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Abstract: We perform computer simulations of the Berkooz–Douglas (BD) matrix model,

holographically dual to the D0/D4–brane intersection. We generate the fundamental conden-

sate versus bare mass curve of the theory both holographically and from simulations of the

BD model. Our studies show excellent agreement of the two approaches in the deconfined

phase of the theory and significant deviations in the confined phase. We argue the discrepancy

in the confined phase is explained by the embedding of the D4–brane which yields stronger

α′ corrections to the condensate in this phase.
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1 Introduction

Gauge/gravity duality is among the most important theoretical developments coming from

string theory. In the original formulation of Maldacena [1], the duality relates string theory in

the AdS5×S5 background space-time to the large N limit of 3 + 1 dimensional N = 4 Super-

symmetric Yang-Mill theory living on the asymptotic boundary of the AdS5 space-time. This

idea has inspired numerous extensions of the duality with ever increasing phenomenological

relevance, currently ranging from heavy ion collisions to condensed matter physics. In this

paper we are interested in holographic flavour dynamics–the generalisation of the AdS/CFT

correspondence to flavoured gauge theories.

The first such generalisation was proposed by Karch and Katz [2] , who introduced a probe

D7–brane to the AdS5×S5 supergravity background. On the field theory side this corresponds
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to introducing an N = 2 fundamental hypermultiplet in the quenched approximation. The

classical dynamics of the probe brane is governed by an effective Dirac-Born-Infeld action.

Remarkably the AdS/CFT dictionary relates the classical properties of the brane to quantum

vacuum expectation values in the dual flavoured gauge theory. One such quantity is the

fundamental condensate of the theory, which is encoded in the classical profile of the probe

brane near the asymptotic boundary. In refs. [3], [4] the finite temperature set-up has been

considered. The authors uncovered a first order meson melting phase transition corresponding

to a topology change transition of the possible D7–brane embeddings. In ref. [5] these studies

have been extended to the general Dp/Dq–brane system and certain universal properties of

the corresponding holographic gauge theories have been uncovered.

By turning on the gauge field on the probe D–brane numerous other control parameters

can be introduced. Examples include: chemical potential [6], external electric and magnetic

fields [7], isospin chemical potential [8] and R-charge chemical potential [9, 10]. This has lead

to remarkable phenomenological applications of the AdS/CFT correspondence. However,

almost exclusively these applications require broken supersymmetry (a poorly tested regime

of the duality) making the nature of these studies somewhat speculative. Our objective in

this paper is to perform a highly non-trivial precision test of the gauge/gravity duality with

flavours.

Testing the AdS/CFT correspondence requires an alternative nonperturbative approach

and for a four dimensional gauge theory lattice simulations on a computer seem a natural

approach. Unfortunately, although the subject of active research [11, 12], the lattice formula-

tion of four dimensional Supersymmetric Yang-Mills theory is still in its infancy. When faced

with such difficulties, a useful approach is to study simplified versions of the correspondence.

Recently progress in this direction has been made by studying a 0 + 1 dimensional version

of the correspondence, one which relates the maximally supersymmetric BFSS matrix model

and its dual type IIA supergravity background [13–19]1. To add flavours to this set-up we

introduce a probe D4–brane. The resulting supersymmetric quantum mechanics is knows as

the Berkooz–Douglas (BD) matrix model. Simulating the BD matrix model is one of the

main results of our paper.

Another appealing feature of the BD matrix model is that it is dual to the D0/D4–brane

system, which falls into the same universality class [5] as the phenomenologically relevant

D3/D7–brane system.

In section 2 of the paper we review the D0/D4–brane holographic set-up. We discuss the

properties of a flavour D4–brane probing the near horizon limit of a finite temperature D0–

brane supergravity background. The model features a first order confinement/deconfinement

phase transition of the fundamental matter, which corresponds to a topology change transition

of the D4-brane embedding. This transition can be seen as a discontinuity in the fundamental

condensate as a function of the bare mass parameter. Using the AdS/CFT dictionary [5],

we construct numerically the condensate curve. Comparing this curve to lattice simulation

1For a recent review we refer the reader to ref. [20].
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is our main strategy for testing the gauge/gravity duality.

Section 3 of the paper outlines the properties of the BFSS matrix model and its flavoured

version the BD matrix model. We describe the Wick rotation of the DB model and the lattice

discretisation that we employ, which avoids fermion doubling. We also describe the Rational

Hybrid Monte Carlo approach to this model. A reader who is not interested in the details of

the Monte Carlo simulation can skip most of this section and move on to section 4.

In section 4 we compare the predictions for the fundamental condensate from both ap-

proaches: holographic studies and Monte Carlo simulations. We perform studies at two

different temperatures. Our studies show excellent agreement between the two approaches at

small bare mass parameter. For the lower temperature this agreement extends to the whole

range of bare masses in the deconfined (black hole) phase of the theory. We explain this by

arguing that the α′ corrections to the free energy experienced by black hole embeddings vary

weakly with the bare mass parameter and as a result largely cancels in the calculation of

the fundamental condensate, which is a derivative of the free energy with respect to the bare

mass. In the Minkowski phase of the theory the lattice simulations deviate from the theo-

retical curve for both temperatures. We argue that this reflects the fact that α′ corrections

vary significantly with the bare mass in this phase and hence contribute to the condensate.

The essential difference in the two phases is that in the black hole phase the D4–brane is

restricted to pass through the black hole horizon whereas in the Minkowski phase the embed-

ding closes at a higher radius that varies with the mass. We discuss future studies to improve

the agreement in the Minkowski phase.

Our studies provide a highly non-trivial test of the AdS/CFT correspondence with matter.

Although it is not a mathematical proof, we believe that the remarkable agreement between

theory and simulation, which we uncovered due to the cancelation mechanism described

above, provides substantial evidence for the validity of the holographic approach to flavour

dynamics.

2 Holographic flavours in one dimension

In this section we focus on the D0/D4–brane system. This system is particularly attractive

for a precision test of holography since on one side the corresponding dual gauge theory is

one dimensional, making it accessible via computer simulations and on the other side it is in

the same universality class as the D3/D7–brane system, which plays a key role in holographic

flavour dynamics. In what follows we briefly review the description of this system in the

quenched approximation adapting the general discussion of references [5] and [21].

2.1 D0-brane background

In the near horizon limit the D0-brane background is given by the metric:

ds2 = −H−
1
2 f dt2 +H

1
2

(
du2

f
+ u2 dΩ2

8

)
,

eΦ = H
3
4 , C0 = H−1 , (2.1)
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where H = (L/u)7 and f(u) = 1 − (u0/u)7. Here u0 is the radius of the horizon and the

length scale L can be expressed in terms of string theory units as:

L7 = 60π3 gsNc α
′7/2 , (2.2)

where Nc is the number of D0–branes corresponding to the rank of the gauge group of the dual

field theory2. According to the general gauge/gravity duality [21], the Yang-Mills coupling of

the corresponding dual gauge theory is given by:

g2
YM = gs (2π)−2 α′−3/2 . (2.3)

The Yang-Mills coupling is dimensionful and the corresponding dimensionless effective cou-

pling runs with the energy scale according to:

g2
eff = λU−3 , (2.4)

where λ = g2
YMNc is the t’Hooft coupling. The supergravity background can be trusted if

both the curvature and the dilaton are small, which leads to the restriction [21]:

1� geff � N
4
7
c . (2.5)

and the theory is strongly coupled in this regime. From equations (2.1) and (2.4) it follows

that the upper bound in equation (2.5) can be violated at low energies (small radial distances)

when the dilaton blows, however at finite temperature and fixed ’tHooft coupling, geff peaks

at the black hole horizon and the bound λ/T 3 � N
8/7
c is satisfied in the large N limit. At high

energies (large radial distances) the curvature of the background grows, while the effective

coupling decreases. As a result the lower bound in (2.5) is violated at energies U & λ1/3 and

hence α′ corrections are increasingly important at large radial distances.

