 matrices A via the formula:

(AM),; = AM;; i,j€{l,...,N}
With these notations, we have the identity:
W.W, = PS* + PS™2
For N x N block matrices M € My(N) with pairwise commuting blocks:
[M”,Mk,z] =0 4,j,kle{l,...,N}
it is a known result that:

detoy (M) = dety(dety (M)

where det, N (resp. dety) denotes the usual determinant of a 2N x 2N (resp. 2 X 2) matrix,
and det ~ (M) is the 2 x 2 matrix obtained from M via the usual determinant formula for an
N x N matrix with the numbers replaced by the building blocks of M.

The matrix W, W, — ulyy, viewed as an element of Ms(N), belongs to this category, and
the formula: 3 B
deton (W, W, — ulyy) = dety(dety(PS? + PS™2 — pulay))

thus holds. Moreover, because of the identity PP = PP = 0, the cross terms containing
both P and P in dety are moreover vanishing so that we obtain:

détN(PSQ + FSiQ - IU/]IQN) = détN<PS2 — /,L]IQN) + détN(FSHQ — IU/]IQN) — détN(—,u]IzN),

where the last term on the right hand side compensates for the fact that the diagonal term
has been counted twice in the first part of the sum. An easy computation then shows that:

dety (PS? — pllon) = (=) + (=1)V ' P
d?tN(?S_Q — uloy) = (—M)N]IQ + (_1)N—1F
dety (—plon) = (—p) VI

So that:
deth(WeWO — ILLIQN) = detg((—l)N_1<1 — U )]12) (1 — U )2

Hence, W.W, has exactly N eigenvalues given by p, = e?* with q € {0,1,..., N — 1} each
of which has multiplicity two. Note that the eigenvalues come in complex conjugate pairs
since i is real and puy_4 = Jiq for ¢ greater than 1.

We now turn to the problem of determining the corresponding eigenvectors. Let @, € C2N
be an arbitrary eigenvector of W, W, with eigenvalue ji,, and write it as:

®,,(1)
®,,(2)
B, (N)

Hq
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where the components @, (1),...,®, (N) of @, are all in C*. Since the 2N x 2N matrix
S? performs a cyclic shift of the components of P,

qu)ﬂq -

the eigenvalue equation for @, reads:
,uq(I)“q(T):P@Hq(r—l—l)—i—?q)uq(r—l) ; T€{177N}

With the identification @, (r = N) = @, (r). Multiplying the latter equation by P (resp.

P), we get the two linearly independent sets of equations:

P®, (r) = ugfqu)uq(l) and F@uq(r) = ﬁ’"*lﬁ(buq(l) ; re{l,...,N}

q

These equations imply that for each eigenvalue p, of W.W,, an orthonormal basis for the
corresponding eigenspace H,,, C C?V is provided by the two vectors ¢}, and @Lq given by:

] o]
—120yq
oY = 0 and @' = 1 ©

1
Hq \/N Hq

B

For later use, let us here collect some useful relations:
—1Fu . I _ Fu . u o . . 150 _ u
ST, =0 5P, =055 5P, = pPh; ST, = pePy (3.4)

u o . l u o, u . l u
Wbl = =0l WL, = =0 s Wbl = —p, @, WL, = —p, @

The relations remain true if one replaces j, with its complex conjugate 7z, .

3.2.2 The E # 0 case

Let Hi‘fq = H,, ® Hp, if py is complex, and Hf‘fq = H,, if ug is real (that is: for ¢ = 0, and
q= % if N is even). It follows directly from equations (3.4) that W, and W, map H,, onto
Hz, and conversely. Hence, we can see that the spaces Hf‘fq are globally left invariant by the
action of W, W, so that we can focus on its restrictions W, W, |,, to these subspaces of
CMN. If0<qg< % this restriction reads:

_ _ o (,Uq + EQ)]IQ E(l —+ ﬁq)T
We ol = ( E(+p)T (i, + EL,



where T is the 2 x 2 matrix given by:

(1)

12

Since 7" and I, commute, and 72 = I,, we conclude by using the same method as in the

previous section that the eigenvalue equation for W, W, |,, reads:

2
ety (W, W,y — 1) = (g + B = )7, + B — ) — [E(L+ 1) P) =0

o (1 - 2u(B + cos(200) + (B2~ 1)?) =0

Hence W, W, |, has at most two eigenvalues z-(E) given by:

() = (costag) /7 - sm2<aq>)2

The corresponding eigenvectors are given by:

)y = O +1o(E)P and 7.

Hq = @Lq + ri(E>®%q

(E) (E)

where: ) N
E(1+711,)

An easy calculation shows that ro(E) can also be written as:

ry(E) = e j:sign(E)\/ 1— (%)2 _; (sin](;q)>

Now let kg be defined by:

I':t(E) =

sin(a
cos(kg) = é? o
Here, sign(E) =1 if E > 0, and sign(E) = —1 otherwise. Moreover, one has set:
ke (0] if |90 | oy
and: | — (B ‘
i = i+ SEE) e 0, 1o0] i | 5
2 E
Then ro(FE) takes finally the simple form:
re(F) = —jeilathn)
So that the (normalized) eigenvectors take the form:
@1 _ 1 <q)u +ei(aq_%ikE)®l )
W) " Jetike|2 \ Ha Fq

(3.5)
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and .
2 - - l (ag—5+kg)Fu
(I)uét(E) NG IR ISEE (q)“q Te 2 (I)ﬁq>
Note that:
1 2 ol 2 _
@ua&w)’@u;&wﬁ - <q’u$<E>‘¢u§<E)> =0
and:
(@) |01 ) = (@2 [ 822 ) =1
But
—2ik sin(a
(@1 ) |L () = 5 £ 0 if sinloa) | < 1

sin(ayq)
snlag) | >

cosh zk;E

1 1 _
<(Du;<E)|q>u;<E>> - 70 if
Finally, let us mention that when E? = sinz(aq), one has u, = pu, as well as CID;Jr = (ID}lf
q q

and <I>Z+ = CIDi_. The eigenvalue p; = cos?(a,) is thus only twice degenerate in that case,
q q

and the restriction W W, |,, can not be diagonalized.

If g =0, WoW;|, is the 2 by 2 matrix:

N 1+ E* 2F
We W, ‘Mo N ( 2F 1+ E? ) (3.6)
with eigenvalues:
py (B) = (1£|E|)* (3.7)
and corresponding eigenvectors:
1 u . l
<I>#8t(E) = E (CDMO + 51gn(E)<I>u0) (3.8)
Finally, the case ¢ = % which only occurs for even N gives:
i E? -1 0
We Wo ‘“g’_( 0 E2_1) (39>

with obvious double eigenvalue p~ (E) = E? — 1 and eigenvectors P, , and @LN. Note that
2 > 7
the formula (3.5) giving the value of p(E) also holds for ¢ = 0 and ¢ = &

3.3 The spectrum of the free transfer matrix

With the results of the previous section, we are now able to describe the spectrum of the
free transfer matrix. Remember indeed from section (3.1) that to each eigenvalue p(E)
0<gq<% of W;W, correspond two eigenvalues of the transfer matrix given by :

. (UE(E) — 2) £ sign(E? — sin® ay \/uq —4uE(E)
Kgr = (3.10)

where we used the convention y}, = puy = fx, and sign(z) = 1 if x > 0 and sign(z) = —1
2 2

otherwise. Moreover, the lower superscript refers to the superscript of ,u;t whereas the upper
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superscript corresponds to the sign in front of the squareroot. The two eigenvalues satisfy
the relations:

/i;; = i (3.11)
and: X
Hy (B) =2+ ke (E) + =B (3.12)
It follows from the definition and equation (3.11), that
Wl > 1> | (3.13)
They can thus be represented under the form:
Fox (E) = exp{= (g +if,2)} (3.14)

where n,+ € R*, g+ € (—m, x|, and the overall sign in the exponential coincides with
the superscript of x on the left hand side. The special cases (n,+ = 0, G ¢ {0,7}),
(ngt # 0, Bz € {0,7}), (ngx =0, By € {0,7}) will be called elliptic, hyperbolic and
parabolic respectively. The other eigenvalues will be called mixed. Notice that two conjugate
eigenvalues m;i and Kyt always belong to the same class.

It is clear from (3.12), that the occurrence of mixed eigenvalues is due to the fact that the
operator W W, is not self adjoint and can have complex eigenvalues. They don’t occur in
the Anderson model on the strip where the spectrum of the transfer matrix is determined
by the spectrum of the self adjoint operator A — E where A denotes the transverse Laplacian.

One reads off from (3.12) that H;Ei (E) is mixed iff 47 (F) has a nonvanishing imaginary part.
Moreover, if 1 (E) is real, then:

/iqii(E) is elliptic iff:

0 <y (E)<4 (3.15)
/iji<E) is hyperbolic iff:
pg(E) >4 or pg(E)<0 (3.16)
K;ti<E) is parabolic iff:
py (E) € {0,4} (3.17)

A channel of the transfer matrix T} is the vectorspace spanned by all the eigenvectors of T
whose eigenvalues x have same |n| and |3].

