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Abstract

We describe a family of quantum spin models which are generators

of a discrete Markovian process. We show that that there exists an

explicit expression for the ground state of such models and give a

simple argument for the existence of two types of long-range order in

such systems. Two special examples of these systems are analysed in

detail.
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1 Introduction

The existence of long-range order for order parameters in quantum many-
body systems is an important problem which is the first step towards a
complete description of the phase diagram.

This problem has been solved for a large class of quantum spin sys-
tems of the mean-field type. These models include the Vonsovsky-Zener
type fermion-spin systems [1] explaining the occurrence of superconductivity
and of ferromagnetism at non-zero temperatures. The first rigorous analy-
sis [1–3] of such systems made use of the so-called approximating Hamiltonian
method. Other methods include large-deviation theory combined with group
representations [4–7] and C∗-algebra analysis [8–10]. Note also that the ap-
proximating Hamiltonian method has been extended to boson systems in [11]
and [12].

Tian [21] formulated a sufficient condition for the coexistence of two inde-
pendent order parameters with long-range order in the ground state of some
boson and fermion systems. For the Hubbard model this condition coincides
with the RVB (resonating valence bond) long-range order and on-site-pairing
long-range order. Macris and Piguet [20] proved the existence of two or-
der parameters for lattice boson-fermion systems at a non-zero temperature
by generalizing [19] the Tian technique in and the Lieb-Simon reflection-
positivity technique.

In this paper we formulate a special class of quantum spin XZ models on
the hypercubic lattice Z

d with a Gibbsian ground state in which long-range
order occurs for the spin operators S1 and S3 in dimensions greater than one.
(In one-dimensional systems ferromagnetic long-range order for S1 is easy to
prove.)

Our systems differ from the XZ spin 1
2

systems which admit Gibbsian
ground states considered in [15]. There, the classical Gibbsian system which
generates the ground state is in fact quite complicated. Kirkwood and
Thomas proved that there is ferromagnetic long-range order for S3 in the
ground state in some of their ferromagnetic systems. Our proof of the S1-
long-range order is analogous to theirs. In [16] the Kirkwood-Thomas anal-
ysis is formulated as a fixed-point problem and applied to find quasi-particle
states. The method has been further generalised by Yarotsky [17]. Our
analysis is less general but has the advantage of simplicity.

In [18], Matsui showed that in one dimension, classical Gibbsian systems
are associated with quantum Potts systems. The structure of the Matsui
Hamiltonians are a special case of the Hamiltonians of XZ spin systems con-
sidered here, which can be represented as a sum of a diagonal part of a
specific form and an Ising-type non-diagonal part.
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Our Hamiltonians are expressed in terms of the Pauli matrices

S1 =

(

0 1
1 0

)

, S2 =

(

0 −i
i 0

)

, and S3 =

(

1 0
0 −1

)

. (1.1)

Given a finite subset Λ ⊂ Z
d with cardinality |Λ| let S1

x etc. be the corre-
sponding operators on EΛ = (C2)Λ acting on the factor for the point x ∈ Λ.
If we denote for sΛ ∈ {−1, 1}Λ,

Ψ0
Λ(sΛ) = ⊗x∈Λψ0(sx), where ψ0(1) =

(

1
0

)

, ψ0(−1) =

(

0
1

)

,

then this can be written as

S1
xΨ0

Λ(sΛ) = Ψ0
Λ(s

{x}
Λ ), S3

xΨ0
Λ(sΛ) = sxΨ0

Λ(sΛ), (1.2)

where, for any subset A ⊂ Λ, sA
Λ is the configuration sΛ with the spins in A

flipped. (Note that the states Ψ0
Λ(sΛ) form an orthonormal basis for (C2)Λ.

In particular,

〈Ψ0
Λ(sΛ) |Ψ0

Λ(sΛ)〉 = δ(sΛ; s′Λ) =
∏

x∈Λ

δsx,s′x
,

where δsx,s′x
is the Kronecker symbol.)

We now define the operators

PA = S1
A − e−

α
2

WA(S3
Λ), S1

A =
∏

x∈A

S1
x, (1.3)

where

WA(sΛ) = U0(s
A
Λ) − U0(sΛ), U0(s

A
Λ) = U0(sΛ\A,−sA). (1.4)

Our main results concern Hamiltonians of the form

HΛ =
∑

A⊂Λ

JAPA, JA ≤ 0 (1.5)

In Theorem 2.1 below, we show that their ground state is given by

ΨΛ =
∑

sΛ

e−
α
2

U0(sΛ)Ψ0
Λ(sΛ), α ∈ R

+. (1.6)

In the proof we establish that the Hamiltonian (1.5) is the generator of a
discrete Markovian process. The spectral structure for such generators in
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the simplest case (|A| = 1) was established in [22]. In Theorem 2.2, we
formulate conditions on JA for which this ground state is unique. As a
simple consequence, we show in Theorem 2.3 that in dimensions d > 1, there
are two types of long-range order in these systems.