Finally, the Hawking temperature of the background is given by:

T =
7

4π L

(u0

L

) 5
2

(2.6)

and is identified with the temperature of the dual gauge theory.

2.2 Flavour D4-branes

To introduce matter in the fundamental representation we consider the addition of Nf D4-

branes to the D0-brane background. In the probe approximation Nf � Nc, the dynamics of

the D4-branes is governed by the Dirac-Born-Infeld, which in the absence of a background

B-field is given by:

SDBI = −Nf T4

∫
d4ξ e−Φ

√
−det||Gα,β + (2πα′)Fα,β|| , (2.7)

2Note that we will abbreviate Nc to N when the context is clear.
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where Gα,β is the induced metric and Fα,β is the U(1) gauge field of the D4-brane, which we

will set to zero. The D4-brane tension is given by:

T4 =
µ4

gs
=

1

(2π)4 α′5/2 gs
. (2.8)

The D4-brane embedding that we consider extends along the radial and time directions and

wraps an S3 sphere in the directions transverse to the D0-brane. To parametrise it let us

split the unit S8 in the metric (2.1) into:

dΩ2
8 = dθ2 + cos2 θ dΩ2

3 + sin2 θ dΩ2
4 . (2.9)

Our embedding now extends along t and Ω3 and has a non-trivial profile in the (u, θ) plane,

which we parametrise as (u, θ(u)). Next we Wick rotate the action (2.7) and periodically

identify time with period β = 1/T . Using equation (2.1) we obtain:

SEDBI =
Nf β

8π2 α′5/2 gs

∫
duu3 cos3 θ(u)

√
1 + u2 f(u) θ′(u)2 . (2.10)

In the limit of zero temperature (u0 → 0) the regular solution to the equation of motion

for θ(u) is given by u sin θ = m, where the constant m is proportional to the bare mass

of the flavours [2], [5]. At finite temperature the separation L(u) = u sin θ(u) has a non-

trivial profile reflecting the non-vanishing condensate of the theory. To analyse this case it is

convenient to define dimensionless radial coordinate ũ = u/u0. At large ũ the general solution

θ(ũ) has the expansion:

sin θ =
m̃

ũ
+

c̃

u3
+ . . . . (2.11)

Holography relates the dimensionless constants m̃, c̃ to the bare mass and condensate of the

theory via [5]3:

mq =
u0 m̃

2πα′
=

(
120π2

49

)1/5(
T

λ1/3

)2/5

λ1/3 m̃ ,

〈Om〉 = −
Nf u

3
0

2π gs α3/2
c̃ =

(
24 153 π6

76

)1/5

Nf Nc

(
T

λ1/3

)6/5

(−2 c̃) . (2.12)

We refer the reader to Appendix A for derivation of (2.12).

2.3 Fundamental condensate

The fundamental condensate can be obtained numerically by solving the differential equation

for θ(ũ) obtained by varying the Lagrangian:

L̃ ∝ ũ3 cos3 θ(ũ)
√

1 + ũ2 (1− 1/ũ7) θ′(ũ)2 . (2.13)

3Note that our expressions differ slightly from the ones presented in [5] due to the different choice of radial

variable.
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Figure 1. A plot of sample Minkowski (blue curves) and black hole (red curves) embedding. The

dashed curve represents the critical embedding and the black circle represents the horizon.

The possible solutions split into two classes (look at figure 1). The first class comprises of

embeddings closing above the horizon at some minimal radial distance ũmin > 1, for such

embeddings the wrapped S3 sphere shrinks to zero size and hence θ(ũmin) = π/2. Following

the terminology of ref. [5] we call these embeddings Minkowski embeddings. The spectrum of

Minkowski embeddings is characterised by discrete normal modes corresponding to meson-like

bound states and they are identified with the confined (bound) phase of the theory. The other

class of embeddings correspond to probes which reach the horizon. They are parametrised by

the size of the S3 sphere at the horizon or equivalently by θ0 = θ(1). We refer to these em-

beddings as the black hole embeddings [5]. Their spectrum is characterised by discrete quasi

normal modes corresponding to melting mesons [4], and they are identified with the decon-

fined phase of the theory. The two classes are separated by the critical embedding satisfying

θ0 = π/2, which has a conical singularity at the horizon [5]. The topology change transition

between Minkowski and black hole embeddings corresponds to a confinement/deconfinement

phase transition for the fundamental matter [3]. The nature of the phase transition depends

on the properties of the solutions near the critical embedding. It turns out that the structure

of the solutions depends only on the dimensionality of the internal Sn sphere wrapped by

the embedding (n = 3 in our case). In this sense the holographic gauge theories dual to the

Dp/Dq brane set-up split into universality classes (characterised by n) [5]. According to this

nomenclature the D3/D7 system is in the same universality class as the D0/D4 system that

we consider. For n = 3 the solutions near the critical embedding have a multivalued nature

and the phase transition is of a first order [5], [22].
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Figure 2. A plot of the condensate versus bare mass curve. The red curve represents the deconfined

(black hole) phase of the theory. The dotted curve corresponds to the confined (Minkowski phase)

and the red dashed curve is the leading large m̃ behaviour of the condensate c̃ = 3/(35 m̃4).

To obtain the condensate versus bare mass equation of state c̃(m̃) one can read off the

asymptotics of the numerical solution at large ũ and use the holographic dictionary (2.12).

To obtain the solutions one uses a numeric shooting technique from the bulk of the geometry.

For black hole embeddings one can show that at the horizon the differential equation for θ(ũ)

effectively reduces order and regularity completely determines the Cauchy initial conditions

in terms of θ0. For Minkowski embeddings it is convenient to consider the field χ = sin θ.

Similarly to the black hole case, the differential equation for χ(ũ) reduces order at ũmin and

the Cauchy initial conditions are completely determined by the parameter ũmin.

These considerations allow for the numerical construction of the condensate versus bare

mass curve c̃(m̃), which we present in figure 2. The solid red curve represents the deconfined

phase of the theory, corresponding to the black hole embeddings from figure 1. The dotted blue

curve represents the confined phase of the theory, corresponding to the Minkowski embeddings

in figure 1. Finally, the red dashed curve represent the analytic result c̃ = 3/(35 m̃4) for the

fall-off of the condensate at large m̃.

