THE PHASE DIAGRAM OF A SPIN GLASS ON A TREE WITH
FERROMAGNETIC INTERACTIONS

T.C. DORLAS AND J.R. WEDAGEDERA

ABSTRACT. A spin glass problem on a Cayley tree with ferromagnetic interactions is solved rig-
orously. Using a level-I large deviation argument together with the martingale approach used by
Buffet, Patrick and Pulé [1], explicit expressions for the free energy are derived in different regions
of the phase diagram. It is found that there are four phases: a paramagnetic phase, a spin-glass
phase, a ferromagnetic phase and a mixed phase. The nature of the phase diagram depends on the

power with which the ferromagnetic term occurs in the Hamiltonian.

1. THE DIRECTED POLYMER PROBLEM AND THE GENERALIZED RANDOM ENERGY MODEL

The problem of a spin glass on a Cayley tree (or equivalently, directed polymers) is one of a handful
of models in disordered systems that can be solved exactly. It is a simplification of the more realistic
case where one considers a regular lattice in place of the Cayley tree. The problem has been treated for
instance using the replica method [5], using the properties of Generalized Random Energy Model [4, 2]
by reducing the problem to a reaction-diffusion system [8] and by a martingale approach [1]. The
latter approach is particularly elegant and achieves a completely rigorous and transparent solution
to the problem. Here we use a combination of the martingale approach of [1] and a level-1 large
deviations argument [15, 11] to solve a spin glass model on a Cayley tree with an additional mean-
field ferromagnetic interaction term in the Hamiltonian. We consider a one-parameter family of such
models distinguished by the power p > 2 to which this term is raised and show that the phase diagram
in the case p > 2 is qualitatively different from that in the case p = 2. The two phase diagrams are
depicted in Figure 1.2(a) and 1.2(b). We derive completely rigorously a variational expression for the
free energy of our model and then analyze carefully the various regions of the phase diagram. We note
that the free energy of the Generalized Random Energy Model in a magnetic field has been computed
by Derrida and Gardner [6] using the replica method, which is of course, not rigorous. Our result
(§ 2) has a direct analogy with theirs (§ 4 in [6]) in this case.

The spin glass on a Cayley tree is in fact similar to Derrida’s Generalized Random Energy Model,
which has been used in various applications, notably information theory [13, 14] and neural networks [7,
6]. It follows that our results may have implications for applications in these areas. In particular,
we have outlined the implications of our results for the optimal decoding problem as proposed by
Sourlas [13, 14] in a separate paper [10]. Indeed, it turns out that the phase diagram is identical to
that of the Random Energy Model with the same ferromagnetic interaction term as above. We claim
that this model is relevant for Sourlas’ decoding theory in the case of large p. Indeed, in [3, 4] Derrida
already showed that the random energy model is the limit of the Sherrington-Kirkpatrick model with
p-spin interaction. As explained in [10], Sourlas’ coding scheme amounts to adding a p-spin Ising term,
the ground state of which corresponds to the original message. Random noise in the transmission line
then leads to a Random Energy Model with p-spin interaction in the limit p — oo.

Let us now define the model and the terminology we adopt in this paper: Consider a Cayley tree
(cf. Fig 1.1) with co-ordination number 3- i.e. each node of the tree is connected to another two at the
next level. Label the bonds of the tree by (j, k) where j,k € N and j corresponds to the generation
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Figure 1.1: kj411 =2k; — (1 —0j41)/2. ks =1,2,... and o; take £1.

and k € {1,...,27} labels the bonds from left to right within the j*" generation. To each bond of the
tree attach i.i.d random variables V; ; with distribution depending on a parameter +.
A path of length n starting at the top of the tree is defined as a finite sequence

(1.1) {0, k;);1 <j < n}

satisfying the relation
1
(1.2) ki1 = 2k; = 5(1 = 0j11)

where 0; € {—1,1} correspond to taking the left or right branch out of generation j. (see Figure 1.1).
Denote (o)’ the sequence of Ising spins {oy }izl. Then the path is completely determined by (o)”.
Define the Hamiltonian by

gj
1

n A
(1.3) —H = Vi@y +

p—1
J=1 J

n

where p > 2 is an arbitrary parameter and A > 0 is a coupling constant. The partition function is
defined by

(1.4) Fn= Y e BF

{0 }?=1

The (specific) free energy of the model is defined by

(15) ~81(8,2,7) = Jim_ ~ log Z,(5).