For completeness, let us describe the set of eigenvectors of the free transfer matrix with
the help of sections (3.1) and (3.2.2) : If 0 < ¢ < & each eigenvalue K;ti is twice degenerate
and has corresponding eigenvectors :

i — q)Z?(E) :
(pﬁii(E) = 1 E)WO_(PL;‘: 5 1€ {1,2} (318)

1+/<;qi( (E)
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if0<q<%and:

u l
1 Py : Py
o 4 = 1 W P + = 1 — Bl (3 19)
K e S— ) K — W P :
#% (E) 145, N (B) o #71} u% (B) 1+Hu% (B) o #71}

if g = % The four eigenvalues /ﬁi are only once degenerate and have eigenvectors :

w7\ Ve Yt |

1+noi(

These eigenvectors are not normalized. Namely :

||(I)Nii(E)||2 =2 (3.21)

0

For 0 < ¢ < % : .
||c1>j{ii(E)||2 =1+4eF* e {1,2} (3.22)

where the sign in the exponent on the l.h.s. is minus the upper superscript of li;ti. Finally,

Whenq:%:

) 1+ E*\
Hcp%mE)H?:He”% (1_E2), ie{1,2} (3.23)
2

3.4 Ordering of the channels

.....

(or equivalently the corresponding 7,+ ) from the highest to the lowest. This ordering will
depend on the value E of the energy. We are only interested in cases where the free transfer
matrix can be fully diagonalized, so we exclude the energies for which E? = sin*(a,), 0 <
q < % Indeed, remember from section (3.2.2) that these energies correspond to anomalies
of W, W, . We also have to exclude values of the energy at which parabolic eigenvalues
occur (see section (3.1)), i.e. we suppose that E? # 5 + 4 cos(ay) for all g € {0,..., 5} (see
below). Using the definitions (3.14) and (3.5), we can rewrite equation (3.12) in the form :

(cos(aq) +4/E? — sinQ(aq)> = 2(1 + cosh(n,= ) cos(Bx)) + 2isinh(n,:) sin(fG,x)  (3.24)

We can then distinguish two cases : In the first case, £? > sin®*(a,). Equating the real and
imaginary parts on either side of equation (3.24), we obtain in this case :

2(1 + cosh(n,=) cos(B,2)) = (cos(aq) + /E? — sinZ(qu)>2 -

2sinh(n,=) sin(G,z) =0

The second equation can be satisfied only if either n,+ = 0 or ﬁ;ﬁ € {0,7}. In the first case,
the upper equation reads :

4cos2(ﬁ§) = (cos(aq) +4/E? — sin2(aq))2 (3.26)
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It is easy to show that this equation is consistent only when E? < 5—4 cos(o,) if one chooses

the plus sign and E? < 5+4cos(e,) if one chooses the minus sign. The value of 3,+ is more-

over uniquely determined by this equation because whenever n,+ = 0, one has Dot € [0, %]

2 12
by equations (3.11) and (3.13).

If we suppose that 3, = 0, we obtain :

2

4cosh2(nq7i) = (Cos(aq) +4/E? — Sin2(aq)> (3.27)

This equation in turn is consistent only when E? > 5 — 4 cos(qy) if one chooses the plus sign
and E? > 5+ 4 cos(a,) if one chooses the minus sign. In the case of equality, both equations
apply and we have a parabolic eigenvalue.

Finally, since the right-hand side of the upper equation in (3.25) is always positive, the option
By+ = m can only be fulfilled if ¢ = & and E? =1 = sinz(a%), in which case Ny+ = 0. For
the same reason, the option 3,- = 7 can only be fulfilled if £? = 1, in which case 7,- = 0 for
allg € {0,..., %} At the energies ' = +1 one has thus appearance of parabolic eigenvalues.

We now turn to the case where E? < sin*(ay). Equating the real and imaginary parts on
either side of equation (3.24), yields this time :

2(1 + cosh(n,+) cos(f,+)) = cos(2a,) + E?

(3.28)
2 sinh(n,+ ) sin(3,2) = £2 cos(ay,)/sin*(a,) — E2
Squaring and adding the latter equations up yields :
1 — B2)?

(cosh(ngs) + eos(fe))? = L= EL (3.29)

Since cosh(n,+) + cos(f,+) as well as 1 — E? are positive, it follows :

1— E?

cos(fByr) = — cosh(7,+) (3.30)

Developing the product on the left hand side of (3.29), making use of the upper equation in
(3.28) and then inserting (3.30), yields :

2 cosh?(,=) — (1 — E?) cosh(n,+) + (cos(2a,) + E* —2) =0 (3.31)

Solving this quadratic equation we obtain finally :

1- E? E? —5)% — 16cos?
cosh(n,) = Tt Vi ) 1 o (%). (3.32)

It follows from (3.30) that

1—-E*  /(E?—5)?—16cos?(ay)

cos(By) = — -

(3.33)
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The latter equation determines (,+ only up to a sign, but one deduces from the lower equa-
tion in (3.28) that (,+ corresponds to the positive solution and [,- to the negative one.
Since n,= > 0, n,+ and 7,- are equal and uniquely determined by (3.33). We thus have an
eight dimensional mixed channel (except for ¢ = %, where the channel is only of dimension
four). Finally, let us mention that in the borderline case E? = sin*(a,) the corresponding
channel is elliptic, except for ¢ = % which is parabolic in this case.

Let us now turn to the description of the ordering of the various 7,+ depending on the value
of the energy. Based on equations (3.26), (3.27) and (3.32) and their domain of validity, one
sees that four cases have to be distinguished :

1) |E| <1
In this case, let g.(E) be the highest ¢ € {0,...5} such that E? > sin®(a,). Then for
0 < ¢ < g¢, Ngx = 0 and the corresponding channels are elliptic, whereas for ¢. < ¢ < %, Mg
is given by (3.32) and an increasing function of g. The corresponding channels are mixed,
except the one corresponding to 1y+ which is hyperbolic. In increasing order, the collection

2
of n,+ may thus be written : {no-,no+,...,Nx—,Nx+}
2 2

2) 1< |E| <5
In this case, one has 7,- = 0 for all ¢ € {0,... %} and the corresponding channels are ellip-
tic. Let moreover g. be the highest ¢ € {0,...5} such that E? > 5 — 4 cos(a,). Then, for
0 <q < g, n,+ is given by (3.27) and a decreasing function of ¢, whereas for ¢. < ¢ < %,
ng+ = 0 and the corresponding channels are elliptic. In increasing order, the collection of
ng+ may thus be written : {ny- ... Sy Tyt , Mo+ }-

3) Vs <|El <3
In this case, .+ is given by (3.27) for all ¢ € {0,... %} and is a decreasing function of g.
The corresponding channels are hyperbolic. Let moreover g. be the highest ¢ € {0, ... %}
such that £? < 5+ 4 cos(ay). Then, for 0 < ¢ < ¢, n,~ = 0 and the corresponding channels
are elliptic, whereas for ¢. < ¢ < %, ne- is given by (3.27) and an increasing function of g.
The corresponding channels are hyperbolic. Note moreover that ny+ > 7 n- 80 that for any

g and ¢ € {0,..., 5}, g+ > nz- holds. In increasing order, the collection of 7,+ may thus
again be written : {ng- ..., nx—,Nn+,---, Mo+ }-
2 2
4) 3 < |E|

In this case, 7+ is given by (3.27) for all ¢ € {0,...%} and is a decreasing function of g.
The corresponding channels are hyperbolic. Also 7,- is given by (3.27) and an increasing
function of q. The corresponding channels are also hyperbolic. Once again, the collection of
Nt may thus be written in increasing order as : {no- ... (N TNty - , Mo+ }-
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3.5 Diagonal and real symplectic form of the (free) transfer matrix in the band
centre

3.5.1 Diagonalization

As it will be needed below, we are now going to diagonalize the free transfer matrix 7 when
the energy E lies in the band center, i.e. when E? < sinQ(%). For simplicity, we will moreover
suppose that N is even and that £ > 0. According to the previous section, the structure
of the free transfer matrix is as follows with these assumptions : there are N,, = % -1
mixed channels of dimension eight with exponent 7, = n,+ = 1,~ given by equation (3.32)
and phase factor g, = B+ = —f,-, ¢ € {1,..., % — 1} given by (3.33), one hyperbolic
channel of dimension four with exponent Ny =Ny+ =Ny- given by (3.32) and phase factor