The goal of our study is to verify the condensate curve in figure 2, using numerical lattice

simulations. Note that this curve was obtained without taking into account α′ corrections

to either the supergravity background or the DBI action. As the studies of the BFSS model

performed in refs. [15], [18] and [19] show, α′ corrections to the D0-brane background are

crucial for comparing with Monte Carlo simulations. Our main observation concerning these
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corrections is that in the black hole phase (as can be seen from figure 1) the D4-brane

embeddings explore the same range of the bulk of the D0-brane background and hence the

α′ corrections to their free energy is roughly the same. This is in contrast to Minkowski

embeddings whose minimal radial distance ũmin varies with the parameter m̃. Since the

condensate is defined as a derivative of the free energy with respect to the bare mass parameter

(see Appendix A for details), this suggests that the α′ corrections to the condensate mostly

cancel in the black hole phase and are significant in the Minkowski phase. Indeed, our

numerical studies in section 4 supports this and we observe an excellent agreement in the

black hole phase.

3 Berkooz–Douglas matrix model

The Berkooz–Douglas matrix model [23] was originally proposed as a matrix model for DLCQ

M-theory with Nc units of momentum along the longitudinal directions in the presence of Nf

longitudinal M5-branes. In this work we are interested in the interpretation of the model

as the low energy effective field theory governing the D0/D4-brane system with Nc (colour)

D0-branes and Nf (flavour) D4-branes.

The Berkooz–Douglas matrix model represents the unique way to introduce fundamental

matter to the BFSS matrix model, while preserving half of the original supersymmetry. In the

following we first introduce briefly the BFSS matrix model and then discuss the introduction

of fundamental degrees of freedom to the BFSS model in the six dimensional notations of

ref. [24]. Finally, we describe the lattice discretisation of the Berkooz–Douglas matrix model

and its Monte Carlo simulations.

3.1 BFSS matrix model

The easiest way to obtain the BFSS matrix model is via dimensional reduction of ten dimen-

sional supersymmetric Yang-Mills theory down to one dimension. We obtain:

SM =
1

g2

∫
dt tr

{
1

2
(D0X

i)2 +
1

4
[Xi, Xj ]2 − i

2
ΨTC10 Γ0D0Ψ +

1

2
ΨTC10 Γi[Xi,Ψ]

}
, (3.1)

where Ψ is a thirty two component Majorana–Weyl spinnor, Γµ are the 10D gamma matrices

and C10 is the charge conjugation matrix satisfying C10ΓµC−1
10 = −ΓµT . To avoid fermion

doubling we take a representation [14, 19] in terms of the nine dimensional gamma matrices γi:

Γi = γi ⊗ σ1 , for i = 1, . . . , 9 ,

Γ0 = 116 ⊗ iσ2 ,

C10 = C9 ⊗ iσ2 , (3.2)

where C9 is the charge conjugation matrix in nine dimensions satisfying C9γ
iC−1

9 = γi
T

.

Next we wick rotate the action (3.1) by sending: dt → −idτ , ∂t → i∂τ and Γ0 → −iΓτ .

For the Euclidean action SE = −iSM (defined to have a positive kinetic term) we obtain:

SE =
1

g2

∫
dτ tr

{
1

2
(DτXi)2 − 1

4
[Xi, Xj ]2 +

i

2
ΨTC10 ΓτDτΨ− 1

2
ΨTC10 Γi[Xi,Ψ]

}
. (3.3)
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Note that the wick rotated fermions no longer satisfy reality condition but can still be taken

to be Weyl, we thus consider the ansatz:

Ψ = ψ ⊗

(
1

0

)
. (3.4)

Using this anstatz together with equation (3.2) and the fact that Γτ = iΓ0 for the euclidean

action in 9D notation we obtain:

SE =
1

g2

∫
dτ tr

{
1

2
(DτX

i)2 − 1

4
[Xi, Xj ]2 +

1

2
ψTC9Dτψ −

1

2
ψTC9 γ

i[Xi, ψ]

}
, (3.5)

as one can see in this notation the action is explicitly SO(9) invariant. Note that we have

not imposed any restriction on the nine dimensional basis. For example if we choose γi to be

in the Majorana representation this would imply that C9 = 116, which is the most popular

formulation of the model. However, we are interested in a basis in which the discrete theory

is free of fermion doubling and one can show [14] that if C9 = 18 ⊗ σ1 the discrete theory

is indeed free of doublers. Constructing a basis for which C9 is of this form is relatively

straightforward. For example one can tensor up the Mayorana basis in seven dimensions γ̃aE :

γa = −γ̃aE ⊗ σ3 , for a = 1, . . . , 7 ,

γ8 = 18 ⊗ σ2 ,

γ9 = 18 ⊗ σ1 , (3.6)

and verify that indeed C9 is of the desired form (it also satisfies C9 = γ9). The discretisation

of the action (3.5) was considered in ref. [19], for completeness we provide the details in

appendix B.

3.2 Adding flavours

In this section we will consider the addition of flavours to the BFSS matrix model. The

resulting matrix model is know as the Berkooz–Douglas matrix model. We will follow closely

the notation of ref. [24]. This requires a basis for the ten dimensional clifford algebra, which

is better suited for reduction to six dimensions. Let us begin by writing the Lagrangian of

the action:

L =
1

g2
Tr

(
1

2
D0X

aD0X
a +

i

2
λ† ρD0λρ +

1

2
D0X̄

ρρ̇D0Xρρ̇ +
i

2
θ†ρ̇D0θρ̇

)
+

1

g2
tr
(
D0Φ̄ρD0Φρ + iχ†D0χ

)
+ Lint , (3.7)
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where:

Lint =
1

g2
Tr

(
1

4
[Xa, Xb][Xa, Xb] +

1

2
[Xa, X̄ρρ̇][Xa, Xρρ̇]−

1

4
[X̄αα̇, Xβα̇][X̄ββ̇, Xαβ̇]

)
− 1

g2
tr
(
Φ̄ρ(Xa −ma)(Xa −ma)Φρ

)
+

1

g2
tr

(
Φ̄α[X̄βα̇, Xαα̇]Φβ +

1

2
Φ̄αΦβΦ̄βΦα − Φ̄αΦαΦ̄βΦβ

)
+

1

g2
Tr

(
1

2
λ̄ργa[Xa, λρ] +

1

2
θ̄α̇γa[Xa, θα̇]−

√
2 i εαβ θ̄

α̇[Xβα̇, λα]

)
+

1

g2
tr
(
χ̄γa(Xa −ma)χ+

√
2 i εαβ χ̄λαΦβ −

√
2 i εαβ Φ̄αλ̄βχ

)
. (3.8)

Here the indices a = 1, . . . , 5 and correspond to the directions transverse to the D4-brane,

while ma are the components of the bare mass of the flavours corresponding to the positions

of the D4-branes. Also, Tr denotes trace over the U(N) gauge indices (over the colours),

while tr denotes a trace over the flavours.