In Section 4 we show that this limit exists almost surely with respect to the random variables V and
we derive expressions for it in the cases p = 2 and p > 2 respectively. The phase diagram consists of
four different phases: the paramagnetic phase (P) , a spin-glass phase (SG) , a ferromagnetic phase
(F) and a mixed phase (M). The phase diagram in the case p = 2 is depicted in Figure 1.2(a); and
that in the case p > 2 in Figure 1.2(b). With reference to Figure 1.2(a), in paramagnetic regime (P),
where A < C1(8) and 8 < By, and also in region (SG) where 8 > g, A < )¢, the magnetization m = 0.
In the latter phase the free-energy remains constant and in the absence of long-range order this is a
spin glass or frozen phase. The region (F) where C1(8) < A < C2(8) and m # 0 is the ferromagnetic
phase. (M) is a mixed phase where A > C2(8) or A > A¢ and the magnetization m # 0 depends only
on A.
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Figure 1.2: (a) The phase-diagram for p = 2: (b) The phase-diagram for p > 2:

In Figurel.2(b), the effect of the higher order ferromagnetic term in (1.3) is visible from the curve
C in contrast to the case p = 2. Indeed, it will be shown that as p increases the points A and D in
Figure 1.2(b) drift apart. We will also show that for p > 2 the magnetization is discontinuous across
the lines Cy1, C and A = A. whereas it is continuous accross the curve C2A. In the paramagnetic region
(P), m = 0 but the free-energy depends on § and in the ferromagnetic region (F) m(3,A) # 0 while in
the Spin Glass phase (SG) m = 0 with the free-energy remaining constant. In the mixed phase (M),
m # 0 and the free-energy depends only on A.

The computation of the free energy involves large deviation theory. First we write the partition
function as an integral with respect to measures defined in terms of the spin-glass on a Cayley tree
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with an external magnetic field. Then we show that these a priori measures satisfy the large deviation
principle (LDP) by first calculating the cumulant generating function. This is done in Section 2,
using an extension of the martingale approach of [1]. It is well-known that the existence of the
cumulant generating function implies the LDP for level-I measures (see [15, 11]). We compute the
corresponding rate function as a Legendre transform of this cumulant generating function in Section
3. By Varadhan’s theorem we can then write a variational expression for the free energy density. This
expression is analyzed in Section 4 for the cases p = 2 and p > 2 respectively. Exact expressions for
the free energy in the various regions of phase diagram are derived.

2. THE CUMULANT GENERATING FUNCTION

2.1. Definitions. Let the configuration space be the set X™ of all sequences {o;}? ; with 0; € X =:
{-1,1}. Let p(o; = +1) = p(o; = —1) = 1/2 so that the a-priori probability of each configuration of
spin variables is p, = 1/2". Now the partition function (1.4) can be written as

1 — 1 < P
. 7= 3 enlon[; X ver (3 0) |}
{05}, j=1 j=1

Note that since Vj (,); depends on all the previous ok, k < j, performing the above summation over
{o;} is not straight-forward. So, we will exploit martingale properties [17] related to Z,.
We write the free energy (1.5) as

(2.2) —Bf(B,\,v) = lim llog/ e P 1, (do) + log 2.
n—oo N X,

Also define the observables V,, : X,, - R, m,, : X,, = R by

n 1
Z Ifj,(o’)ja mn(O') = E Zoj‘
j=1 j=1

Notice that the partition function (2.1) only depends on these two variables so that (2.2) can be

(2.3) Va(o) =

SEN

rewritten as an integral with respect to the distribution N,, of W,, = (V,,(¢),m,(0)), i.e. the image
measure [12] on R? induced by the map W,,:

1 »
(2.4) —Bf(B,\,7) = lim —log / eBHAMT) N (du, dm) + log 2.
n—0o0 R2

We wish to compute this limit and show that it converges almost surely with respect to the distribution
of the random variables Vj ()5, which we also denote by w. We do this by first computing the
cumulant generating function C(¢1,t2) defined by

n—oco N

1
(2.5) Clt1,t2) = lim ~log / MmN (. dm).
This will enable us to compute the corresponding rate function , i.e.

(2.6) I(v,m) = sup {t1v + tam — C(t1,t2)}
t1,t2

and to apply Varadhan’s Theorem [11, 15] to get

(2.7) —Bf(B, A7) = Sup {B(v+ Am?) — I(v,m)} +log 2.

)
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Denote

(2.8) Faltr,tr) = Y e Tim Vit Zina s
{o5}5=1

and define

(2.9) V"= V(31 <k <21 <5 <n}

which denotes the set of all the random variables V; (,); between generation 1 and n. Notice that the
cumulant generating function (2.5) can be written as

(2.10) Ct1,t2) = nh_)rréo % log %, (t1,t2) — log 2.
Define

(2.11) (t1,tp) = cosh(ty)E[e""]
(2.12) and M, (b1 1) = Zn(in,t2)

(29(ty1,t2))"’

where E denotes the expectation with respect to the random variables V.

2.2. Martingale Results.

Proposition 2.1. {M,}S°, is a martingale with respect to the increasing family of random variables
{v"}°2,, that is,

(2.13) E(Mpp1lv") = M,.
Proof. Write

i j0n41=+1
Vn+1,(01,---,0n,0n+1) =
Voo 5 0np1=-1.