16} N = B+ = m, and two elliptic channels (i.e. with exponent 1y = 0) of dimension two with
2

distinct phase factor fp+ and [y respectively, given by (3.26). With these conventions, n,
is an increasing function of ¢, and all the (,’s are positive numbers. For ¢ € {0, ... %}, let

us introduce the set of 2 x 2 matrices /i;'_ = diag(raqﬁ, ﬁ;“_). More explicitly, for ¢ £ 0 :
ehatiba ()
Ky = ( 0 it ) (3.34)
and for ¢ =0 :
iBy+
+_ (€7 0
Ky = ( 0 oifo ) (3.35)
We then define the 2N x 2N matrix x given by :
Kk 0 0o ... 0
0 &% ., 0 .0
N
0 0 /{j&_l
fp =] o .. (3.36)
0 0 0 .k 0 0
0 0 0 0 kF 0
0 0 0 0 0 &g
and let k_ = i be its inverse.
: — (P l 1 1 2 2
The matrix F' = (@M%,QDM%,@H} (B (I)#?v (5)’ (I)#Tv (5) (I)#?v ) ¢u§(E)’ q)#E(E))
2t 2t 2t 2t
(conf. Section 3.2.2) is an adequate 2N x 2N base change matrix to diagonalize W W, :
FT'W W, F = (Ioy + k) (loy +£) = p (3.37)
Let moreover :
1 1 1 1
N:t = diag Y Y ) )
[R5 | | £ S
¥ ¥ (F-ut (F-n-
1 1 1 1
, ey , (3.38)
@2, 19z, | 1D 171l

(F-n+ F-1n-
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Then, the 4N x 4N base change matrix :

FN, FN_
ft= (W PN, W, PN ) (3:39)

with inverse :

11 -1 _1 14k -1 —\—1
e I i i o N (3.40)
N_1—r+ N_1- K_F (Wo )
takes Tj to its diagonal form To :
- _ K 0
To = R'THR = ( 0* - ) (3.41)

Let M = R~'MR denote the expression of some matrix M in the basis associated with
R. Then :

~

Ty(n) = Ty 4+ AAx(n) = Ty + MA(n) + A2B(n) (3.42)

The part of the perturbation that is linear in A reads:

A(n) = < ve(ngwo— _ng) ) + < W‘e;OY(/;()n) 8 ) = Ac(n) + Ao(n) (3.43)

where V. (n) =V (2n) and V,(n) = V(2n — 1). After transformation:

where:
1 - 1 1 1 —1 _
Ae(n> — N_F V;(n)W F N+ 1—1/@ @F_IV;(TL)WO_FH_H N_ (345>
1— N F %(n)w F N+ 1—H+KF V(”)WO Fl-i—ﬁ] N
A (n) _ 171/«»2 NLF 1W Vo (n)FN+ 171,'{2_ NL_FFilWiV (n)FN_ (3 46)
’ y NLF WV FNy i =P WV (n) FN- :

3.5.2 Real symplectic form

For some practical purposes it is convenient to have a basis where Ty is diagonal, but we
will also need to write T} in a basis where its matrix elements stay real, and where it assumes a
nice (quasi-block diagonal) symplectic form. Let us denote by : V = (v, ..., vy, v, ..., Ugn)
the basis where Ty assumes its diagonal form T, 0 Here v denotes the vector that has a non-
vanishing entry equal to one only in the (I + 2 “~)-th component. We want to find a basis
where Ty can be written in terms of real, channel preserving, rotations. As is well known,

. : . : 1 1 .
the eigenvectors of any two by two rotation matrix are given by \/Li (Z) and \/Li (_Z) This

motivates the choice of the new basis £ = (ef,...,edy, €1, ..., eyy) defined by the relations :

ey =vf, ey =vf (3.47)
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€41 = E(UQHI +0510), €540 = E(UQZJA — V9142) (3.48)
forl=1,...N —2, and :
1 _ _ l _
e = E(”fr +u), ¢ = E(“fr — ) (3.49)
for l € {2N —1,2N}.
Conversely :
g 1 o ;O o o .
V141 = E(ezzﬂ —i0€345), V30 = E(eﬂﬁ-l +ioed o) (3.50)
forl=1,...N — 2, and :
- 1 .
vf = E(e;r —ioe] ) (3.51)
for [ € {2N — 1,2N}.
The corresponding base change matrix is defined as follows. Let :
111 1 /11
and let C' be the 4N x 4N matrix defined by :
_ (G Gy
C= ( Oy G ) (3.53)
where C',...,Cy are the 2N x 2N matrices given by :
1 0 0 0 ... 0 0 O 0 0 0O ... 0 O
0 C. 0 0 0 0 0 0 0 O 0 O
0O 0 Cy O 0 0 0 0 0 O 0 O
Cl = Cg =
0O 0 0 O c. 0 0 0 0 O 0 O
o 0 0 O 0 \% 0 0 0 O 0 \%
(3.54)
0 0 0 O 0 O 1 0 0 O 0 0
0 0 0 O 0 O 0o C. 0 O 0 0
0 0 0 O 0 O 0o 0 C- 0 0 0
03 = 04 =
0 0 0 O 0 O o 0 0 O c. 0
0O 0 0 O 0 \;—% o 0 0 O 0 ﬁ
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Then C (or more precisely CT) is a unitary matrix that takes Tp from its diagonal form
to the desired real symplectic form Ty. Namely :

. A Y T2
TO TO
Here :
e"¥ Rg, 0 0 0 0 0
2
0 %Ry, 0 0 0 0
o 'R 0 0 0
- 0 0 e 2- -
= Py (3.57)
0 0 0 emRs 0
0 0 0 0 0 cos 3
e ¥Ry, 0 0 0 0 0
2
0 e 'Ry, 0 0 0 0
51
- 0 0 e ¥R 0 ... 0 0
T = Py (3.58)
0 0 0 e MRz 0
0 0 0 0 0 cos 3
00 0 0 0 0
00 0 0 0 0
i i 00 0 0 ... 0 0
T=-T3=| ... ... ... ... ... ... .. (3.59)
0 0 0 0 ... 0 0
0o 0 0 0 ... 0 —sing
where : gt
0
=( " > 3.60
=% &) (360
and : .
RaE < C.OSCY — SIn & ) (361)
SN «&v COS &

is the 2 x 2 rotation matrix by some angle a.

4 Lyapunov exponents

Let
UL, E)=T\(L)T\(L —1)...Tx(2)T\(1). (4.1)

be the (two)L-step transfer matrix. We introduce the notation H*? to denote the p-
fold tensor product of copies of the same Hilbert space H, and denote by F,(H) the anti-
symmetrization of this space (p-fermion space). Similarly, given an operator M on H, we



22

denote by M®? its p™ tensor-power acting on H®P, and by APM its restriction to F,(H).

The first 2N non-negative Lyapunov exponents ;3 > 75 > ... > 7oy are the family of
numbers defined by :

p
1
i=1

where the operator norm is defined as usual, and the expectation is taken over all random
variables. It is easy to see that if R is an arbitrary base change matrix in Hy, one can
replace Uy (L, E) with its expression R~'U\(L, E)R in the new basis without changing the
result. Moreover, it is proved in [22], that one can also write :

p

1
> %(E) = lim o7 B [APUNL, B)us Auz A Awyl), p € {1, 2N} (4.3)

L—oo
i=1

where u; Aug A ... Awuy, is an arbitrary nonzero element of F,(Hy). We choose to write the
transfer matrix in the basis & where the free transfer matrix is given by Ty. The perturbed
transfer matrix Ty(n) is a real and symplectic matrix in this basis. Concerning the “initial
condition”, we choose it, following [20] as a symplectic frame, i.e an orthonormal family of
2N vectors {uy, ..., usn} satisfying the relations :

(u;, Ju;) =0 i,j=1,...2N (4.4)

We also recursively define a (random) evolution of this symplectic frame by the set of 2N
equations :

~A”T,\(n)(v,bl(n — 1A Aup(n))
IAPT\(n — 1) (uy(n — 1) A ... Auy(n —1))|

ur(n) A ... Auy(n)

n>1 (4.5)

It is easy to show that the entire family of these equations for p ranging from 1 to 2N defines
a unique symplectic frame {ui(n), ..., usny(n)}, provided that {u;(n—1),... ,usy(n—1)} is
itself a symplectic frame.

Let us here introduce some definitions that will be needed later on concerning the chan-
nels. As previously mentioned, there are % + 2 channels that we number from 0 to % +1. We
assign these numbers in such a way that increasing channel numbers correspond to decreas-
ing exponents 7. More precisely, for k € {0,..., % +1} we define 7y, = NN and 3, = ﬁ%_k,
where one has set n_1 = 19, 6o = 85 and 3_; = 3,. Moreover if i € {0,...,2N} is some
frame vector index, we denote by 1 the corresponding channel index, i.e. we let 1 be the
entirepartof%ifiSZN—l,andweletiz%—i—lifi:QN.