Note that in this notation the adjoint fermions (the pure BFSS part) are represented by

four eight-component Weyl fermions in six dimensions λρ and θα̇ correspondingly of positive

and negative chirality and satisfying the reality conditions (simplectic majorana):

λα = εαβ λ
c β; θα̇ = −εα̇β̇ , θ

c β̇ , (3.9)

where:

ψc ≡ C−1
6 ψ̄T . (3.10)

Our goal is to relate the BFSS model in nine-dimensional notation (3.5) to the six dimensional

notation presented in equations (3.7) and (3.8). The nine-dimensional Minkowski Lagrangian

can be obtained by reducing equation (3.1) in the basis (3.2) using the Weyl ansatz (3.4):

LBFSS =
1

g2
Tr

(
1

2
(D0X

i)2 +
1

4
[Xi, Xj ]2 +

i

2
ψTC9D0ψ +

1

2
ψTC9 γ

i[Xi, ψ]

)
. (3.11)

Our strategy is to obtain the adjoint part of equations (3.7), (3.8) by reduction in an ap-

propriate ten dimensional basis for the gamma matrices and then relate the two frames by a

unitary transformation. Our starting point is the basis:

Γ̃µ = −γ̃µ ⊗ γ̂5 , for µ = 0, . . . , 5 ,

Γ̃5+m = 18 ⊗ γ̂m , for m = 1, . . . , 4 ,

Γ̃11 = −γ̃7 ⊗ γ̂5 ,

C10 = C6 ⊗ C4 , (3.12)
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where:

γ̂1 = 12 ⊗ σ2,

γ̂2 = 12 ⊗ σ3, γ̂5 = γ̂1γ̂2γ̂3γ̂4 = σ3 ⊗ σ1,

γ̂3 = σ2 ⊗ σ1, C4 = σ1 ⊗ iσ2 ,

γ̂4 = σ1 ⊗ σ1,

and the six dimensional gamma matrices γ̃µ are related to the matrices γ̃E appearing in

equation (3.6) via:

γ̃a = γ̃aE , a = 1, . . . , 5; γ̃0 = −iγ̃6
E ; γ̃7 = −γ̃7

E . (3.13)

One can now easily check that the frames (3.2) and (3.12) are related via the unitary trans-

formation S:

S Γ̃M S−1 = ΓM ; S = S1S2; [S1, S2] = 0;

S1 =
1√
2

(1 + iΓ̃0Γ̃6) =
1√
2

(1 + γ̃0 ⊗ σ3 ⊗ σ3) ,

S2 =
1√
2

(1 + Γ̃7Γ̃11) =
1√
2

(1− γ̃7 ⊗ σ3 ⊗ iσ2) . (3.14)

Furthermore, one can check that the charge conjugation matrix C10 is invariant under the

transformation S, namely that: STC10 S = C10. Now let us focus on reducing the Lagrangian

L =
1

g2
Tr

(
1

2
(D0X

i)2 +
1

4
[Xi, Xj ]2 − i

2
Ψ̃TC10 Γ̃0D0Ψ̃ +

1

2
Ψ̃TC10 Γ̃i[Xi, Ψ̃]

)
(3.15)

in the basis (3.12), where Ψ̃ is a Majorana-Weyl spinor satisfying:

Γ̃11 Ψ̃ = Ψ̃; Ψ̃† Γ̃0 = Ψ̃T C10; . (3.16)

We consider the ansatz:

Ψ̃ =
1√
2

(
λ1

θ1̇

)
⊗

(
1

−1

)
+

1√
2

(
θ2̇

λ2

)
⊗

(
1

1

)
. (3.17)

One can easily check that the Weyl condition on Ψ̃ (first relation in equation (3.16)) implies:

P+ λ
ρ = λρ; P− θ

ρ̇ = θρ̇; ,

P± ≡
1

2

(
1± γ̃7

)
. (3.18)

The Majorana condition can be rewritten as: Ψ̃ = C−T10 Γ̃0T Ψ̃∗ = −C−1
10 Γ̃0T Ψ̃∗, where we

used that: CT10 = −C10. Using equations (3.10) and (3.12) one obtains:

Ψ̃ = −C−1
10 Γ̃0T Ψ̃∗ =

1√
2

(
λc 2

−θc 2̇

)
⊗

(
1

−1

)
+

1√
2

(
θc 1̇

−λc 1

)
⊗

(
1

1

)
. (3.19)
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Comparing equations (3.17) and (3.19) one arrives at the reality condition (3.9).

Let us now reduce the Lagrangian (3.15). One easily obtains:

− i
2

Ψ̃TC10 Γ̃0D0Ψ̃ =
i

2
λ† ρD0λρ +

i

2
θ†ρ̇D0θρ̇ ,

1

2
Ψ̃TC10 Γ̃a[Xa, Ψ̃] =

1

2
λ̄ργ̃a[Xa, λρ] +

1

2
θ̄α̇γ̃a[Xa, θα̇] , a = 1, . . . , 5 , (3.20)

which agree with the corresponding terms in equations (3.7) and (3.8). Reducing the last term

in (3.15) along the directions parallel to the D4-branes is a bit more involved. We obtain:

Tr

(
1

2
Ψ̃TC10 Γ̃6[X6, Ψ̃]

)
= Tr

(
iθ̄ 1̇[X6, λ2]− iθ̄ 2̇[X6, λ1]

)
,

Tr

(
1

2
Ψ̃TC10 Γ̃7[X7, Ψ̃]

)
= Tr

(
−θ̄1̇[X7, λ2]− θ̄ 2̇[X7, λ1]

)
,

Tr

(
1

2
Ψ̃TC10 Γ̃8[X8, Ψ̃]

)
= Tr

(
iθ̄1̇[X8, λ1] + iθ̄ 2̇[X8, λ2]

)
,

Tr

(
1

2
Ψ̃TC10 Γ̃9[X9, Ψ̃]

)
= Tr

(
θ̄1̇[X9, λ1]− θ̄ 2̇[X9, λ2]

)
. (3.21)

Therefore we have:

Tr

(
1

2
Ψ̃TC10 Γ̃m[Xm, Ψ̃]

)
= Tr

(
iθ̄ 1̇[X6 + iX7, λ2] + iθ̄ 2̇[X8 + iX9, λ2]

−iθ̄1̇[−X8 + iX9, λ1]− iθ̄ 2̇[X6 − iX7, λ1]
)

(3.22)

Tr
(
−
√

2 i εαβ θ̄
α̇[Xβα̇, λα]

)
= Tr

(
iθ̄ 1̇[
√

2X11̇, λ
2] + iθ̄ 2̇[

√
2X12̇, λ

2]

−iθ̄1̇[
√

2X21̇, λ
1]− iθ̄ 2̇[

√
2X22̇, λ

1]
)
. (3.23)

Comparing the terms in equations (3.22) and (3.23) we conclude that4:

||Xρρ̇|| =
1√
2

(
σ0X

6 + iσAX10−A) =
1√
2

(
X6 + iX7 X8 + iX9

−X8 + iX9 X6 − iX7

)
. (3.24)

Our next step is to express λρ and θρ̇ in terms of the spinor field ψ defined in equation

(3.4). To this end one has to use the relation5 Ψ̃ = S−1Ψ. Decomposing:

Ψ =

(
ψ1

ψ2

)
⊗

(
1

0

)
(3.25)

4Note that our expression for Xρρ̇ differs from the one in ref. [24] by the reflection X8 → −X8.
5One can check that by substituting Ψ̃ = S−1Ψ and C10 = STC10S into equation (3.15) and using the

transformation (3.14) one will arrive at equation (3.1).
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and using the definitions in equation (3.14) one arrives at:

S†2Ψ =
1√
2

(
ψ1

ψ2

)
⊗

(
1

0

)
− 1√

2

(
γ̃7ψ1

−γ̃7ψ2

)
⊗

(
0

1

)

=
1√
2

(
P+ψ1

P−ψ2

)
⊗

(
1

−1

)
+

1√
2

(
P−ψ1

P+ψ2

)
⊗

(
1

1

)
, (3.26)

S†1S
†
2Ψ =

1√
2

(
P+ e

−π
4
γ̃0
ψ1

P− e
π
4
γ̃0
ψ2

)
⊗

(
1

−1

)
+

1√
2

(
P− e

−π
4
γ̃0
ψ1

P+ e
π
4
γ̃0
ψ2

)
⊗

(
1

1

)
, (3.27)

where P± = 1
2(1± γ̃7). Comparing equations (3.27) and (3.17) we arrive at:

λ1 = P+ e
−π

4
γ̃0
ψ1 ,

λ2 = P+ e
π
4
γ̃0
ψ2 ,

θ1̇ = P− e
π
4
γ̃0
ψ2 ,

θ2̇ = P− e
−π

4
γ̃0
ψ1 .