In the third section we calculate explicit expressions for the Hamiltonians
in the case JA = 0, |A| > 2 and with the simplest choice of a ferromagnetic
U0. The Hamiltonian corresponding to the case d = 1, JA = 0, |A| > 1
already appeared in [Ma]. The case JA = 0, |A| 6= 2 is interesting since
our Hamiltonian is expressed as a perturbation of the simple ferromagnetic
Hamiltonian

HΛ = J
∑

<x,y>∈Λ

(S1
xS

1
y + γS3

xS
3
y), J < 0,

where γ = 4d(coshα)4d−3 sinhα. Our condition of uniqueness of the ground
state does not apply to this case since it does not hold if JA = 0 for all A
with |A| 6= 2. However, see Remark 2.2.

Remark. The class of Hamiltonians for which (1.6) is a ground state can
be generalised to

HΛ =
∑

A1,...,Al⊂Λ

JA(l)
(PA1 ...PAl

+ PAl
...PA1), A(l) = (A1, ..., Al), (1.7)

where the summation is over families of disjoint non-empty subsets of Λ.
This follows from the following equality for an arbitrary A

PAΨΛ = 0. (1.8)

2 Main results

We first prove that (1.6) is a ground state with eigenvalue zero for the Hamil-
tonian (1.5):

Theorem 2.1 The Hamiltonian (1.5) is a positive self-adjoint operator on
(C2)Λ and the state ΨΛ, given by (1.6), is a ground state with eigenvalue
zero.

We begin by proving (1.8). This shows that ΨΛ is an eigenfunction of the
Hamiltonian (1.5) with eigenvalue zero. The identity (1.8) follows easily by
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changing signs of the spin variables sA in the first term:

PAΨΛ =
∑

sΛ

(

Ψ0
Λ(sA

Λ) − e−
α
2

WA(sΛ)Ψ0
Λ(sΛ)

)

e−
α
2

U0(sΛ)

=
∑

sΛ

(

Ψ0
Λ(sA

Λ)e−
α
2

U0(sΛ) − Ψ0
Λ(sΛ

)

e−
α
2

U0(sA
Λ ))

=
∑

sΛ

(

e−
α
2

U0(sA
Λ ) − e−

α
2

U0(sA
Λ )

)

Ψ0
Λ(sΛ) = 0.

Next we prove that the Hamiltonian is a positive operator. For this
purpose, we define two further operators

H+
Λ = e

α
2

U0(S3
Λ)HΛe

−α
2

U0(S3
Λ), H−

Λ = e−
α
2

U0(S3
Λ)HΛe

α
2

U0(S3
Λ). (2.9)

It is clear that

(H+
Λ )∗ = H−

Λ , H−
Λ = e−αU0(S3

Λ)H+
Λ e

αU0(S3
Λ). (2.10)

where the star denotes the adjoint in the Hilbert space EΛ = (C2)Λ.
A straightforward calculation on the basis Ψ0

Λ shows that

H+
Λ =

∑

A⊆Λ

JAe
−α

2
WA(S3

Λ)(S1
A − I), (2.11)

where I is the unit operator. This operator is symmetric with respect to the
new scalar product

〈F ′ |F 〉U0 = 〈F ′ | e−αU0(S3
Λ)F 〉. (2.12)

Indeed,

〈F ′ |H+
ΛF 〉U0 = 〈F ′ | e−αU0(S3

Λ)H+
ΛF 〉

=
∑

A⊆Λ

JA〈F
′ | e−

α
2
[U0(S3

Λ)+U0(S3A
Λ )](S1

A − I)F 〉

=
∑

A⊆Λ

JA〈(S
1
A − I)F ′ | e−

α
2
[U0(S3

Λ)+U0(S3A
Λ )]F 〉

= 〈H+
ΛF

′ |F 〉U0 .