(2.14) ffn+1 (tl,tQ) = Z exp [t1 Z Vj,(a)j + o ZU;‘] Z exp [t1V"+1’(J)n+1 + t20n+1]

{aj};l=1 Jj=1 Jj=1 ont1€{-1,1}
Taking the expectation with respect to Vi, 11,4,

E[Zni1(t, t2) V"] = Z(te, t2)E [t V12 4 etrVa—te]
(21 = %, (t1,12)2 cosh(t,)E (e"V) |
Dividing by (2®(t1,%2))"*! the result follows. [ |
Remark 2.1:
1. E[M,(t1,t2)] = 1.
2. Asin [1], if M > 0 with probability 1 then we have

1 -
(2.16) lim —log %, (t1,t2) = log2®(ty,ts). a.s

n—oco N
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Lemma 2.1. For any fized t1,ts,
(217) P [Moo(tl,tQ) = 0] =0 or 1.

Proof. Let L,(resp. R,) denote the set of paths of length n which start with a branch in the
left(resp. right) direction. Then we have

M, (t1,t2) = (2®(t1,82)) ™" [etlvll+t2‘71 Z el 2i=1 Vi Ht2 Ljma 75

(0)i€Ln
(2.18)

+elt Vig+taoo § el 21 Vieyitta 2o 0j .

(0)I€Rn

The event {lim,_,o, M, (t1,t2) = 0} is independent of Vi; and Vi». Hence it is independent of »2.
Similarly it is independent of v for every p. Hence the result follows by Kolmogorov’s 0,1- Law. W
Remark 2.2:

If P[M = 0] = 1 then E[M] = 0. Therefore, if we know that E[Ms, (t1,t2)] > 0 then P[Muo(t1,12) =
0] =1 is impossible. As in [1], we prove that

(2.19) sup E[ M2 (t1,t2)] < 00 for some a > 1
n>1
from which it follows that E[Mq (t1,t2)] = 1. O

Although the proof of the next lemma takes a similar reasoning as that of [1], we present the proof
for completeness.

Lemma 2.2.

(2.20) E[ My (t1,ta) V"] = MA(t1,t2) + At t2)"™ [M(t1, t2) — A0, t2)] M (2t1, 2t5)
where
(2, 2ty)
(2.21) At t2) = gty
Proof.

j€n2+1(tlut2) = { Z

n n 2
exp [tl Z Vio)i +1t2 Z aj] (ethlth2 + ethZ_tZ) }
{0i}3=1 j=1 j=1

} : o211 2521 V()i +2t2 X5 o) (e2t1V2—2t2 4+ 9ettVattiVi 4 e2t1V1+2t2>

{0 ?:1

+ Z etl 2 Vieyitta 21 04 (et1V2—tz 4 et1V1+tz>

{o3}.{o}}
Jj:057#0;

(2.22)

% el i1 Vioryi tt2 251 0 (et1V2’ —t2 et1V1'+t2>
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Taking the expectation
E [é*;fﬂw] — F,(2t1,2ts) (2@(2151, 2t,) + 2]E(et1v)2)

(2.23) + Z ot it Vi oyitta Ximy 05 ot 251 VionHt2 iy 0 482 (ty, ts).
{o3}{o5}
Elj:aj:/ﬁa';-

A similar splitting of sums as in (2.22) shows that the double sum in the right hand side of (2.23)
equals %, (t1,t2)? — Z,(2t1,2t5). Hence

E [.,é}w,fﬂ(tl, t2)|u"] = F,(2t1,2ty) (2B(2t1, 2t5) + 287 (¢, t2)sech? (ty))
(2.24) ) ]
+ 4‘1’2(t1,t2) (gj (tl, tz) — gn(2t1, 2t2)) .

where we have used the fact that E [eth]2 = ®2(t1, t5)sech®(t2). Dividing by (2®(t1,t2))*"" we get

2%, (2t1, 2t5)
(2®(t1, 1))
1
(2%(t1,t2))™"

B [Mag (1, t2)"] = [®(2t1,265) + B (V)]

[,@”,f(tl,tz)) — ,@"n(ztl,ztg)] .

|
Remark 2.3:
Taking expectations on both sides
(2.25) E (M) =E(M2) + A(t1,t2)" [A(t1, t2) — A0, £2)]
and iterating we find
1 n—1
(226) E (MTZL) = )\(tl, t2) + §sech2(t2) + [)\(tl, t2) - )\(O,tQ)] Z /\(tl,tQ)k.
k=1
Hence we conclude that
(2.27) supE [M2(t1,t2)] < 00 whenever ®(2t1,2ty) < 28%(ty,t2).
n>1
0
The following lemma was proven in [1]:
Lemma 2.3. For any finite set of real numbers {z1,... ,z,}, the function

1 n
2.2 =-1 &
(2.28) g(r) = ~log ; e

is decreasing and convex in T.

Proposition 2.2. Define

(2.29) F(t1,t2) =log[2®(t1,t2)] -
If for any given t1,ta, there exists a > 1 such that

(230) F(atl, Oétz) < OéF(tl,tz)
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then

(2.31) supE[ M7 (t1,t2)] < oo.
n>1

Proof. Take 1 < a < 2. By Hélder’s inequality

E[Mg,,|v"] < (B [M2,,|v"])""

(2.32)
< M2+ [At1, t2) — A0, £2)] %2 A(t1, t2) "2 M2/2 (241, 2t5).