Equations (3.7) and (3.8) can then be written as:

L =
1

g2
Tr

(
1

2
D0X

iD0X
i +

i

2
ψTC9D0ψ

)
+

1

g2
tr
(
D0Φ̄ρD0Φρ + iχ†D0χ

)
+ Lint ,

Lint =
1

g2
Tr

(
1

4
[Xi, Xj ]2 +

1

2
ψTC9 γ

i[Xi, ψ]

)
+

1

g2
tr
(
χ̄γa(Xa −ma)χ− Φ̄ρ(Xa −ma)2Φρ

)
+

1

g2
tr

(
Φ̄α[X̄βα̇, Xαα̇]Φβ +

1

2
Φ̄αΦβΦ̄βΦα − Φ̄αΦαΦ̄βΦβ

)
+

1

g2
i
√

2 tr
(

Φ̄2 ψ̄1 e
π
4
γ̃0
χ− Φ̄1 ψ̄2 e

−π
4
γ̃0
χ+ χ̄ e−

π
4
γ̃0
ψ1 Φ2 − χ̄ e

π
4
γ̃0
ψ2 Φ1

)
. (3.28)

3.2.1 The fundamental fermions. Wick rotation.

Next we focus on wick rotating the action (3.28). Note that before wick rotating the fermions

it is crucial to use the reality condition ψ̄ = ψT C10, which implies ψ∗1 = ψ2 , ψ
∗
2 = ψ1. To

wick rotate the Weyl fermions χ it is convenient to first rewrite the action in five dimensional

notation, using five dimensional Dirac fermions. To this end we use an explicit basis for

γ̃µ [25]:

γ̃0 = −iσ3 ⊗ C5 , γ′1 = −σ2 ⊗ σ1 ,

γ̃1 = −iσ3 ⊗ C5 γ
′1 , γ′2 = −σ2 ⊗ σ2 ,

γ̃2 = σ1 ⊗ C5 γ
′2 , γ′3 = −σ2 ⊗ σ3 ,

γ̃3 = −iσ3 ⊗ C5 γ
′3 , γ′4 = σ1 ⊗ 12 ,

γ̃4 = σ1 ⊗ C5 γ
′4 , γ′5 = σ3 ⊗ 12 ,

γ̃5 = σ1 ⊗ C5 γ
′5 , C5 = 12 ⊗ σ2 ,

γ̃7 = σ2 ⊗ 14 ,
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where C5 is a charge conjugation matrix satisfying C5 γ
′mC −1

5 = γ′mT . Using that λα and

χ are of positive and negative chirality we define:

χ =
1√
2

(
1

−i

)
⊗ χ̂ , λα =

1√
2

(
1

i

)
⊗ λ̂α ,

ψα =
1√
2

(
1

i

)
⊗ ψ̂α,+ +

1√
2

(
1

−i

)
⊗ ψ̂α,− , (3.29)

where the hat symbol ˆ denotes four dimensional Dirac fermions. The transition rules (3.28)

imply the relation:

λ̂1 =
1√
2

(
ψ̂1,+ + i C5 ψ̂1,−

)
,

λ̂2 =
1√
2

(
ψ̂2,+ − i C5 ψ̂2,−

)
. (3.30)

Now we can reduce the fermionic part of the lagrangian (3.28). We obtain:

Lχ =
1

g2
tr
(
iχ̂†D0χ− χ̂†γ′a(Xa −ma)χ̂+

√
2 εαβχ̂†i C5 λ̂

A
α T

A
ijΦj β +

√
2 iχ̂Ti λ̂

A
α T̄

A
ij Φ̄α

j

)
,(3.31)

where TAij are generator of SU(N), also we have used the reduced version of the reality

condition (3.9) to solve for λ̂∗α in terms of λ̂α. Note that after Wick rotation the fermionic

fields χ̂ and χ̂† become independent. We thus define ζT = (χ̂T , χ̂†) and Wick rotate taking

LE
χ = −Lχ(t→ −iτ):

LE
χ =

1

g2
tr
(
ζT2 Dτζ1 + ζT2 γ

′a(Xa −ma)ζ1 −
√

2 εαβζT2 iC5 λ̂
A
α T

A
ijΦj β −

√
2 iζT1 iλ̂

A
α T̄

A
ij Φ̄α

j

)
,

(3.32)

which is our expression for the Wick rotated part of the action involving χ. A comment about

the symmetry of the action is in order. We expect that it should have unbroken global SO(5)

symmetry. To verify this we study the action of the six dimensional SO(1, 5) symmetry on

the reduced fermions. One can easily verify that the SO(5) generators Σ′ab associated to the

basis γ′m are embedded in SO(1, 5) via:

Σ̃12 = −σ2 ⊗ Σ′12 , Σ̃23 = −σ2 ⊗ Σ′23 , Σ̃34 = −σ2 ⊗ Σ′34 , Σ̃45 = 12 ⊗ Σ′45 ,

Σ̃13 = 12 ⊗ Σ′13 , Σ̃24 = 12 ⊗ Σ′24 , Σ̃35 = −σ2 ⊗ Σ′35 ,

Σ̃14 = −σ2 ⊗ Σ′14 , Σ̃25 = 12 ⊗ Σ′25 ,

Σ̃15 = −σ2 ⊗ Σ′15 , (3.33)

where Σ̃ab are the generators in the basis γ̃µ. One can also check that:

Σ̃ab χ =
1√
2

(
1

−i

)
⊗ Σ′abχ̂ ,

Σ̃ab λα =
1√
2

(
1

i

)
⊗
(
−Σ′ab T

)
λ̂α . (3.34)
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We see that: ζ1 transforms as χ̂, ζT2 transform as χ̂† and λ̂α transforms as C5 χ, which

ensures the SO(5) invariance of the reduced action. We can make this explicit by defining

ζ ′T = (χ̂T , χ̂†C5) and λ̂′α = C5λα. Now all the fields ζ ′1, ζ ′2 and λ̂′α transform as χ̂ and the

lagrangian takes the form:

LE
χ =

1

g2
tr
(
ζ ′T2 C5Dτζ

′
1 + ζ ′T2 C5γ

′a(Xa −ma)ζ1

−
√

2 εαβζ ′T2 i C5 λ̂
′A
α TAijΦj β −

√
2 iζ ′T1 iC5λ̂

′A
α T̄Aij Φ̄α

j

)
, (3.35)

which is explicitly SO(5) invariant. For technical reasons we will keep the non-standard form

of the lagrnagian (3.32).