Now
|APUNL, E)uy A ... Ay = ||APTN(L)APUN(L — 1, E)ug A ... A |

APT\(LYAPUL\(L — 1, E 2
_ || )\( 2 U)\( ) )Ul/\ /\UPH HAPU,\(L—l,E)Ul/\/\'U/pHZ
|APULN(L = 1, E)uy A ... Ay




= NPT (L)us (L — 1) A Aup(L — D|2|APUNL — 1, E)ur A Aw||? (4.6)

iterating this procedure, we obtain :

L-1
IAPUNL, Eyus A Al = TT IATA(n + Dun(n) A Ay (n)]? (4.7)
n=0
and it follows that
D 1 L—-1 ~
;%( = hm EE;; (ln IAPT\(n + Dug(n) A... A up(n)||2> (4.8)

Introducing weighted frame vectors @; = e u;, this can also be written :

i <%(E) - %) = Lh_IEO EEZ (111 |APT\(n + Daig(n) A ... A ﬂp(n)Hz) (4.9)

=1

= lim ﬁE L:l (m det, <<ﬂi(n), [ (n + 1)Th(n + 1)aj(n)>) 1§i7j§p> (4.10)

Now, Indet, = Tr,In, so that :

> (e-5) = Jim EEZ (Trp (10 (@@ 70+ DT+ ) ))
B (4.11)
Let us define the three p x p matrices 7, (n),i € {0,1,2} :
(T7(n)i; = {@u(n), Tg (n + 1)To(n + 1)is(n)) (4.12)
(TP (n)); (i;(n), Al (n + 1)To(n + 1) + T (n + 1) Ax(n + 1)a;(n)) (4.13)
(TF(n))i; = {ai(n), A\ (n+ 1)Ax(n + )i, (n)) (4.14)
where each time 1 <4,7 <p. Then
> (381~ 5 ) = fim 7B (o (0 (T £ XT )+ ¥TE0) (419
Now, as in [20] : .
T (n) =T, + T (n) (4.16)
where 78 (n) = O()). Let :
Ti(n) = TH(n) + NTP (n) + X T (n) (117)
Then we get, expanding the logarithm :
In(I, + 7 (n)) = T (n) ~ STR()TP(n) + O(X) (4.18)

Taking the expectation value and using that E(77(n)77(n)) = E(T(n)) = 0 we then get,
neglecting the terms of order A3, the expression :

E(In(L,+73(n))) = E(%p(n))HQE(f&p(n))—%{E(%p(n)%p(n))+A2E(ﬁp(n)ﬁp(n))}+@(kg)
(4.19)
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where 7(n),i € {1,2} are obtained from (4.13) and (4.14) by replacing A,(n) with A(n),
the remaining part giving rise to terms of order A\* or higher. Finally, we get the following
expression for the sum of the p first Lyapunov exponents :

zp: (%(E) ) —nggoiLLZO(Trp( (n)) + NE(T7 (n))—

i=1

SET T ) + VET T W)} ) +00) (4.20)

The sum of the two lowest exponents can now be obtained by subtraction. Let Il be the
2N x 2N matrix corresponding to the projection onto the last two indices :

(I1);; = (dian—1 + dian)dij (4.21)

where 6;; is the Kronecker delta. Then, taking into account that 7y = 0, we get :

2N L—-1
. 1 ~ -
> u(E) = Jim 3 (Traw (BT ()ID) + NE(IZE (n)11) -
i=2N—1 n=0

5 {ZEMEY ()2 ()1T) — BN ()T ()

N2 (2EMT2Y () T2 (n)T1) — BTN (U7 () ) }) ) + O(X) (4.22)
We are now ready to state the main result of this paper :

Theorem 4.1 Let us suppose that the energy is in the band center : 0 < E < sin g and
such that the two following condz’tions are satisfied for signs oy,...,04 € {£1}, and elliptic
channel indexes my,msy € {5, 5 +1} -

ei(e18my=028m3) — 1 holds if and only if 09 = 09 and my = mo.
ei((e1402)Bmy —(@3+04)Bmy) — 1 holds if and only if o1 + 09 = 03 + 04 and my = my, or if

o1+ 09 =03+ 04 =0.

Then, the sum of the two lowest Lyapunov exponents reads :

2N \2 oN 1
Z Vi = 1 Z (d—di — da(k)) (pik) —
1=2N—-1 1=2N—-1 k:%

2
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(i G- i ooy am)
where d, dy and dy(k) are the constants given by (4.52),(4.85) and (4.89) respectively, and
the 05, are defined in (5.146).

Remark. We believe that the O()\3?) term is bounded in N but did not check this in
detail. This would imply that the above asymptotics hold for A small compared to N1

Proof :

To keep the main line of the proof clear, some calculations have been deferred to appen-
dices. Before we start, let us introduce some useful definitions and properties.

By definition of the basis V, one has :
If je{1,...,2N — 2}, (i.e. j is not elliptic) :
Tov] = e"("j_ip(j)féj)v? (4.24)
If j € {2N — 1,2N}, (i.e. if j is elliptic) :
Tov] = ew’éjv;’ (4.25)
If w;(n) is a symplectic frame vector, we denote by :
Yi(n) = Clu,(n) (4.26)

its expression in the basis V. Let k € {0,..., 5 + 1} be some channel index and o € {£1}
some sign. We introduce the projections :

=[] (4.27)

7=k
T =m0 + 7, (4.28)

Since V is an orthonormal basis of C*V, we have :

> m=ly (4.29)
k

We also introduce the weight of the 7th frame vector in the kth channel :

pr(n) = (ui(n), mui(n)) , pir(n) = piy(n) + piy(n) (4.30)

Since the frame vectors are normalized, one has :
szk(n) =1 (4.31)
k

Moreover, for an elliptic channel one has :

nf = ()" (4.32)



It follows that, for such a k :
pik(n) = 20;‘,[1@

We also introduce a notation for the average of some random quantity f(n) :

(F)= tim L3 E(f(n)

whenever the limit exists.

The following facts have already been proved in [20] for large enough n :

If 5 is an elliptic frame vector index and k a hyperbolic channel index,

#7(n) = O
If £ is an elliptic channel index,
m7i(n) = P aii(n —1) + O(N)
If k is not elliptic, then

Z!uy n)| = +0(\)
jij=k
and

pir(n) = O(X)

unless 0 = 4+ and j = k.

If 7 is an elliptic frame vector index, then :
(Pik) = (Pin) + OX)
We now compute the individual terms of (4.22):

First term

L-1

512 i 5 (1 (B0 ) -

L@;ﬁ‘ S 3 (B, (T + )Toln+ 1)~ 1) du(m))))

But it follows from (4.24) and (4.25) that

N
T+1

TOTTO = Z Z ez"ﬁ’“ﬂg

and hence

QO'T]k _

MN\Z

SIS 9 3 3

n=0{=2N—-1o0==%1

W

=0

E({ui(n), mfui(n)))
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(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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% | (€ —1) (p71) (4.42)

TEL 81
S1= (cosh(2i) — 1) (pis) y + ON?) (4.43)
1 =2N—1 k=0
1 oN S+l
=5 D> sinh? (i) (pis) y + O(N) (4.44)
1=2N—1 k=0

Second term:

It is more convenient to write this term in the basis V.

9 L—1

512 i 5 5 (e (0 ) -

2N L-1

Jim 2SS (B ), A1+ DAG -+ DE)) (4.45)
Inserting the equality (4.29) twice, we get :

Sy = LII_{EOE Z 2 Z Z < 7o Af(n +1)A(n + 1)%?,3211)1-(71)))) :

1=2N—1 n=0 o1,02=24 m1,ma=0

(4.46)
But, because of (4.35), if m & {§, 5 + 1} and k € {2N — 1,2N} :

7k (n)||* = pFm = O(N?) (4.47)
and hence

2 1

Y Y Y Y ( ), A0+ DA+ V() + O()

1=2N—1 n=0 o1,02= :I:m1m2

(4.48)
Now we are going to use an oscillatory sum argument as in [20] : Use the equality (4.36) to
obtain up to order A3 :

)2 ERk

2N —
5 = Jim = Z > (Bt

1=2N—-1 n=0 o1,02= :I:mlm27?