By Lemma 2.3 we have .,”}”711/2(%1, 2ty) < fé"nl/a(atQ,atQ) for 0 < a < 2. Hence

F2 2t 2ty)

1/2 — .
Mn/ (2t172t2) - (2@(21‘1,2'@))”/2

(2.33)

28 (aty, ats) ]"/"‘

1/a
< M,/%(atr, o) [<2¢<2t1,2tz))“/2

Inserting this in (2.32) we get

E[MZ V"] < M2(t1,t2) + [M(t1, t2) — A(0,2)]*7% A(t1, 1)/

(2.34)

28 (atq, ats)]"
X Mn(atl,at2) [M]

(22 (t1,t2))

Taking expectations, iterating as in (2.26) and substituting for A(¢1,t2) we find

/27 [28(aty, ats) k
2.35 E[M2, ] <E[M{] + [A(tr,t2) — A0, £2)]*/? [#]
( ) [ n+1] = [ l] [ (1 2) ( 2)] lg (2@(751,752))0‘
This proves the proposition. |
Remark 2.4:

1. It follows from Holder’s inequality that F'(t1,t2) is a convex function. So, (2.30) implies that

d 1
(236) - —F(Oétl, Oétz)

— lim (F(atl,atg)/a) — F(tl,tg)
da o

Jm o —1 <0.

a=1

On the other hand if (2.36) holds, that is if

d1
(237) - —F(atl, Oétz)

d
= —F(t17t2)—|— —F(atl,atg) <0
do o

da

a=1 a=1

then there exists a > 1 such that (2.30) holds.

2. In the following we assume that V has a Gaussian distribution with zero mean and variance
1/~. In that case

t2
(2.38) F(t1,t2) = log[2cosh(t2)] + i
and (2.37) reduces to
(2.39) It1| < {27 [log(2 cosh(t2)) — ta tanh(t)]}'/? =: B(t,).

Also define B9 := B(0). We shall use these definitions throughout the paper hereafter. For
future use we write B~! = T. Tt will be convenient to keep the graph of B(t;) in mind as as
proceed with proofs of future results (see Figure 2.1).



THE PHASE DIAGRAM OF A SPIN GLASS... 9

t

Figure 2.1: In the region |t1| < B(t2), there is a > 1 such that sup E[M; (t1,t2)] < oco.
n>1

2.3. Existence of the Cumulant Generating Function.

Theorem 2.1. Assume that V takes a Gaussian distribution with zero mean and variance 1/v and
define

I = {(tl,tz) S ]R2 : |t2| < T(tl)} .

Then the following limit holds almost surely:

1 F(t,t : (t1,t2) €T
(2.40) nh_}rréo —log & (t1,t2) = ( 72)7 - (b1, t2) .
n tHF (tl,t2) /tl ; (tl,tz) el
where t1, ta are the solutions of the equations
o t _ _
(2.41) 2 =2 and ¥ =BH).
t1 t1

Proof. (i) (t1,t2) €T
Now proposition (2.2) applies and we have E[ My ] = 1 (see Remark 2.2). Hence using lemma (2.1),
the result follows by (2.16). We restate this : Define

.1 5
(2.42) Dty 1) = {W € nh_{%o ” log Z(t1,2) = F(t17t2)} :
Then

(2.43) P [ t)] =1 for each (t1,t2) €T.
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to
T T T T T
B t2 =T(B) i
- to=kB—]
B e T .
Fa(B,t2) [+ :
I I I I )
0 B B Bo
t =8

Figure 2.2: t5(8) = kB and 12(8) = k. The points (3, 2) lie on the boundary t> = T(8).

But we need a stronger result, namely

(244) Pl m Q(thtz) =1

(tl ,tz)EF

that is, the exceptional nullset is uniform in (¢1,%2). This is proved in the Appendix.

(ii) (t1,t2) € TC: Take any (t1,t2) € T© (cf. Figure 2.2). Let (f1,%2) be the solution of (2.41) which
is obviously unique. Put 7 = t; /#; = t5/f > 1. By Lemma, 2.3, log %, (t,7t2)/7 is decreasing
and convex in 7. By the decrease

1 S 1 ~ _ _
(2.45) lim sup — log %, (711, 7t2) < limsup ——— log %, (1 — €)t1, (1 — €)t2)) .
n—oc NT n—o0 n(l — 6)
Since (1 — €)(t1,t2) € T we get by letting e = 0
1 S -
(2.46) lim sup — log %, (1t1,7t2) < F (t1,t2) -

n—o0

On the other hand, by the convexity we find

1 ~ _ _ ~ _ _
liminf — IOg .féwn(Ttl, Ttg) Z lim inf IOg ,,Jéwn ((1 — €)t1, (1 — €)t2)

n—oo NT n—o0 n(l — e)
+ liminf — [— log £, (Tt Tt ) (T -1+ 6)
1mi1 / g <Zn 1,712 .