3.2.2 The fundamental fermions. Discretisation.

Next we focus on discretising the action corresponding to (3.32):

SE
χ =

1

g2

β∫
0

dτtr
(
ζT2 Dτζ1 + ζT2 γ

′a(Xa −ma)ζ1 −
√

2 εαβζT2 iC5 λ̂
A
α T

A
ijΦj β −

√
2 iζT1 iλ̂

A
α T̄

A
ij Φ̄α

j

)
(3.36)

Using the link variables (B.2) for the covariant derivative Dτζ1 we can write

Dτ ζ
1 →

Un,n+1ζ
1
n+1 − ζ1

n

a
. (3.37)

Using again the gauge in which the holonomy is concentrated at one link (see Appendix B)

and imposing anti-periodic boundary conditions on the fermions, for the kinetic term we

obtain:
β∫

0

dτ tr
(
ζT2 Dτ ζ1

)
= tr

(
Λ−2∑
n=0

ζ2T
n ζ1

n+1 − ζ2T
Λ−1D ζ1

0 −
Λ−1∑
n=0

ζ2T
n ζ1

n

)
, (3.38)

where D = diag{eiθ1 , . . . , eiθN } is the holonomy matrix. Defining the matrix:

Kij
χ n,m = δn+1,m δij − δn,Λ−1 δm,0Dij − δn,m , (3.39)

we can write:

SE
χ kin =

1

g2

β∫
0

dτ tr
(
ζT2 Dτ ζ1

)
=

1

2g2

(
ζ1T , ζ2T

)( 04 −KT
χ

Kχ 04

)(
ζ1

ζ2

)
, (3.40)

where we have suppressed all indices. One can show that the off-diagonal form of the kinetic

term suppresses the fermion doubling, in the same way as the off diagonal choice of the charge

conjugation matrix C9 suppressed them for the adjoint fermions.Similarly for the potential

term we get:

1

g2

β∫
0

dτ tr
(
ζT2 γ

′a(Xa −ma)ζ1

)
=

a

2g2

Λ−1∑
n=0

(
ζ1T
n , ζ2T

n

)( 04 −γ̄′a(X̄a
n −ma)

γ′a(Xa
n −ma) 04

)(
ζ1
n

ζ2
n

)
(3.41)
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and

−
√

2

g2

β∫
0

dτ tr
(
εαβζT2 iC5 λ̂

A
α T

A
ijΦj β + iζT1 iλ̂

A
α T̄

A
ij Φ̄α

j

)
=

Λ−1∑
n=0

tr
(
ζTn i (Mζ λ)An i λ̂

A
n

−λ̂ATn
(
MT

ζ λ

)A
n i
ζn i

)
, (3.42)

where λ̂An ≡ (λ̂A1n , λ̂
A
2 , n) and:

(Mζλ)An i = −
√

2 a

2g2

(
i T̄Aij Φ̄1

j n i T̄Aij Φ̄2
j n

C5 T
A
ij Φ2

j n −C5 T
A
ij Φ1

j n

)
. (3.43)

Altogether we can write:

SE
χ = tr

(
ζTMζζ ζ + ζTMζλ λ̂− λ̂TMT

ζλ ζ
)
, (3.44)

where we have suppressed all of the indices and Mζζ is given by:

M ij
ζζ n,m =

1

2g2

(
04 −Kji

χm,n − a γ̄′a(X̄a
n ij −maδij) δn,m

Kij
χ n,m + a γ′a(Xa

n ij −maδij) δn,m 04

)
(3.45)

One should keep in mind that λ̂ can be expressed in terms of ψ, namely λ̂ = Mλψψ. More

explicitly using equations (3.29) and (3.30) we obtain:(
λ̂A1n
λ̂A2n

)
=

1√
2

(
ei
π
4
C5 −i e−i

π
4
C5 04 04

04 04 e−i
π
4
C5 −i ei

π
4
C5

)(
ψA1n
ψA2n

)
. (3.46)

Clearly, defining Mζψ =MζλMλψ we can write:

SE
χ = tr

(
ζTMζζ ζ + ζTMζψ ψ − ψTMT

ζψ ζ
)
, (3.47)

Finally, using equations (B.25) and (B.26) for the total fermionic action we obtain:

Stot
f = (ψT , ζT )

(
M −MT

ζψ

Mζψ Mζζ

)(
ψ

ζ

)
= (ψT , ζT )Mtot

(
ψ

ζ

)
. (3.48)

3.2.3 RHMC and pseudo-fermionic forces

The next step is to apply the RHMC method [26] to the model. To this end we need the

so called pseudo-fermionic forces. Let us summarise briefly the philosophy. The partition

function of the model can be written as:

Z ∝
∫
DX DΦ̄DΦ e−Sbos[X,Φ]−Stot

f ∝
∫
DX DΦ̄DΦ Pf(Mtot) e

−Sbos[X,Φ] (3.49)

Assuming that the model does not suffer from a severe sign problem we can ignore the phase

of the Pfaffian and use that:

|Pf(Mtot)| = det(M†totMtot)
1/4 , (3.50)
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to write

Z ∝
∫
DX DΦ̄DΦDξ†Dξ e−Sbos[X,Φ]−Sps.f , (3.51)

where

Sps.f ≡ ξ† (M†totMtot)
−1/4ξ . (3.52)

Here ξ is a 16(N2
c − 1)Λ + 8Nf NcΛ dimensional vector consisting of the pseudo-fermionic

fields. The idea of the RHMC is to approximate the rational exponent of the matrixM†totMtot

with a partial sum:

(M†totMtot)
δ = α0 +

#∑
i=1

αi (M†totMtot + βi)
−1 , (3.53)

where the parameters α0, αi, βi and # depend on the rational exponent δ, the spectral range

of the matrix M†totMtot and the desired accuracy. We will need two rational exponents.

To update the pseudo fermions we use that the field η ≡ (M†totMtot)
−1/8ξ has a gaussian

distribution and solve for ξ = (M†totMtot)
1/8 η using a multi-shift solver. Therefore, δ = 1/8

is one of the rational exponents that we need. To calculate the fermionic forces and the

contribution to the hamiltonian we need to invert (M†totMtot)
−1/4 and the second exponent

is δ = −1/4.

Let us elaborate on the computation of the fermionic forces. We have three type of forces:

derivative with respect to Xn ij , derivatives with respect to Φ̄α
n i and derivative with respect to

the phases of the links θi. Using the partial expansion (3.53), one can easily derive expression

for the derivatives of the fermionic action:

∂Sps.f

∂u
= −

#∑
i=1

αi ξ
†(M†totMtot + βi)

−1 ∂(M†totMtot)

∂u
(M†totMtot + βi)

−1ξ

= −
#∑
i=1

αi h
†
i

∂(M†totMtot)

∂u
hi , (3.54)

where hi satisfy (M†totMtot + βi)hi = ξi and are obtained from the multi-solver.

3.2.4 Bosonic action. Discretisation

Finally, we focus on the bosonic action of the fundamental fields. Wick rotating the action

for Φ, we obtain:

SE
Φ =

1

g2

β∫
0

dτ tr

(
Dτ Φ̄ρDτΦρ − Φ̄α[X̄βα̇, Xαα̇]Φβ + Φ̄ρ(Xa −ma)2Φρ −

1

2
Φ̄αΦβΦ̄βΦα + Φ̄αΦαΦ̄βΦβ

)
.

(3.55)

Before we discretise the action (3.55) it is instructive to massage the term Φ̄α[X̄βα̇, Xαα̇]Φβ.