% (ths(n), 77 Af(n+ 1) A(n + 1)7r;;52¢i<n)>)) (4.49)
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Comparing with the previous equation, one sees that this is only possible if ei(e28my=1Bmy) =
1. By the hypothesis of the theorem this, in turn, is only possible if o1 = g9 and m; = ms.
One obtains :

g+l
AT A o, 3
LIEEOE Z Z S 3 (B(win), mg,Al(n 4+ DA(n + Dagun(n)) + O).
i=2N—1n=0 o= :I:m_f
(4.50)
We show in the Appendix (Section 5.2) that
E(n% Af(n +1)A(n + 1)7%) = dn®, (4.51)
where
" [ (D, + D 4.52
d { w e o } .
I A Do+ D) (4.52)
and 11 11
Dpm 4
T PNZ I r, N2 (4.53)
D,=KD, (4.54)
with : ] ] ) ]
D= —— 4 - 455
|1—ﬁz|2N_%+|1—ﬁi]2N3 (4.55)
and
= |p| + 2B (4.56)
with
(Mop)ij = (9i.1 + 0i.2) 035 (4.57)
Moreover, the weighted trace Tr,, is defined by
Try(B) = D {xmia([[)atanh® (zq)) + 5([l] = 0) +6([l] = N — 1)} Bu. (4.58)
Here, for k € {1 ,2N'} we have defined [k] to be the entire part of %1 1 [k] = &2 for
odd k, and [k] = 2 for even k, so that [k] € {0, .. — 1}. We have also introduced the
number (k) = § — k‘ where k is the entire part of k+1 (hence (k) € {0,...,4}), and we
have defined the function
Xmia([l]) = 1= (8([1] = 0) + (1] = N — 1)) (4.59)
Thus : N
N1
d)\2
Z Z pim)y + OO, (4.60)
i=2N-1 =N

But, by (4.35),

T+
Z <pi,m>N =1+ O()‘Q)v (4.61)
m
so that finally :
d\? 3
Sy = —+ 0N\ (4.62)

2
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Third term:

(Ter (E(HT(EN(n)TgN(n)H))) (4.63)

oo=+1 mo=0

{Z Z 02027my —1; — 1){u;j(n), m2u (n))} (4.64)

ifj<%andm1:j, o1 = +orm1€{2, 5 + 1}
(ui(n), m uj(n)) = O(X) (4.65)

The remaining terms are either of order A or have a vanishing prefactor. Hence (4.64)
becomes

L-1 2N 2N-2 N1
Jm 3 S Y {<eﬁfl><ui<n>m;uj<n>>+ > X = D) mluj<n>>}

n=0i=2N-1 j=1

N
2+l

X {(eﬁj = Duy(n), mrus(n)) + Y Y (7 = 1){uy(n), w2 ui(n ))} +O(N)  (4.66)

oo==+ m27ﬂ

2

Now,
-2

doom=Liv—) > w7, (4.67)

o=% ngfl o=+ m=0

and since for j # i one has (u;(n),u;(n)) = 0, it follows by (4.35) and (4.38) that

vl

3

Z Z 7o u;(n —(uj(n)m;rui(n)>+(’)()\2). (4.68)
o= im—%fl
Therefore,

L-1 2N 2N-2

S = LIE{LEZ ST e = ) uiln), mhug(n)) (us(n), 7 ui(n)) ) + O(®) (4.69)

n=0i=2N-1 j=1

For j < 2N — 1 < one has by (4.35), (4.37) and (4.39) that

D (ua(n), w5 (n) (s (n), 7 wi(n)) = pli(n) + O(N*) = %pi,k(n) +O(N),  (4.70)

7=k

so that finally :
2N %Jrl

Sy== > > sinh®(i) (pix) y + O(N?) (4.71)

1=2N-1 k=0
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It follows that the third term cancels the first one to highest order.

Fourth term:

This term is easily seen to be of order \* since for i,5 € {2N — 1,2N} :

f+1

DY (uin), wuy(n)) — 6i; = O(X) (4.72)

kNO'Zl:

Fifth term:

For this term it is again more convenient to use the basis V. If A and B are two arbitrary
2N x 2N matrices, let A- B = AB + (AB)". We introduce the matrix P(n) = Ty A(n), so
that AT . TO = PT : ’T()’z. Then :

\2 Lot

S5 = lim = ZTrQN ( TQN(n)i?N(n)H)) (4.73)

L—oo 4

2N

(w ), P T2+ 1)y ()

\2 L1 2N
“im 2 2

222
{00, P 32+ (o) ) (474)
now by (4.24) and (4.38), if j < 2N — 1 ;
[Tof245(n) = Py () + O() (1.75)
and by (4.24) and (4.35), if j > 2N — 1 ;

2 +1
|T0| vi(n Z Z mh;(n (A) (4.76)
o= :I:k_f
it follows :
L—1 2N T+1

S 25 S S Y S (e )

n=0i=2N-1 | j=2N—-1o1,02=F kaf

f_,_l

x((n), PT- 72 (n+ 1)y > Z >, ( n), m (Pe™™ + P Pimf )y (n))

j=1 o1,02= ikle_f

X (;(n), (mt Pel 4 ¢~ P )wg§¢i(n))) + O(\?) (4.77)
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We are now going to treat the first (elliptic) and second (hyperbolic) term inside the brackets
separately. For the hyperbolic part, we use (4.37) to obtain :

v

\2 Ltoan 3l SH1
fmo Z >

= -1 j= = _N
n=0 i= 1 j=0 o1,02 :i:kh]@i?

E Pe o empT) (Pe’h Te WJPT) “Qwi(n»), (4.78)

Using an oscillatory sum argument as before, this can be simplified to give :

o L-1 2N 51 R
Jm 3T D 33T 3 E ((wln), w(Pe 4 P (Pet e P mu(n)
n=0i=2N—-1 j=0 o==% k:%
(4.79)
But, for k € {5, 5 + 1},
mi(n) = Y7 (n)vg (4.80)
where 97, (n) is a complex number with modulus /p7,(n), so that (4.79) becomes :
IR S A
T Z SN lon ,(Pe™™ + e Pt (Pe + e W PHo7)) . (4.81)
i= =0 o=% f— N
Now, by definition of P,
E((vf, P Pvg)) = E((vf, Pim PTof))* (4.82)
and moreover,
Re(E((vf, P Pvf))) = —Re(E((v7, P Pu7))) (4.83)
so that, by the relation
(P7i)y = (Pl )y + ON), (4.84)

these two terms give no contribution to highest order. For the remaining two terms, one
gets (conf. the Appendix, Section 5.4.1):

51 2
N " " o =
dy = 2 e*TE((vy, PTW;P%» AN {Trw(Qe + Qo)} (4.85)
where 1 1
S S - 4
Qe =y py =1 (4.86)
and ~
Qo = KQO (487)
with
Qo= b (- (4.88)
T NI mp N T '



32

Moreover,
%_1 2
do(k) = Y e PWE((of, Pt PIf)) = ———— {(1+ E*)Tr(G,) + 2EF(G.) + Tr(G.)} ,
i=0 4N sin %
(4.89)
where .
G.=——=Ni(I 1), 4.90
’1 + /€+’2 ( 2N — ) ( )
= |k_|2NZ (o — 1) (4.91)
and
2N sin 3&(1)
F(B) = miz (|1 —o([l] =N —=1)p() ¢ By, 4.92
B) =3 Lol 00 (0 = ¥~ 1p() (4.92)
so that the hyperbolic term gives a contribution
2+1
Z Z (e1 + ca(K)) (pi) y + ON?) (4.93)
1=2N— lk_,

We now turn to the elliptic term :

Ay 5 ( Pl + 1ty ()

n=0¢,j=2N—101,02= ikle_i

(). P73+ D) ). (4.99)
Y;(n) and 1;(n) are elliptic frame vectors, so that up to an error of order A,

E ((¢i(n), P~ 7! (n+ 1) (n)) (W;(n), P - 72 (n + 1i(n))) =

> Z n), (7P - m (0 + 1) () (Wi(n), (72 PT) - 772 (n + 1)ai(n)))

03,04=% ks, ka=L
(4.95)
This yields (conf. the Appendix, Section 5.4.2) a contribution

oD SR B I

1,j=2N—-1 o

pzkpjk>+

2

1 1
Z Z 5k1k2 . U1Bk1 + U2Bk2 {<p] % k2> ”
2 T2

{0} {k} 2s8in —-+  2sin

<\/pz kgp] k1p] k2 pz kl l{(aJ k1+91 k1 ) (9] 1322+97%2)}> }} (496)

Sixth term:

This term equals half the elliptic part of the previous term.
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Final expression for the sum of the two lowest exponents:

Finally, putting all the previous results together yields the announced expression for the
sum of the two lowest Lyapunov exponents :

2N \2 oN 1
S o=t S (d—di — dafk)) (pis) -
i=2N-1 i=2N—1 =X
9 2N 1
S S (XXt
ij=2N-1 \ o k SHUI %"
2
1 1
S0 | e | {eti)
(o} {k} ZSinTk1 ZSinTk2
oy 1{(0 09721972
<\/f’m2ﬂgklmmf RCNC (”2m2)}>})} 97
]

5 Appendix : calculations relative to Theorem 4.1
5.1 Some notations and an expression for the matrix F

For k € {1,...,2N} we let [k] be the entire part of £1 : [k] = 1 for odd k, and [k] = £2
for even k, so that [k] € {0,..., N —1}. We also introduce the number (k) = & — k, where k
is the entire part of 2. Hence (k) € {0,...,%}. We moreover introduce the function 6°(1)
(resp. 6¢(1)) which is equal to 1 if [ is odd (resp. even) and equal to zero otherwise. We also
write p(l) = (—1)%.