T=1—¢

Since the sequence of convex functions

1 ~
—_— IOg gn(Ttl,th)
nrt



THE PHASE DIAGRAM OF A SPIN GLASS... 11

converges to F(rty,1t2)/T a.s. for 7(t1,t2) € T’ (by the proof in part (i) of the theorem), their
derivatives converge to the limit

d
E |:—F(Tt1,Tt2):|
Hence
1d |1 ~ - d [1 _
(247) lim inf —— [— lOg ffn(Ttl,th)] = — |:—F(Tt1,7't2):|
n—oo ndr [T re1_e dT T relc
Moreover since (2.37) is equivalent to (2.39),
(2.48) A )| =0 at (BB
. P Tl1,Tl2 T:1— at (11,72)-
It follows that
1 ~ _ _
(2.49) liminf — log 2, (7t1,7t2) > F (t1,12) a.s.
n—,oo NT
as € = 0. Hence we have
1 ~ _ _
(2.50) lim =log %, (1t1,7t2) = 7F (t1,12) a.s.
n—,oo N

Corollary 2.1.1. There ezists a uniform null set A such that the cumulant generating function

F(tl,tQ) — 10g2 N (tl,tz) el

(251) C(tl,tQ)(W) = - B
t1F (t,t2) [t —log2 ; (t1,t2) € TC
is defined and exists for all (t1,t2) if w & A .

N.B:
In the second case #; and #; has to be determined so that (2.41) is satisfied.

3. VARIATIONAL FORMULA

3.1. The Rate Function.

Lemma 3.1. Let

(3.1) I°(m) := sgp{tm—C(E,t)}.

Then the free-energy expression (2.7) can be written as

(3.2) —Bf(B,\) =log2 + sup {A8mP — TP (m)} .

Proof. Notice that the free-energy expression (2.7) can be written as

(3-3) —log2—Bf(B,A) = sup {ﬁ/\mp + sup [Bv — I(U,m)]}

where the second supremum is the Legendre transform of I with respect to the first variable. We can
also write the rate function (2.6) as

(3.4) I(v,m) = sup {tiv— (=I""(m))}.
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C(t1,12)

4.5

Figure 2.3: C(t1,t2) at v = 1 for given k = t2/t:. Notice it’s linear behaviour beyond the region I' along the
radial lines.

By convexity of —I*t(m) with respect to #; (since C is convex) we can invert (3.1) to get

(3.5) —I"(m) = sup {tv — I(v,m)}.
Inserting this in (3.3) yields the lemma. |
Remark 3.1:

1. Notice that F' is symmetric in both variables (provided the distribution of V' is symmetric). In
particular

C(—t1,t2) = C(t1,t2) = C(t1, —t2).
2. Since t; should take the same sign as v in the following, we have,

(3.6) I(v,m) = sup {tiv + I""(m)} = sup {t1|v| + I"*(m)} = sup {t:|v| + I""(m)}
t1€R t1>0 t1€R

and hence I(v,m) = I(Jv|,m). Also, it follows by a similar reasoning considering
(3.7) —I'*(m) = Slilp {tam — C(t1,t2)},
2
that I(v,m) = I(v,—m) and hence we have
(3.8) I(v,m) = I(|v|, |ml).

Therefore it suffices to consider only t; = f > 0 and m > 0, in all the derivations that follow.
We find ¢; = 8 and therefore it is convenient to write ¢ instead of ¢ hereafter.
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Proposition 3.1. Let m(8) = tanh[T(8)], 8(m) = {2v1log2—Iy(m)}'/? and Iy(m) = [(1+m) log(1+
m) + (1 —m)log(l —m)]/2. Then

I (m) = Io(m) = & ;0 <|m| < m(B)

(3.9) IP(m) = { I (m) == =28 +1og2 ; m(B) <|m| <1

00 ; otherwise

Proof. Notice that since I°(m) = max{I,I5} one has to determine which one of If and I§
dominates and when that happens. This is done by solving the one-dimensional variational problem
where one simply differentiates the two forms of C(8,t) in the regions I' and T'“ (cf. (2.51)) with
respect to t. |

Figure 3.1: The curve and the line show the boundary of the domain of validity of I?(m)

Remark 3.2:
The boundary of the domain of validity of IiB (m) is shown in the Figure 3.1 which is obtained by
solving the explicit equation B(t) = f for ¢ and then taking m(3) = tanh(t). O

4. FREE ENERGY AND THE PHASE DIAGRAM
We now discuss the phase diagram as depicted in Figure 1.2(a) i.e. for the case p = 2. We define
the graphs A = Cy (8), A = C2(8) by
Ci(8) =1/(28),

(4.1) T(8)

where m(f) = tanh[T'(5)].
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Theorem 4.1. Let p=2. Then the free energy is given by

(4.2)
fp(B) = =45 — §log2 FA<CL(B), 0< B < fo

fy = TN = —Xn(B,N)? + 5lo(m(8, X)) — fp(B) i CL(B) SA<Ca(B), 0<B<fo
Fu(N) = —am3 — ) iA>Co(B),B< Boor A= Ao, >0
fsg = -5 ;A< Ao, B2 Po

¥
and the corresponding phase diagram is given by Figure 1.2(a). Here
(4.3) m(B,A) = tanh[28Am (8, A)],
(4.4) my = tanh[23(my)Am,],

Xo = Ci (o) = 1/(260) and B(m) = \/Zyllog2 — Ly (m)]-

Proof. Define g;(8, \;m) = fAm? — Iz.ﬁ(m), i = 1,2, where Iz-ﬁ are the two forms of 1% (m) as defined
n (3.9). Clearly,

(4.5) 0g1/0m =0 & m = tanh(26Am)
and, using
=, B _’ytanh_l(m)
(4.6) B (m) = L)
(4.7) dg>/0m = 0 < m = tanh(28(m)Am).