Here we used the equalities

e−
α
2

U0(S3
Λ)S1

A = S1
Ae

−α
2

U0(S3A
Λ ), e−

α
2

U0(S3A
Λ )S1

A = S1
Ae

−α
2

U0(S3
Λ) (2.13)

From these inequalities we derive, also,

〈F ′ |H+
ΛF 〉U0 = 〈e−

α
2

U0(S3
Λ)F ′ |HΛe

−α
2

U0(S3
Λ)F ′〉. (2.14)
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This shows that it suffices to prove that H+
Λ is a positive operator for the

new scalar product (2.12). Let

F =
∑

sΛ

F (sΛ)Ψ0
Λ(sΛ);

then
(H+

ΛF )(sΛ) = −
∑

A⊆Λ

JAe
−α

2
WA(sΛ)(F (sΛ) − F (sA

Λ)). (2.15)

In deriving this equality one has to once again change the signs of the spins
sA in the expansion of H+

ΛF on the basis Ψ0
Λ.

This means that

〈F |H+
ΛF 〉U0 = −

∑

A⊆Λ

JA

∑

sΛ

e−
α
2
[U0(sΛ)+U0(sA

Λ )](F (sΛ) − F (sA
Λ))F (sΛ)

= −
1

2

∑

A⊆Λ

JA

∑

sΛ

e−
α
2
[U0(sΛ)+U0(sA

Λ )](F (sΛ) − F (sA
Λ))2 ≥ 0.

(2.16)

Here we used the fact that the exponential weight in the sum is invariant
under changing signs of spin variables sA. It now follows that HΛ is positive
definite.

Remark 2.1 The operator H+
Λ is an analog of the operator generated by

the Dirichlet form for continuous spins [23]. Its exponent e−tH+
Λ generates a

discrete Markov process which can be called a generalized spin-flip process.
For its adjoint the following relations are valid

(H−
ΛF )(sΛ) =

∑

A⊆Λ

JA[e
α
2

WA(sΛ)F (sA
Λ)−e−

α
2

WA(sΛ)F (sΛ)],
∑

sΛ

(H−
ΛF )(sΛ) = 0.

The last equality implies the validity of the law of conservation of probability
and is derived after changing signs of spins sA in the first term of the first
equality (WA(sA

Λ) = −WA(sΛ)).

Uniqueness of the ground state will be derived from the Perron-Frobenius
Theorem [13,14]:
Theorem Let the square matrix B be non-negative and irreducible. Then the
spectral radius ρ(B) is a simple eigenvalue of B and ρ(B) > 0. Moreover,
the components of the associated eigenvector are all strictly positive.
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We recall that a matrix is non-negative if all its matrix elements are non-
negative, and an n×n-matrix B is irreducible if there does not exist a subset
I ⊂ {1, . . . , n} such that for all (i, j) ∈ I × I c, the matrix elements Bi,j = 0.

We use this theorem to derive two alternative conditions for uniqueness
of the ground state:

Theorem 2.2 The ground state ΨΛ of HΛ is unique if one of the following
conditions is satisfied:
1. J{x} < 0 for all x ∈ Λ; or
2. For every pair of points x, y ∈ Λ there exists a chain x0 = x, x1, . . . , xn = y
of points in Λ such that J{xi,xi+1} < 0 and there is set A ⊂ Λ with JA < 0
and |A| odd.

Proof. We apply the Perron-Frobenius Theorem to the operator −HΛ + aI,
where I is the identity operator (matrix) and a is a constant given by

a =
∑

A⊂Λ

JAe
−α

2
WA(sΛ). (2.17)

Consider first the case J{x} < 0 for all x ∈ Λ. Suppose that I ⊂ {−1, 1}Λ is
such that

〈Ψ0
Λ(s′Λ) | (−HΛ + aI)Ψ0

Λ(sΛ)〉 = −
∑

A⊂Λ

JA〈Ψ
0
Λ(s′Λ) |S1

AΨ0
Λ(sΛ)〉 = 0

∀sΛ ∈ I, s′Λ ∈ Ic. (2.18)

Since I 6= {−1, 1}Λ, there exists sΛ ∈ I and x ∈ Λ such that s′Λ :=

S1
xΨ0

Λ(sΛ) = Ψ0
Λ(s

{x}
Λ ) /∈ I. This contradicts (2.18) since all JA ≤ 0 and

J{x} < 0.
Next consider case 2, and assume again that (2.18) holds. Similar to the

previous case, if sΛ ∈ I and x, y ∈ Λ such that J{x,y} < 0 then s
{x,y}
Λ ∈ I.