Then we can write

b = \/;f\;nW {6°(1]) 2 ()0 =) L g5e([1]) 2y (—ag el =B}
eiﬂ'[k] (_p(l))de(k)
+6([]] =0 S(k+1)+6([l]=N—1)——2— 51
(u )\/N()(H )\/W (5.1)
where »
() = ZHew e k() (5.2)
Xmiz([[]) = 1= (5([) = 0) + 6([I] = N — 1)) (5.3)
Similarly,

_ argthz(:c(k)) - _ . » Crvso
F' = Xmie([k SN (Zi (1) — Zi(—2 (1) cosh™ (o e~ iamw—3)°0)
kl Xmiz ([K]) 2Ncosh(x(k)){ { ])( 1 ( (k)) i ( (k)) ( (kz)))




[l

+0°([k]) (Zlk(—I(k)) — 2 (T (1)) COSh_l(:p(k))) e—i(a(k)_%)(se(l)} +6([k] = O)e

VN
(=p(k))> "
V2N
(We i = —{0(k)0°(D)d(k =14+ 1)+ 6°(1)6°(k)d(l =k + 1)}
(Wolr = —{0°(k)d°(1)0(k = (I + 1)an) + 6°(1)0°(k)o(I = (k + 1)an)}
E(V.MV,) = B(V,MV,) = o*diag(M)

+6(k] = N — 1)

where

5.2 Appendix: second term
5.2.1 Even part

Let

0 0

e}

0
0 Pn(AlA, + AlA)P, )
One reads off the definition of Ae that :

Fo(h, 3) = (E(P, AL A, P,,) = E(P,, AL A, P,,)

and

Let us compute :

. 1
E(P,AlAP,) = —R(P, F"W, V.(F ) DF'V,W, FP,,)
8 cos? (L)
where . .
D, B) =

34

5°(k +1)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



D is a diagonal matrix satisfying
Dy = dyop.

Using (5.7) we get :

2

E(P,AlA,P,) = —2 P, FiW-diag((F~) DF )W FP,,
8COS2(%)
2
= 7 (F'W, diag((F ) DF )W, F) P
8COS2(%)
Let :
M= (F—l)TDF—1
Mj; = ((FH)'DF™ Zdl|Fle K
(FTW, diag(M)Wy Fpm = > Fou (W )i (W) ju P M
kjn
1 e e n — —
=on (—=p(m))> B (W) (W) ju M5
kjn
Now,
S (—p(m)) B O (W) (W, )0 M = Te(M)
kjn
B S (—p(m) OO (V)65 M =
kjn
—E (=p(m))* W (W) 5645 Mj; = — Ep(m)Tr(M)
kjn
E*Y (—p(m))> W+ (5) 6, M; = E*Tr(M)
kjn
so that
F g W, s — (1 — pla EP1500) = 22 E )
o lag Jo) mm 2N p m I — 2N Ir .
But
> IFG? = Xmia([)argth®zy + 6([I] = 0) + 6([]] = N — 1)
i
so that
o3 = T (D
Cm(naﬁ) - m rw( ):
where

Tro(D) = 3 {xmiw ([ axgthZzq) + 8([1] = 0) + 6([[] = N — 1)} Dy.

Since the weighted trace Tr,, is linear, and

4 1 1
D(‘W _ﬁ) = ’1 — I{+‘2N_E’

35

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.20)

(5.30)

(5.31)

(5.32)



we obtain finally,

o AT oy — o
E(my, Al Acm?) 4NTrw(De)7rm,
where . ) . )
) W —
TR PN =P N2
5.2.2 0Odd part
Similarly to the even part,
E(A A} pm ;E(FTVW (FYDE'W.V,F)
where ] 1
DH.G3) = ——
(naﬁ) ’1_1%2_‘2]\[3_
Let
M =W (F)YDF'W,.
Then
2N 1
(Ftdiag(M)F)pm = Z |Fjp|>M;; = S (M)
Let
Q=(F"YHDF!
so that
Te(M) = (W, )i (W, ) ki@
ijk
Now :
D (W) (W)@ = Tr(Q)
ijk
E*Y " 60kiQu = E*Tr(Q)
ijk
and

) Z( e Z](Sk"LQ]k = _EZ(SZ] sz]k - EZ {50 Q]]+1 +0° ( )ij—l}

ijk ijk 7=0

It follows from the definition of () that :

Z {0°(7)Qjj41 + 0°())Qjj—1} = 2Re <25 Q]J+1) ,

and, taking into account that [j] = [j + 1] if j is odd, a short computation yields :

Re (Z 50 ) = 2 (B [)engthang + 6(1) = N = 1p(0)}

36

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)



Hence,

Re (Z 50(])ij+1) = —% Z { Exmia ([l argth®z) + 6([[] = N — 1)p(1) } Dy

Remember, moreover, from the previous section that :
Tr(Q) = Try(D)

Putting all the terms together yields

(M) = 3 {miall)(L — E2argth®eq) + 3([1) = 0)(1 + E%) +

+o([l] = N —=1)(1 = p()E)*} Dy

Now let K be the diagonal 2N x 2N matrix defined by :

Kit = {Xmix ()1 = E%) + 0([l) = 0)(1 + E*) + 6([l] = N = 1)(1 = p(1) E)* } 0w

Note that :
K = |u| + 2E%1,
then :
Tr(M) = Tr,(KD)
and :
it A " v (KD
E(x° A oy o
<7Tm o Oﬂm) 4N I‘w< O)Wm
where
D - 1 1 n 1 1
T 1—-kKEENZ 1 —kK22N2

together with (5.33) we finally obtain

2
E(r% At Ar?) = 40_1\/ {Tro(De) + Tro (K Dy)} 7.

5.3 Appendix: fifth term, hyperbolic part

5.3.1 First term

P:Tg_l/l:(g ﬁj)

UE((vf, Pt Put)) = XWE(PITL P, )
EE({uy, P Pop)) = EVE(P{TT Py
Looking at the definitions of P; and Ps, it turns out that

E(PTLP,) g, = E(PITL Py )i

37

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)
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Hence
VE((vf, Pim Pof)) = *VE (P Py ) (5.59)

One reads off the definition that
ME(PITL P )y, = E(ATTA) (5.60)
and the latter expression can be computed similarly to the previous section, yielding
PUE((vf, Plm Puy)) = {Trw (GI) + Try,(KG?)} (5.61)

where K is given by (5.49) and :
1 1 R 1 1

G =—_—_TI ; G = ———-—II; 5.62
© NZ|l—k ]2 ’ ° N2|1-—rg2]2 (5.62)
summing over j finally gives :
%_1 2
S PVE((vf, PlrtPug)) = I—N {Try(Ge) + Tro(KG,)} (5.63)
where :
i 1 1
Ge=)Y G =———(Ioy—1I) (5.64)
2 GNP
and :
i 11
G, = G =——(Ihy — 1) (5.65)
JZ:(; N2 |1 — k2|2
5.3.2 Second term
e 2UE((v, P Po))) = e *WE(PILP ), = e *YE(A TG A (5.66)
e 2WE((v, P Ploy)) = e *WE(PIL P, = e 2V E (AT AL (5.67)
From the definition one has that
E(ATLAD) e = B(A3TL AL (5.68)

Hence, we only need to compute E(AlﬂjADkk. As before, we treat the even and odd part
separately.

Even part

1

QHJE(A H A )kk = ﬁ
2 cos? Zk

E (F~'V, W, FDF'W,; V,(F~ 1)) (5.69)

kk
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where : .
D=——NI,. 5.70
11+~ |2 ( )

Using (5.7) one obtains

0.2

e R (A LA i = (F~'diag(W, FDF'W, ) (F~ 1) (5.71)
2 cos? ’82
Let
M = diag(W, FDFTW,) (5.72)
One has :
(F'M(F Z |Fot P My, (5.73)
and since k is an elliptic index, we get
_ _ 1
(F'M(F ), = ﬁTr(M) (5.74)
Now define
G = FDF". (5.75)
Then
Mym = Z(Wo_)mkal(Wt;)lm (5'76>
kl
Now,
E*Y " 6k Grlim = E* G (5.77)
kl
and
> (Wo)miGra(W, 2{50 (k+1)an) + 0¢(m)d(k = (m + 1)on) G (5.78)

kl

~-E Z(Wo)mkaldlm = EZ{(SO S(m = (k+1)an)+6°(m)d(k = (m+1)an) }Gam (5.79)

~FE Z Ok Crt(Wo)im = E Z{(so = (k4 1)an) + 0¢(m)é(k = (m + 1)an) } Gy

(5.80)
It follows from the definition of G that G is self adjoint. Hence

—L Z{(Wo)mkal5Zm + 6k Gt (Wo)im }
Kl

—9FE Z{ao (k+1)an) + 6°(m)d(k = (m + 1)on) }Re(Grm) (5.81)
so that :

Tr(M) = (1+ E)Te(G)+2E Y _{8°(m)s(m = (k+1)an) +3(m)3(k = (m+ 1)) YRe(Gim)

(5.82)



We start by computing

G) - Z |Fkl’2dl-
kl
D |Fal?=1
k

It follows from its definition that

Hence

Tr(G) = Tr(D)