First we point out that [24]:

X̄σσ̇ = εσρ εσ̇ρ̇Xρρ̇ , (3.56)
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which in matrix notation becomes X̄ = σ2Xσ2. Next we define:

σ4 ≡ −iσ0 , Y m ≡ X10−m (3.57)

and rewrite equation (3.24) as:

||Xρρ̇|| =
1√
2

4∑
m=1

i σmY m , (3.58)

while:

||X̄σσ̇|| = 1√
2

4∑
m=1

i σ2σ
mσ2Y

m , (3.59)

We then obtain:

[X̄βα̇, Xαα̇] =
1

2
(σmσ2(σl)Tσ2) βα [Y m, Y l] = −i(σA) βα

(
[Y A, Y 4] +

1

2
εABC [Y B, Y C ]

)
.

(3.60)

The last term in the equation above has a very clean group theory interpretation. To uncover

it let us consider the following basis of the SO(4) algebra:

(Lab)cd = i(δadδbc − δacδbd) (3.61)

satisfying:

[Lab, Lcd] = i(δacLbd + δbdLac − δadLbc − δbcLad) . (3.62)

The SO(4) algebra can be split into SU(2)× SU(2) by considering the generators:

JA =
1

2
LA 4 +

1

4
εABCLBC , KA = −1

2
LA 4 +

1

4
εABCLBC A,B,C = 1, . . . , 3 , (3.63)

which satisfy:

[JA, JB] = i εABCJC , [KA,KB] = i εABCKC , [JA,KA] = 0 . (3.64)

Now we notice that in the basis (3.61) we can write:

[Y m, Y n] =
1

2
i(Lmn)ab[Y

a, Y b] . (3.65)

Substituting in equation (3.60) and using the definition of JA in equation (3.63) we obtain6:

[X̄βα̇, Xαα̇] = (σA) βα JAab [Y a, Y b] (3.66)

We see that a general SO(4) rotation acting on the Y ’s would result on a SO(3) rotation

of (σA), which would result in a SU(2) rotation of Φ̄α and Φβ corresponding to the (1
2 , 0)

representation of SO(4). Finally defining

JabΦ ji ≡ tr(Φ̄α
i (σA) βα Φβ j) J

A
ab , (3.67)

6Note that JA satisfy: JAabJ
A
cd = 1

4
(δacδbd − δadδbc)− 1

4
εabcd and aslo JAabJ

B
ba = δAB .
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we can write:

− tr
(

Φ̄α[X̄βα̇, Xαα̇]Φβ

)
= Tr

(
JabΦ [Y b, Y a]

)
, (3.68)

while in (3.55) the term quartic in Φ becomes:

tr

(
−1

2
Φ̄αΦβΦ̄βΦα + Φ̄αΦαΦ̄βΦβ

)
=

1

2
Tr
(
JabΦ JbaΦ

)
. (3.69)

The action (3.55) can then be written as:

SE
Φ =

1

g2

β∫
0

dτ

{
tr
(
Dτ Φ̄ρDτΦρ + Φ̄ρ(Xa −ma)2Φρ

)
+ Tr

(
1

2
JabΦ JbaΦ + JabΦ [Y b, Y a]

)}
.

(3.70)

The discretisation of the action (3.70) is straightforward. Using the link variables (B.2) we

define:

DτΦn,α =
Un,n+1Φn+1,α − Φn,α

a

Dτ Φ̄α
n =

Φ̄α
n+1Un+1,n − Φ̄α

n

a
, (3.71)

where a is the lattice spacing. Noting that JabΦ,n transform the same way as Xn under the

gauge transformation (B.6), while Φn,α transforms as Φn,α → (U0,1 . . . Un−1,n) Φn,α and using

the gauge where the holonomy is concentrated at the (0,Λ) link (see Appendix B), for the

discrete action we obtain:

SΦ = −2N

a
Re tr

{
Λ−2∑
n=0

Φ̄ρ
n Φn+1, ρ + Φ̄ρ

nDΦn+1, ρ

}
+N a

Λ−1∑
n=0

{
tr
(
Φ̄ρ
n(Xa

n −ma)2Φnρ

)
+

+ Tr

(
1

2
JabΦn J

ba
Φn + JabΦn [Y b

n , Y
a
n ]

)}
, (3.72)

where D = diag{eiθ1 , . . . , eiθN } is the holonomy matrix and without loss of generality we have

set g = 1/
√
N .

4 Testing the correspondence

In this section we compare the result of the lattice simulations of the model to the predictions

of gauge gravity duality. Our main focus is the fundamental condensate of the theory. As

definition of the condensate we use the derivative of the free energy of the theory with respect

to the bare mass parameter ma:

〈Oam〉 ≡
δF

δma
=

1

β

〈
δSE
δma

〉
, (4.1)
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using equations (3.55) and (3.31) for the condensate operator Om we obtain:

Oam =
1

β g2

β∫
0

tr
(

2 Φ̄ρ (ma −Xa) Φρ + χ̂† γa χ̂
)

(4.2)

Using equation (3.72) it is straightforward to write down the discrete version of the bosonic

term in (4.2), however this is not the case for the last term, since the fermions are not explicitly

simulated on the lattice. The natural approach is to substitute the fermionic term with the

derivative of the pseudo-fermionic action with respect to the mass parameter ma. We obtain:

Oam =
N

Λ

Λ−1∑
n=0

tr
(
2 Φ̄ρ

n (ma −Xa
n) Φnρ

)
+
∂Sps.f

∂ma
, (4.3)

where the last term can be calculated by substituting the parameter u in equation (3.54)

with the mass parameter ma. Note that we have also set g2 = 1/N , this implies that

all dimensionful fields have been rescaled by an appropriate power of the ’tHooft coupling

λ = N g2. In particular the mass parameter ma has been rescaled by λ1/3. The relation to

the physical bare mass parameter appearing in equation (2.12) is then:

ma =
mq

λ1/3
na , (4.4)

where na is a unit five-vector. Now using equation (2.12) the holographic prediction for the

BD–parameters can be written as7:

ma =

(
120π2

49

)1/5

T̃ 2/5m̃ na ,

〈Oam〉 =

(
24 153 π6

76

)1/5

Nf Nc T̃
6/5 (−2 c̃)na , (4.5)

where we have defined the dimensionless temperature T̃ = T
λ1/3 , which is the parameter

entering in the computer simulation (via T̃−1 = Λ a). For simplicity we will use na =

(1, 0, 0, 0, 0). Equations (4.5) can then be used to scale the plot of 〈Oam〉 versus ma obtained

from computer simulations and compare to the −2 c̃ versus m̃ plot presented in figure 2. The

resulting plots for two temperatures are presented in figure 3. The plots are for matrix size

N = 10 and lattice spacing Λ = 16.

The left plot corresponds to temperature T = 1.0λ1/3. One can observe excellent agree-

ment between the gauge gravity duality and lattice simulations at small masses (m̃ < 1).