By flipping pairs of spins in a chain as in the hypothesis, it then follows that
we can flip any pair of spins in sΛ. We conclude that I must contain all
configurations with an even number of spins sx = −1 or all configurations
with an odd number of minus-spins. However, it is also assumed that there
is a set A ⊂ Λ with |A| odd and JA < 0. Flipping the spins in A converts
a configuration with an odd number of spins sx = −1 to one with and even
number and vice versa. It follows that I must contain all configurations.

Remark 2.2 The second condition in case 2 is not superfluous: it follows
from the proof that even if JA < 0 for all A with |A| = 2, there does exist
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a nontrivial set I satisfying (2.18). Indeed, in this case the spaces spanned
by Ψ0

Λ(sΛ) where #{x : sx = −1} is odd resp. even are invariant, and the
ground state is two-fold degenerate.

One of the most interesting features of the models considered is that they
have two order parameters with long-range order. This is now surprisingly
easy to prove:

Define, for finite subsets A ⊂ Z
d, and operators FA depending on S1

x, S2
x

and S3
x with x ∈ A,

〈FA〉 = lim
Λ→Zd

〈FA〉Λ, 〈FA〉Λ =
(ΨΛ |FAΨΛ〉

〈ΨΛ,ΨΛ〉
, (2.19)

where ΨΛ is the ground state. The Gibbsian nature of the ground state then
immediately yields the following theorem.

Theorem 2.3 Suppose that the Hamiltonian HΛ of a quantum spin system
on finite subsets of the lattice Z

d is given by (1.5) and that limΛ→Zd WA(sΛ)
exists for all finite A ⊂ Z

d. Suppose moreover that the limit is bounded
if |A| = 2. Then, for d ≥ 1, there is ferromagnetic long-range order for
S1. Moreover, if there is long-range order in the corresponding classical spin
system with the potential energy U0 then such long-range order occurs also
for S3 in the ground state of the quantum system.

Proof. We have to prove that

〈S1
xS

1
y〉 > a, for a > 0. (2.20)

Writing

ZΛ = 〈ΨΛ |ΨΛ〉 =
∑

sΛ

e−
α
2

U0(sΛ).

we have

〈S1
xS

1
y〉Λ = Z−1

Λ

∑

sΛ

e−
α
2

U0(sΛ)e−
α
2

Wx,y(sΛ) ≥ inf
sΛ,x,y

e−
α
2

Wx,y(sΛ) < +∞.

This proves (2.20).
Since S3 is a diagonal matrix, the ground state expectation value of a

function of S3
x equals the classical Gibbsian expectation value of the function

depending on classical spins. This proves the last statement of the theorem.
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Remark 2.3 For short range interactions the condition for Wx,y of the the-
orem is always satisfied. It is well-known that for a ferromagnetic nearest-
neighbour pair interaction

U0(sΛ) = −g
∑

<x,y>⊆Λ

sxsy (g > 0), (2.21)

there is ferromagnetic long-range order in the classical system at sufficiently
low temperatures.

3 Examples

In this section we show that some of the the Hamiltonians considered in the
previous section have the following form

HΛ = H̃Λ +H∂Λ + |Λ|α0, (3.22)

where H̃Λ is a polynomial in S1
x and S3

x, H∂Λ is a boundary term, and α0 is
a constant.

We consider two specific examples.

3.1 Example 1

Put Jx = −1; Jx1,...,xk
= 0, k > 1 and

U0(sΛ) = −
∑

<x,y>∈Λ

sxsy. (3.23)

Then
Wx(sΛ) = 2sx

∑

y∈Λ,|y−x|=1

sy. (3.24)

Let nx be the number of nearest neighbours of x. Then from the simple
equality

e−αS = coshα− S sinhα, S2 = I, (3.25)

it follows that (Yk = (y1, ..., yk))

e−
α
2

Wx(S3
Λ) =

∏

y∈Λ,|y−x|=1

e−αS3
xS3

y

=
∏

y∈Λ,|y−x|=1

(coshα− S3
xS

3
y sinhα)
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=

[nx
2

]
∑

k=1

(sinhα)2k(coshα)nx−2k
∑

Y2k⊂Λ,|yj−x|=1

S3
[Y2k]

−S3
x

[nx−1
2

]
∑

k=0

(sinhα)2k+1(coshα)nx−2k−1
∑

Y2k+1⊂Λ,|yj−x|=1

S3
[Y2k+1]

+(coshα)nx ,

where [n] is the integer part of the number n. The Hamiltonian can therefore
be written as