Next, we have

> {6°(m)s(m = (k + 1)an) + 0°(m)d(k = (m + 1)an) }Re(Grm) =
D {6°(m)(m = (k + 1)an) + 0°(m)d(k = (m + 1)an) }Re(FuFyy)di =

2> " 5°(k)Re(Fua Fjoy 1))
kl

Once again using the definition, it follows that

1 sin 304(1)

S RFiaF i) = 5 (i) Sy =301 = N = 1)

Thus 2 )
e ME(A LA gy = ————— {(1 + EY)Tr(D) + 2ETrw(D)} ,
4N cos? B’“
where .
- sin 3oy
(D) = 3 (i) s = 81 = N = 1p(0)) D
=0
Odd part
1
e R (AL A E(F'W,V,FDF'V,W;FT),
2s1n Bk
where
D = N{|r-[Tf;
Again using (5.7) we have
2
e PVE(AT A g = ——— (F~'W, diag(FDF)YW, (F7)1),,
2sin? 3
Let
M = W diag(FDFYW_
then :
1 e e
(FIM(EN),, = 52 > (=p(k)" WOy,

kk IN

Ilm

40

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)
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Let moreover :

G = diag(FDF") (5.95)

Using the fact that D is a diagonal matrix that is constant within a given channel :
Dy = dpyou (5.96)

together with the definition (5.1) of F', a short computation shows that :

1
G = o5 Tr(D)hy (5.97)
Hence : .
M= WTr(D) {(1+ E*) —2EW.} (5.98)
but : )
> (=p(k)* MW, =1 (5.99)
2N P
and : .
o 2 (PR T O (W), = (k) (5.100)
lm
Hence :
2 2
e_QﬁjE(AlﬂjADkk = U—A(l — p(k)E)*Tr(D) = U—ATr(D) (5.101)
4N sin® (3, 4N sin? %’“

5.3.3 Final result

Finally, the entire second term of the hyperbolic part reads :

o E((of, Pt Phog)) = { (04 BT + 25T, (@) + Tr(Qg)}

T 4N cos? % sin? %"
(5.102)
where : .
i a2 2 . i 2
Q‘L = N+|I<(,,‘ Hj 3 QJ@ = mN+Hj (5103)
and :
~ N sin3a(l)
Tr,(D) = miz(l])—— = 0([l] = N — 1)p(l) | D 5.104
(D) = 3 (el )ty ~o =N ~0p(0)) u (3109

5.4 Appendix: fifth term, elliptic part
5.4.1 Preliminaries

For kq, ko, k3 and k4 elliptic indexes :

Ce<k17k27k37k4) =E ((Fil‘/ewoiF)kle(Fﬁl‘/eW;F)k?)’%) =
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<Z Z (kQ)) ( p(kg))ée(nz)(_p(k4))5e(p2)

n1,p1 N2,p2

(Vs (Ve aana (W5 s (W Vs ) _

40—];2 > " (p(ka)p(ks))™ ™ (= p(ka) ) P (= p(ka) ) P2 (W, )iy (W )i (5.105)

Now
5 O (k0P (k)" (ko)) (—p (k) (W, gy (W, =

iz Skl O (k) ()" P (= (Wohap) = - (bl )p(ks) + p(k)p(k)

np1

(5.106)
Moreover,
=BT S () ) (p) O (V. ) =
BT ok )pka)p(ks) + p(k) (5.107)
and
s 3 ) ) )y (V) =
BT (ol p(Ep(k) + p(k) (5.108)
Finally, ,
B e 3 (p)plh)) " plh)) (b)) 6, =
E? T (L plky)p(ka)p(ks)p(ka)) (5.109)
Hence
Ce(kr, ko, k3, k) = 40_N {(p(k1)p(ks) + p(k2)p(ka))
—E (p(k2) + p(ka)) (1 + p(k)p(ks)) + £ (1 + p(k1)p(ka)p(ks)p(ka)) } =
(1= Dk BV i + (B2~ D1~ 8 )1~ o)) (5110
We also need to compute For ki, ko, k3 and k4 elliptic indexes :
C (kl ]{72 kg ]i‘4) =K ((F’ilwfei‘/()F’)kl]€2 (F*1W;V;F)k3k4) =
4N2 7; nzp 5 (”1) <k2))58(m)(_p(k3))66(n2)(_p(k4))6e(p2)(We_)mpl(We_)n2p25p1p2 =
4N2 Z (k3)) (p(kZ)p(kZl))de(p)(We_)mp(We_)nzp (5.111)

ni,n2,p
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Now : )
O- e nl ﬁ n2 e _
4N? D (=p(k)7 " (=p(ks))* ) (p(a)p(ka)) ™ P (We )i p(We o =
ni,n2,p
o? 5 5 o
vz 2 e0)p(ks)" ) (p(k2)p(a)™ P (=W )iy = 5 (p(k1)p(ks) + plk2)p(Ka))
ni,p
Moreover,
2
O- e n F n €
B S (pkn)) O (= plk) O k() O () =
ni,n2,p
0’2 5¢(n1) 5¢(p) 0'2
—Eos > (=p(k))* ) (—p(ka)p(ks)p(ka))* P (W) = — B 5 (k1) + p(ka)p(ks)p(ka))
ni,p
(5.112)
and )
O- e e (=
Bl S0 (b)) D = plks) D (pla)p k) P8 (W) =
ni,n2,p
o2
—E 5 ks) + p(k1)p(k2)p(ka)) (5.113)
and )
0- e e €
2 S (k) (k) (pl)p () P =
n1,m2,p
o2
N (1 + p(k1)p(ka)p(ks)p(ka)) (5.114)
It follows that
2
o
Co (kla k2> k3> k4) 2N ((1 _p(kl)E)25k1k35k2k4 + <E2 - 1)(1 - 5k1k3)(1 - 6k2k4))
Note that
Ce(kr, ko, ks, ka) = Co(ka, k1, ka, k3) (5.115)
It follows directly from the definition of P, that
(op!, Pa?) = (P2 (F VW F )y, (5.116)
where (
1 1 H(02Bry—01Bky)
(Pe)iies = = — ¢ : (5.117)
' el01Pky 1 e~102Pky 1 47 sin TB5kL 1ﬁk1 cog 225k 02Bk2
and
<Uk1 ) I Uk’g) (PO);Q:Z; (F_IWe_VOF)kﬂQ (5118>
where 1 )
PV = —— — = - 5.119
( >k17k2 ewlﬁ’ﬂ — e*wlﬂkl 27 sin Ulﬁkl ( )
Moreover,
(Wft, Blogz) = (P i 7 (F VW Figry (5.120)
and

(i PIoi2) = (Po)g i " (T WV )y (5.121)
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5.4.2 Computation of the elliptic term

Consider

N
2+l

> D E((@i(n), Pt (n+ D) (i(n), PTe a2 (n+ Di(n))) - (5.122)

01,02=% [y fp=0

¥;(n) and 1;(n) are elliptic frame vectors, so that up to an error of order A :

E ((¢i(n), P~ 7! (n+ 1) (n)) (W;(n), P - 72 (n + 1)ei(n))) =

N
T+1

Yo D E(win) P - wt (n+ 1)y () (Ws(n), (rft P) - w2 (n + 1)g(n))

03,04=% k‘g,k4:%

(5.123)
thus
J+1

Yo > E{in), Preagi(n+ Dey(n)) (W (n), P 772 (n+ 1)ihs(n))) =

01,02=% kl,k2=%

SN O B LB, Pl (v, Ph)) +
{o} {k}
Vi U5, U Vo B PO o2, Polt)) +
Vo ¥ P U BT, PRy (02, Pugty) +
oy U5, Bk VB0, PO (o, PPo)) | (5.124)
Let us introduce the shorthand notation :

Ok kay ks, ka) - (PG B ) = Celkay oy kas ka) (B ey (Pe)i i+

Colk1, ko, ka3, ka) (o) s ive (Po) ks (5.125)
It follows that we need to compute:

L—1
. 1 j :2 :2 : — 03 o1 794 o —01,—0. —02,—0.
nggo Z {wivk?sq’bjy}ﬁwj:kmwl}iQO(kl’ :I{?g, k2’ k4) ) P]f17kl3 3Pk27k24 ! +
n=0 {0} {k}
Vi U730 071, C (R, ks, oo, Ky) - PLTS PI0E 4

93 o1 792 o —01,—03 02,0
wi,kswjjﬂ wj,kz wi,zzxc(lﬁ’ k3’ k2’ k4) ) Pk1J€13 3Pk22,k44+

o VT3 073, C (R, s, ko, K ) - PO /;134{704} (5.126)
Let us note that for elliptic indexes {k1, ko, k3, k4} one has :

A ~

(E2 - 1)(1 - 6k1k2>(1 - 5’93/64) = _4COS(%) COS(%)(l - 5k1k2) (6k1k36k2k4 + 5k1k45k2k3)
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~ A