These are just (4.3) and (4.4) and it remains to determine which case applies in various regions of the
B3, A-plane.

First suppose that 0 < 8 < fBo. If A < C1(B) then (4.3) has only the zero solution and the
maximizer is attained at m = 0. If C; (8) < A < C2 (B) then the maximum is attained at the positive
solution m = m(B, A) of (4.5), that is (4.3) holds and I?(m) = I’ (m). Indeed, m(8, ) < m(B) since
A < C2(B) and m increases with . In the case A > Ca (8) we need the following lemma, the proof of
which we omit (see [16]):

Lemma 4.1. If A > Ao the equation (4.4) has ezactly one positive solution on [0,1] which increases

as X increases, and if A < Ao the only solution is m = 0.

If A > Cy (B) then g1(8,A;m) is increasing in m for m < m(B) so that its maximum is attained
at m = m(B). At that point g = g» so that the maximum is always attained for m > m(8) and
F(B,A) = g2(B, A;m).

By Lemma 4.1 equation (4.7) has a positive solution my > m(8) which corresponds to the maxi-
mum. The free energy follows by insertion: f(8,A) = —Am3 + 12 (my) —1og2 = far(N).

Next consider the case 8 > 9. Then If (m) does not apply so that f(8,A) = g2(8, A;m), where m
is the maximizer. Clearly, if A < Ag then m = 0 by Lemma 4.1 and f(3,\) = ﬁ_l(Izﬂ (0)—log2) = fsq,
whereas if A > \g the maximizer is given by the unique positive solution of (4.4) and f(8,\) is again
given by far(A). [ |
When p > 2, let 8 < S and define

(4.8) RN = s {gamP —If(m)}

0<m<m(B)



THE PHASE DIAGRAM OF A SPIN GLASS... 15

91
1 e

\—/M_\

A=CuB) N

54X
A=A < Ci(B)
X A<d A<
- m(BC1B) 1
0. iy mo my
(2) (b)

Figure 4.1: (a)tanh[pSAm?~'] at A % X (b) A = (i (B) defines the critical value

where m(f) = tanh[T'(8)]. Clearly the supremum of the above is attained when m satisfies
(4.9) m = tanh [pBAm?~!]

provided the solution m < m(B). In fact, for fixed 3, there is a critical value A(3) below which (4.9)
has only the zero solution. Put g;(3, \;m) = SAmP — If(m), i =1,2. Then for A < X(8), 8g1/dm < 0
and hence

F(B,)) = -I{(0).

For A > A(3), (4.9) has non-zero solutions s (8, A) and m (8, )) > 71 (8, \) (see Figure 4.1(a)).

Clearly g1 has a local minimum at 7, and a local maximum at m; (see Figure 4.1(a), 4.1(b)) but it
is incorrect to assume that therefore  is the critical value of \. Indeed, g; (8, X; my) < g1(8, X 0) and
by continuity this remains the case if A is increased slightly. The magnetization does become nonzero
when )\ reaches the value where

(4.10) a1 (B, X)) = g1(B, X;0) = —I7(0).

This defines the critical line A = C; (B) (see Figure 4.1(b)). Across the line A = C; (8) the magnetiza-
tion jumps from zero to the value m, given by the positive solution of (4.9) such that

(4.11) —IJ(0) = BAmE — [ (my) <= BAmE = Iy(my,).

Combined with (4.9) this yields G1(m,p) = 0, where

(4.12) Gy (m) = [1 + (1 - 11)) m] log(1 +m) + [1 - (1 - %) m] log(1 — m).

Notice that m,, is independent of 3, A.
To state the main theorem of this section we need a number of lemmas. We state the first lemma,
without proof (see [16]).

Lemma 4.2. For any p > 2, the equation G1(m) = 0 has a unique solution m, € (0,1). Moreover,
for large p, my ~ 1 —2-(p=1),



16 T.C. DORLAS AND J.R. WEDAGEDERA

Inserting m,, into (4.9) it follows that

_ tanh™"(m,,)

pBmh

(4.13) Ci(B)

For A > C; (8), the maximum is attained at m = m; > my, provided My < m(B). Thus we obtain
another critical value of A above which m = m(f). This line is given by A = C» (8) where

_ tanh™ ' (m(B))
~ pBm(B))r!
Notice that m(8) — 1 as § = 050 Ca (8) > C1 (B) for small 3, but as 3 increases m(f) decreases until

it reaches my,.
Define ; by

(4.14) C2 (B)