HΛ = −
∑

x∈Λ







S1
x −

[nx
2

]
∑

k=1

αk(nx)
∑

Y2k⊂Λ,|yj−x|=1

S3
[Y2k] +

+

[nx−1
2

]
∑

k=0

βk(nx)
∑

Y2k+1⊂Λ,|yj−x|=1

S3
xS

3
[Y2k−1]







+ (coshα)2d|Λ| − c∂Λ,

where
αk(n) = (sinhα)2k(coshα)n−2k,

and
βk(n) = (sinhα)2k+1(coshα)n−2k−1,

and
c∂Λ ≤ (coshα)d(coshd α− 1)|∂Λ|,

is a boundary term.
It is now evident that (3.22) holds with α0 = (coshα)2d and

H̃Λ = −
∑

x∈Λ

S1
x − 2dβ0(2d)

∑

<x,y>∈Λ

S3
xS

3
y

+α1(2d)
∑

x∈Λ

∑

Y2⊂Λ,|yj−x|=1

S3
y1
S3

y2
+

+
d

∑

k=2



αk(2d)
∑

x∈Λ

∑

Y2k⊂Λ,|yj−x|=1

S3
[Y2k]

− βk−1(2d)
∑

x∈Λ

∑

Y2k−1⊂Λ,|yj−x|=1

S3
xS

3
[Y2k−1]



 . (3.26)

In the case d = 1 one has in particular, for Λ = [−L,L],

H̃Λ = −
∑

x∈Λ

S1
x − (sinh 2α)

∑

<x,y>∈Λ

S3
xS

3
y + (sinhα)2

∑

x,y∈Λ,|x−y|=2

S3
xS

3
y , (3.27)
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with boundary term

H∂Λ = sinhα(1 − coshα)(S3
−LS

3
−L+1 + S3

L−1S
3
L) + 2 coshα(1 − coshα).

H̃Λ is essentially the Hamiltonian introduced by Matsui in [18]. Notice
that U0 is of the form (2.21) so that in dimensions d ≥ 2 there is long-range
order of two different kinds by Theorem 2.3

3.2 Example 2

Put Jx = 0, Jx,y = −1, |x − y| = 1; Jx,y = 0, |x − y| > 1 and let U0 be given
by (3.23).

We first consider the one-dimensional case d = 1.
Since JA = 0 unless A is a pair of nearest neighbour sites, we only need

to compute W{x,x+1}. It is given by the formula (Λ = [−L,L])

Wx,x+1(sΛ) = 2 ((1 − δ−L,x)sx−1sx + (1 − δL,x)sx+1sx+2) . (3.28)

If −L+ 1 ≤ x ≤ L− 2 then an application of (3.25) yields

e−
α
2

Wx,x+1(S3
Λ) = (coshα− S3

x−1S
3
x sinhα)(coshα− S3

x+1S
3
x+2 sinhα)

= −(coshα)(sinhα)(S3
x−1S

3
x + S3

x+1S
3
x+2)

+(sinhα)2S3
x−1S

3
xS

3
x+1S

3
x+2 + (coshα)2.

We also have,

e−
α
2

W−L,−L+1(S3
Λ) = coshα− S3

−L+1S
3
−L+2 sinhα

and
e−

α
2

WL−1,L(S3
Λ) = coshα− S3

L−2S
3
L−1 sinhα

We thus obtain the following expression for the Hamiltonian:

HΛ = −
∑

−L≤x≤L−1

S1
xS

1
x+1 − (coshα)(sinhα)

∑

−L+1≤x≤L−2

(S3
x−1S

3
x + S3

x+1S
3
x+2)

+(sinhα)2
∑

−L+1≤x≤L−2

S3
[(x−1,...,x+2)] − sinhα(S3

−L+1S
3
−L+2 + S3

L−2S
3
L−1)

+(2L− 2)(coshα)2 + 2 coshα. (3.29)

This is obviously of the form (3.22) with α0 = (coshα)2, and bulk Hamil-
tonian given by

H̃Λ = −
∑

−L≤x≤L−1

[S1
xS

1
x+1 + (sinh 2α)S3

xS
3
x+1]

+(sinhα)2
∑

−L+1≤x≤L−2

S3
[(x−1,...,x+2)]. (3.30)
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Next we analyse the case of arbitrary d. We have, for a bond < x, y >∈ Λ,