= —4 COS(ﬂS )COS(ﬂ§4 )(1 - 6k1k2) (5k1k36k2k4 + 5k1k45k2k3> (5127)
It follows that :

01,03 09,04 0'10-265((0-3"’_0—4)3163_(0'1+0'2)Bk1)
Ce(ky, k3, ko, ka) (Pe) s e (Pe)paps = — - Ok koy Ok i

.9 Br
4 sin? -

5 1 1
n 0’102; k11;2) <e§((03 1) B, +(oa— U2)ﬁk2)5k k35k2k4+e§((04 01)Br, +H(o3—02 ﬁkQ)(')‘k k45k2k3>
4sin(=*) sin(=52)
(5.128)
similarly :
CO(kh k37 k2> k4)(P0)k11:k33(P0)k§:k: = 1—2A 6/€1k25k3k4

.92 Br
4 sin? -t

0102( 5k1k2)

4 sin( ﬂgl ) sm(ﬁg2 )

(O ks Okaks T OkykaOkoks)

As we will now see, for each term appearing in the sum (5.126), an oscillatory sum argument
will allow us to discard all the terms for which the phase factors appearing in (5.128) are
not one, so that the odd and the even part give the same contribution. To do this we will
consider the first two terms and the last two terms in (5.126) separately. Let us start with
the first half :

L—1
lim —> 3 ") {% b U U o 073, ey, K, kg, k) (Po) i ™ (P % +
n=0 {o} {k}
@Z)z k1¢] k3¢j,2k:2¢fi40 (kl? kg’ k27 k4)(Pe)Z11:Z;(Pe)Z§:Z:} (5129)

Each of the summands in the latter equation gives rise to three terms : The first one is
preceded by a factor g, k,0k.k, the second by a factor (1 — gk, )0k ksOkok, and the third by
(1 — Okyky ) Ok ks Okoks- The first contribution reads :

: 1 0102 (o340 —(o140
— fim ZZZZ — | OmkOks {% s U Vs VTh 02 Wi =(rctob)

e~ L((03404)Bry—(01+02)Br,) ¢Z kle ksw] k1wz k3} (5.130)

An oscillatory sum argument now implies that only the terms for which the phase factors
are equal to one survive, i.e. only the terms with oy = —09 and 03 = —o04 or with k3 = k;
and 01 = 09 = 03 = 04. The contribution coming from (5.130) thus reads :

Lmeo (o} {ky \4 sin? 51 45in? %

-2 (ﬁ) o057 } (5.131)

2 sin

_ 1< 1 1
lim Z Z Z Z + A wz k3wj k1 w],’% wz k1
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The second contribution to (5.129) reads :

. 1 0102(1 — Op, e o o3—0 04—02)0
lim ZZZZ g( 1;3 Srosies Ot {T/Jz e klw] kaZ i2eg( 8=01)Bk; +(04—02)Bky) |
n=0 {0} {k} 4sin(=*)sin(=2)

R DR R ("4*"2)‘3’“2)} (5.132)

Again, an oscillatory sum argument implies that only those terms with unit phase factor
survive, i.e. only the terms with 0y = o3 and 09 = g4. The contribution coming from (5.132)

thus reads :
L-1

.1 o109(1 — O, 2)
hm Z Z Z Z : 2ﬁ ak w’b qu/}] klw‘] k2¢1 ko (5133)
"0 1oy o7 2sin( %) sin(%2)

Finally, the last contribution to (5.129) reads :

1 L-1

: 0102(1 — Ogy - o o3—02)B
Jim 7SS AT ) (00 T 0, o)
00 (o) (k) 4sin(5+) sin(52)

¢z k1 ¢J ko 77ij k2¢z kl (04_01)Bk1+(03_02)6k2) } (5134)

Again, an oscillatory sum argument allows us to keep only the terms with o4 = o7 and
oy = 3. The contribution coming from (5.134) thus reads :

-0
lim _ZZZ 0102 (1 k1k2))wl R ]ﬁw] k1¢z : (5.135)

Lo L7 (o} {k} QSln( )sm(

Hence, adding (5.131), (5.133) and (5.135) yields the total contribution

o 1 1
lim — ZZ + wz ]ngj kle kzwz k1

n=0 | {01 {53 \4sin? ﬁ'“ 4 sin? ﬁkz

B (%) V205 5
k

e 2sin” 5

1—4
-+ ZZ 0-10-2,3( kllZ) {wz klw] kle kzwz ko +wl kzw] klw] k’lwl k2} (5136>
(o} {k} 2sin(=*)sin(=2)

for the contribution coming from (5.129).

We now turn to the second half of (5.126) :

lim — Z S O T, Celhr, e R ) (P (PP +

L—oo [,
n=0 {o} {k}

B U DT U8, Colhn, e, b Rt (POTETS (Pt} (5.137)
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Again, each term in the latter sum gives rise to three terms with prefactors o, k,0ksk,, (1 —
Okyka ) Oy ks Okoky ANA (1 — Opy k) Ok ks Okoks TESPectively. The first contribution reads :

0102 o o4—0 oa—o1)f
lim _ZZZ - A 6k1k‘26k3k4 {¢zk3¢3 quvbg,klwzzgeQ( o S)ﬂkg (02701)0k) +

Looo LS (o} {77 \4sin’ O =
e —2((04—03) By —(02—01) Bk, ) ¢Z kﬁbg kswy kng kl} (5.138)
An oscillatory sum argument shows that only the terms with either o3 = 04 and 05 = 07 or
the terms with &y = k3 and 03 = 04 = —03 = —0 survive. One obtains
. 1
i Ly i ) T T
n=0 | {0} (&} \4sin® 2 4sm =

—ZZ<281 ﬂ_> wfu/}]k@m} (5.139)

The second contribution to (5.137) reads :

0102 _6kk) l o1—03)03 o4—02)
B gl_rgo I Z Z Z ﬂ 1B2k 6k1k36k2k4 {wz klw] k:lw] k2¢z k2 €2 ((o1703)8k; +Hoa=02)Bk;) +
n=0 {o} {k} 4sm( L) sin(=52)

D U, Uy 0,03 (177000 ("4’”2)ﬁk2)} (5.140)

and an oscillatory sum argument shows that only the terms with o1y = 03 and 02 = 04
survive. One thus obtains the expression :

L—

—35203

0102( 5k1k2)

>¢z kzl@bj kle kQ@Dz ko (5.141)

n=0 {0} {k} QSIH(B )sm( 5

for (5.140). The last contribution to (5.137) reads :

. 1 UUl_ék’k lcrcfA—chfA
— lim _ZZZ : 2( : *2) 5/€1k45/€2k3 {77Z)z k2¢] k1¢] kng ] €2 (Gato1)Piy ~(os+o2)0h,) +

e LIS 0 Asin(%n) sin( %)
77/}1 o ¢J . ¢] ; ¢l 2 o ; ((0’4+01)Bk1 —(03-&-02)@2) } (5.142)
Again, an oscillatory sum argument allows to keep only the terms with oy = —oy and

03 = —09. (5.142) thus reads :

0109(1 — Ok ky)
- }E{;zzzz 1 Qﬂ S R v (5.143)
=0 o) (0 2sin(%) sin(%2)
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Hence, adding (5.139), (5.141) and (5.143), we obtain

1
Lh—I}olozZ ZZ ZBk wl kgw]kldjjlﬂwz ko

n=0 | o} &} \4sin? ﬁkl 4sin” =2

_ ZZ 0102( _6k1];2) (¢zk1¢g kﬂ/’;kngkg +¢zkz ¢]k1w3 k2¢zk1) (5'144>
(o} {k} 28111( L) sin( ;2)

) Uy T i

2 sin?

The total contribution from the elliptic part is obtained by addition of (5.136) and (5.144).

As pointed out before, the odd part gives the same contribution, so that finally the elliptic
term reads :

L—

1
% Z ZZ g Br, {¢Z k2¢3 k1¢) k2¢z k1 +1/)z kzl/)] k1¢] klwz kz}

n=0 | {o} {k} 4 sin? - 4sin27

_ Z Z ( : ) (BT + BB i b+

2 sin?

0-10-2( - 5k1k2)

{¢z kQ% k;lz/}] k1¢1 ko wz ko 1/}] k1¢j k2¢l k1 }

o7 1 2sin(%e )Sm(%)

2

ST

Y
%k Tkt

o k sin
2

1 1
ZZ(I B 5k1k2) .01 * . 02fky {77/1@ k2¢)] klw] k2 ¢l k1 +¢" k2¢] kle k177/}z kz}
{o} {k} 2sin —-+  2sin —2

(5.145)
Now :
w7 i(n) = Y (n)vf = 4/ p7i(n)e Moy (5.146)

It follows that the elliptic term reads :

{ZZ; 5 (i) +

g

2

ZZ 6k1k2 ! st ! 3 {<p]k1plk2>+

{0} {k} 2sin % 2sin %

<\/ P30 Py e (e 0 )= iz)}> } } (5.147)
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