(4.15) m(B1) = mp.
Then C;(81) = C2(B1). There is a minimum value A, below which
(4.16) m = m(f) and m =m1(8, )

has no solution. Indeed, choose A(3) as above and let g > 0 be the value where mg = tanh[ﬂ;\pmg_l]
(see Figure 4.1(a)). Now let Smax be such that m(Bmax) = me. For A < S\(Bmax) = Amin We must
increase (3 in order that (4.9) has a solution but then m(8) decreases below mg and is invalid. For
B < Bmax, m(B) > myg so there is a unique A = Cy (8) for which m1(8,A) = m(8). Only this part of
the curve A = C (B) is relevant.
Remark 4.1:
Notice that A(8) = co/f since m; depends only on BX. For S < co, (4.9) has no solution, whereas if
¢ > ¢, then the hyperbola S\ = c intersects the curve A = C; (8) in two points, one with 8 < Bmax
corresponding to m(8) = m1(B,A) and one with 8 > Bmax and m(8) = m1 (8, A). O
It now follows that for 8 > 81, m1(B8,A) > m(B) so we must compare —If(O) and SAm(B)? —
Ilﬁ(m(,B)) This defines the critical line Cs3 (8):

_ Fm(8) -7 (0) _ TIo(m(B))

(.17) AT Gy pmpy P
It is easy to derive that
_ B-p
from which it follows that C3 (8) — +oo as 8 — B because
1/2
(19) m() ~{ "2 G-}

The line A = C3 (8) is in fact not relevant for f(8,A) as Fi does not apply in this region. We now
have

Lemma 4.3. Let 81 be the point of intersection of C1 (8) and C5 (8). If 0 < 8 < 1 then
~17(0) if A< C1(8)
<

(4.20) Fi(8,A) = < gxim? — I7 (1) if C1 (B) <A< C2 (B)
BAm(B)? — I (m(B)) if A > C2 (B).
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If B1 < B < By then

.y i
(4.21) Fi(B,\) = { 17(0) fA<Cs(B)

BAm(B)? — I7 (m(B)) if A > Cs (B).
Proof. See [16]. |

Next consider

(4.22) Fy(8,\) = sup {mmv—zf(m)}.
m>m(B)

Analogous to (4.9), the maximization condition is given by
(4.23) m = tanh(pB(m)AmP~).

It is easy to see [16] that (4.23) can have at most two non-zero solutions. In fact there is a critical
value Ay > 0 such that for A < Ay (4.23) has no non-zero solutions, whereas for A > A\ there are two
solutions ma(A) and ma(A) > Mma(A). g2(8, A;m) has a local maximum at the greater of these two:
m = m2(A). Again, this can only be a global maximum if A is large enough, i.e.

(4.24) B (WP — I (ma(N) > SAm(B)P — I5 (m(B)).
Put

We now claim:
Lemma 4.4. For § < 3, (4.24) is equivalent to A > C2 (B).

Proof. See [16]. [ |

For 82 < 8 < o, (4.24) defines a curve A = C4 () which does not coincide with A = C» (5). Before
discussing this case, we consider first the case § > [o:
If A < A2, g2(B, A;m) is decreasing so

(4.26) F>(8,)) = —I,(0).

For A\ > Ay we must compare —If(O) and BAma(A)P — Lf(mz(/\)). The critical value A; of A is given
by

(4.27) —I2(0) = BAma(A)P — 1P (ma (X)) -
Notice that this is independent of 8 > fg:
_ /BO - B(mc)
(4.28) Ae = o
where m. = ma (). Inserting (4.28) into (4.23) with A = A. we have G2(m.) = 0 where
(4.29) Ga(m) = gﬂ_(m) (Bo — A(m)) — m tanh ™ (m).

Analogous to Lemma 4.2 we have
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Lemma 4.5. Let p > 2. The equation G2(m) = 0 has a unique solution m = m. € (0,1). For large
b,

(4.30) 1—me~ 8p®log 2).

1 oy
8p? log 2 &
Proof. See [16]. [ |
Lemma 4.6. Let B35 be the minimum of the curve Cy (B) given by (4.14). Then, for 0 < 8 < B2,

Bam(B)? — I (m(B))  if A <Ca(B)

Fy ,)\ =
B, ) {,Bx\m2()\)p_lg(m N) i A>Ca(B)

and for > o,

—15(0) if A< A

FZ(Ba)‘) = { _ 8, - .
B2 (AP = I5 (Mma(A))  if A > A

Finally, for B2 < B < fBo there exists a curve X = C4 (B) given by (4.24) which lies below A = C5 (B)
and satisfies C4(B2) = A2 and C4(Bo) = A¢, such that

FQ(/Ba/\) =

BXM(B)? — I (m(B))  if X < Ca(B)
BAma (AP — I (ma(N))  if A > Cq (B).