Wx,y(sΛ) = 2
∑

b∈Bo
x,y

sb, sb = szsz′ , if < z, z′ >= b, (3.31)

and hence
e−

α
2

Wx,y(S3
Λ) =

∏

<z,z′>∈Bo
x,y

e−αS3
zS3

z′ . (3.32)

where Bo
x,y is the set of bonds stemming from the points x, y excluding the

bond < x, y > itself. Another application of (3.25) yields

HΛ = −
∑

<x,y>∈Λ

S1
xS

1
y +

+
∑

<x,y>∈Λ











∑

Z⊂Nx\{y}

γx(|Z|)S3
[Z]x









∑

Z′⊂Ny\{x}

γy(|Z ′|)S3
[Z′]y











(3.33)

where Nx = {z ∈ Λ| |x− z| = 1} and Ny{z ∈ Λ| |y − z| = 1}, [Z]x = Z if |Z|
is even and [Z]x = Z ∪ {x} if |Z| is odd, and similarly for [Z ′]y and

γx(n) = (coshα)nx−n−1(sinhα)n (3.34)

and similarly for γy. This is clearly of the form (3.22) with α0 = d(coshα)2(2d−1),
and bulk Hamiltonian given by

H̃Λ = −
∑

<x,y>∈Λ

[S1
xS

1
y + γS3

xS
3
y ] +

∑

<x,y>∈Λ

2(2d−1)
∑

j=2

(−1)jγj

∑

{b1,...,bj}⊂Bo
x,y

S3
[∪bj ]

,

(3.35)
where

γ = 2(2d− 1)(coshα)4d−3(sinhα) (3.36)

and
γj = (coshα)4d−2−j(sinhα)j (3.37)

and ∪bj includes x or y if they occur an odd number of times.
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[6] N. G. Duffield & J. V. Pulé, Thermodynamics and Phase Transitions in
the Overhauser Model. J. Stat. Phys. 54, 449–475 (1989).

[7] T. C. Dorlas, Probabilistic derivation of a noncommutative version of
Varadhan’s theorem. Preprint DIAS-02-05.

[8] M. Fannes, H. Spohn & A. Verbeure, Equilibrium states for mean field
models. J. Math. Phys. 21, 355–358 (1980).

[9] D. Petz, G. A. Raggio & A. Verbeure, Asymptotics of Varadhan type
and the Gibbs variational principle. Commun. Math. Phys. 121, 271-282
(1989).

[10] G. A. Raggio & R. Werner, Quantum statistical mechanics of general
mean-field systems. Helv. Phys. Acta 62, 980–1003 (1989).

[11] V. A. Zagrebnov & J.-B. Bru , The Bogoliubov model of weakly imper-
fect Bose gas. Phys. Rep. 350, 291–442 (2001).

[12] J.-B. Bru & T. C. Dorlas, Exact solution of the infinite-range-hopping
Bose-Hubbard model. J. Stat. Phys. 113, 177-196 (2003).

[13] F.R. Gantmacher, Applications of the Theory of Matrices, Interscience
Publ. New York, 1959.

13



[14] D. Serre, Matrices. Theory and Applications. Graduate Texts in Math-
ematics Vol. 216, Springer Verlag, New York etc., 2002.

[15] J. R. Kirkwood, L. Thomas, Expansions and phase transitions for the
ground state of quantum lattice systems. Commun. Math. Phys. 88,
569–580 (1982).

[16] N. Datta and T. Kennedy, Expansions for one quasiparticle states in
spin–1/2 systems. J. Stat. Phys. 108, 373–399 (2002).

[17] D. A. Yarotsky, Perturbations of ground states in weakly interacting
quantum spin systems. To appear in J. Math. Phys.

[18] T. Matsui, A link between quantum and clasical Potts models, J. Stat.
Phys. 59, Nos. 3/4, 781–798, (1990).

[19] N. Macris & C.-A.Piguet, Coexistence of long-range order for two ob-
servables at finite temperatures, J. Stat. Phys. 105, 909–935 (2001).

[20] N.Macris, Charge density wave and quantum fluctuations in a molecular
crystal, cond-mat/9906008.

[21] Guang-Shan Tian, A sufficient condition for two long-range orders co-
existing in a lattice many-body system, J. Phys. A 30, 841–848 (1997).

[22] R. A. Minlos, Invariant subspaces of the stochastic Ising high tempera-
ture dynamics, Markov Processes & Related Fields 2, 263–284, (1996).

[23] W. Skrypnik, Long-range order in nonequilibrium systems of interacting
Brownian linear oscillators. J. Stat. Phys. 111, 291-321 (2003).

14