Proof. See [16]. [ |
Finally, we consider f(3, ). Clearly,

(431) _/Bf(/B:)‘)_10g2:ma‘X{Fl(/Ba)‘)an(ﬂ:/\)}‘

The complete phase diagram is depicted in Figure 1.2(b) and is described in the following:

Theorem 4.2. Let the curves C1 () and Ca (B) be defined by (4.13) and (4.14) respectively. Let m,,
be the unique positive solution of G1(m) =0 and put 1 = B (my). If 0 < B < B then

~I(0) =& ifA<Ci(B)
(4.32) —Bf(B,A) —log2 = q BAm1(B,\) — If (m1(B, ) ifCL(B) <A< Ca(B)
Bz (X) — If (2 (X)) if A > Ca ().

The magnetization jumps from 0 to m, across C1 (B) but is continuous across Ca ().
If B > Bo then

—IJ(0) = 25 —log2 if A< A,

(4.33) —Bf(B,A) —log2= { BAYRNP — I (m(X) if A > Ae.

The magnetization jumps from 0 to m. at X = A..
For 81 < 8 < Bo there is a curve C (B) given by

(4.34) A=C(B) & —I7(0) = frina (NP — I (m2(N))

such that C(81) = C2(B1), C(Bo) = Ac and

(4.35) —Bf(B,A) ~log2 = {mmmp — I (m(N) if A>C(B).
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Proof. See [16]. |

We finally state a result about the character of the transition line C:

Proposition 4.1. The curve A = C (8) is decreasing and satisfies C(81) = A1, C(Bo) = Ae. Moreover
C'(81) = C1(Bo) and C'(By) = 0.

These completely determine the phase diagram for the case p > 2.

APPENDIX A. PROOF OF EQUATION (2.44) IN THEOREM 2.1

Consider countable dense subsets Dy C (0,50) and Dy C (0,00) and denote I = I'N (Dy x Dy).
Now (2.43) means that for each (t1,t2) € I, 3 a null set Ay, 4,y such that, if w & Ay, 4,) then

1 ~
(A].) lim — log gn(tl, t2) = F(tl, tz).

n—oo n

Put A = Uy, 1n)er Mtz Then A is also a null set since it is a countable union of null sets.
We prove (2.44) in two steps: First we fix a t; € D; and take to ¢ D» and show that if w ¢ A
then (A.1) holds for the given (¢, ) following a similar argument as in [9]. Our strategy then follows
the same lines as in [1]: considering an arbitrary ¢; € (0, Sp) we prove that the same limit (A.1) holds
by approximating (¢1,%2) by a sequence of points in D; x R along the radial lines t5 = at; with fixed
a > 0. We have

4 IOg ,@P (tl, t2

log Z etl Iy Vi(o)i Tt2 =105
6t2
ag

Ots

(A.2) ‘ — [etl L Z‘”]

29 (t17t2) {o} j=1

n
< sup Z oj

{0} j=1

Therefore
1 0 .
(A.3) T logff (t1,t2) < 1, independent of ¢; and ts.
2

Write F,(t1,t2) = log ﬁfn(tl,tg)/n and take t; € D1, to € Ds. Fix a given € > 0. Then 3t € D»
such that |t — ¢2] < €/3 since D5 is dense. The continuity of F(t1,t2) and |0F (t1,t2)/0t2| < 1 yields
that |F(t1,t) — F(t1,t2)| < €/3. Moreover by (A.3) we have for n sufficiently large that |F,(t1,t2) —
F,(t1,t)| < €/3 and hence it follows that

|Fn(t1,t2) — F(t1,t2)| < |Fn(t1,t2) — Fr(t,t)| + |Fn(ti,t) — F(t1,t)]

(A4) + |F(t15t) - F(tlat2)|

This shows that for w & A

(A.5) lim 2 log %, (t1, t2)(w) = Flt1, t2).

n—oo N

This completes the first step . To prove the second step pick a general point (¢1,%2) € T and construct
the sequences () , (73) for 77, 7;" € R so that

(A.6) m /1  and 1 N\/1
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and ty, := 74 t1, t;, := 7 t1 € Dy. This is possible since D; is dense in (0, 8) and t1 € (0, 39) \ D1.
Next we define t,, = 7, t, t1, = 7, t>. Then

1_k /it tii_k Nt Z_k /b, t;_k N\ ta.
Now we use the fact that
1 -
—IOg gn (Tt1,7t2)
.
is convex and decreasing in 7: By the decrease we have (since 7, < 1)

1 ~ 1 ~
lim sup —log %, (t1,t2) < limsup —— log %, (7, t1, 7, t2)

n—oo T n—oo MNT,

1 .. 1 S (e
(A.7) = — lim —log. %, (t;;.ts;)

Tk n—oo 1

= L_F (tirtor) ifwg A
Tk

Taking the limit ¥ — oo we have by the continuity of F'(t1,12)

1 .
(A.8) lim sup - log %, (t1,t2) < F(t1,t2).

n—oo

Similarly since T,j >1

1 ~ 11 -
liminf — log %, (t1,t2) > liminf ——Z (t1,t2)

n—oco n n—oo n T

(4.9) = £ F (thot3)

Tk
= F (t1,t2), as k = oc.
From (A.8) and (A.9)
.1 5 .
(A].O) lim — IOg % (t1,t2) = F(tl,tQ) for all (tl,tg) elifw ¢ N
n—oo n,
and this proves the required result.
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