However, for greater masses there is a significant deviation from the theoretical curve. The

right plot corresponds to temperature T = 0.8λ1/3. The excellent agreement between

gauge/gravity predictions and lattice simulations extends for the whole range of masses within

the deconfined (black hole) phase (blue error bars). In the deconfined (Minkowski) phase

7Note that the condensate operator Oam is dimensionless in 1 + 0 dimensions and no scaling is needed.
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Figure 3. Plots of the condensate versus bare mass parameter curve for N = 10, Λ = 16 and two

different temperatures . left: For temperature T = 1.0λ1/3 the curve shows excellent agreement at

small masses, but deviates quickly from the theoretical curve at greater masses. right: The curve

at temperature T = 0.8λ1/3 exhibits excellent agreement throughout the whole range of masses

corresponding to the black hole phase (blue error bars). Similarly to the higher temperature curve

there is a significant deviation from the theoretical curve for the Minkowski phase (red error bars).

there are still significant deviations from the theoretical curve. These results are consistent

with our discussion is section 2.2, where we argued that the α′ corrections to the supergrav-

ity background affect the black hole and Minkowski D4-brane embeddings differently. All

black hole embeddings reach the horizon and as a result experience similar curvature effects

for different values of the mass parameter therefore, the α′ corrections largely cancel when

one takes a derivative with respect to the mass to calculate the condensate. In contrast,

Minkowski embeddings close at different radial distances above the horizon depending on the

mass parameter. As a result the effect of the α′ corrections depends strongly on the mass

and contributes to the calculation of the condensate. The overall better agreement of the

lower temperature curve to the theoretical predictions is another signature that the observed

deviations at large masses are due to α′ corrections as opposed to lattice effects, although at

sufficiently high masses (|ma| . 1/a) lattice effect also become significant.

Note that this remarkable agreement (in the black hole phase) is obtained without any

parameter fitting in contrast to the analogous studies of the BFSS matrix model [15], where

the authors performed a fit to estimate the α′ corrections to the internal energy. We believe

that it is the cancelation mechanism described above, which allows this highly non-trivial test

of the gauge/gravity correspondence.

The validity of our studies is justified by the lack of a serious sign problem in our lattice

model. Similarly to the BFSS matrix model [19], one can show that only the real part of the

Pfaffian contributes to the path integral and hence if the phase, θ, of the Pfaffian is in the

range −π/2 < θ < π/2 there is no sign problem. Although there are configurations which

violate this condition, numerical studies show that these are rare and the model does not

suffer of a serous sign problem.
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One may hope to improve the agreement in the Minkowski phase by going to lower

temperatures. However, as usual for this system, at low temperature the model develops

an instability due to flat directions, which requires larger size matrices. In addition, the

condensate experiences significant fluctuations due to critical slowing down and the associated

large aoutocorrelation times. Nevertheless, we plan to extend our numerical studies in this

direction.

5 Conclusion

In this paper we performed a precision test of holographic flavour dynamics. We focused

on the study of a one-dimensional flavoured Yang-Mills theory holographically dual to the

D0/D4–brane intersection, also known as the Berkooz–Douglas matrix model. We considered

a lattice discretisation of the model which avoids fermion doubling8. Furthermore, super-

renormalizability of the model ensures that in the continuum limit, supersymmetry is broken

only by the effect of finite temperature, which enabled us to simulate it on a computer.

Our results for the condensate versus bare mass curve show an excellent agreement with

holography in the regime of small bare masses and at lower temperature this agreement ex-

tends to the whole range of masses in the deconfined phase. We believe that this agreement

can be explained by a cancelation of the α′ corrections to the condensate for black hole em-

beddings (deconfined phase). This allows a direct comparison between computer simulations

and AdS/CFT predictions at relatively high temperatures compared to similar studies of the

pure BFSS matrix model.

For Minkowski embeddings (confined phase) we observe significant deviations from holog-

raphy even for bare masses well bellow the lattice UV cut-off, 1/a. This disagreement is

expected, since for the temperatures that we study α′ corrections to the free energy are

significant and, which is more important, vary significantly with the bare mass parameter

resulting in a significant contribution to the fundamental condensate (unlike the deconfined

phase). An obvious way to improve the agreement in the confined phase is to consider lower

temperature when α′ corrections become less significant. Such studies are computationally

very demanding due to the large size matrices required to stabilise the model at low temper-

ature and the critical slowing down when approaching the gapless zero temperature phase of

the BFSS degrees of freedom. We leave such studies for future work.

Another test of both our numerical approach and holography comes from calculating the

slope of the condensate curve, namely the susceptibility ∂2F/∂m2
q . This can be calculated

numerically by measuring the fluctuations of the condensate and the expectation value of

some appropriate operators. Our preliminary studies for small bare masses showed satisfying

agreement with the slope of the condensate curve predicted by holography. We are currently

working on refining these studies.

Finally, in addition to the agreement to holography at low temperature, we plan to verify

our code by comparing to the high-temperature expansion of the model [29]. Our preliminary

8Note that this was possible because the theory is one dimensional.
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results for the internal energy show excellent agreement. We leave the more detailed and

systematic study of other observables for a future work.

Acknowledgements: We wish to thank Yuhma Asano for useful comments and dis-

cussions. Part of the simulations were performed within the ICHEC “Discovery” project

“dsphy003c”.

A Derivation of the holographic dictionary

In this appendix we derive the second equation in (2.12). To obtain expression for the

condensate as a function of the bare mass we use the definition:

〈Omq〉 ≡
δF

δmq
. (A.1)

The free energy of the theory can be obtained from the regularised Wick rotated on-shell

action of the probe D4–brane. The approach that we take is to use an appropriate subtraction

scheme9. To this end we define new radial coordinate ρ and a new field L(ρ) via:

ρ =

(
u7/2 +

√
u7 − u7

0

2

)2/7

cos θ , (A.2)

L =

(
u7/2 +

√
u7 − u7

0

2

)2/7

sin θ .

in these coordinates the DBI action (2.10) can be written as:

SEDBI =
Nf β

8π2 α′5/2 gs

∫
dρ ρ3 V (ρ, L(ρ))

√
1 + L′(ρ)2 .

V (ρ, L(ρ)) ≡
(

1− u7
0

4(ρ2 + L(ρ)2)7/2

) (
1 +

u7
0

4(ρ2 + L(ρ)2)7/2

)1/7

(A.3)

At large radial distances (ρ� 1) the solution for L(ρ) has the expansion:

L(ρ) = u0 m̃+
u3

0 c̃

ρ2
+ . . . , (A.4)

where the parameters m̃ and c̃ are the same as in equation (2.11). The important property of

these choice of coordinates is that if one introduces a UV cut-off ρmax in the limit ρmax →∞
one gets:

SEDBI =
Nf β

8π2 α′5/2 gs

(
1

4
ρ4

max +O(ρ0
max)

)
(A.5)

And hence the divergent term is independent on the parameters m̃ and c̃. Therefore, we can

choose a simple subtraction scheme to regulate the action. A natural choice is to subtract

9The same result can be obtained by introducing covariant counter term at the asymptotic boundary [27],

[28].
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the trivial embedding L(ρ) ≡ 0, which one can check is a solution to the equation of motion

for L(ρ). This results in the following expression for the fundamental free energy:

F =
Nf

8π2 α′5/2 gs


∞∫
ρ0

dρ ρ3
(
V (ρ, L(ρ))

√
1 + L′(ρ)2 − 1

)
+

1

4

(
ρ4

0 − u4
0

) , (A.6)

where ρ0 =
√
u2

0/2
2/7 − L(ρ0)2 for black hole embeddings and vanishes ρ0 = 0 for Minkowski

embeddings (for L(0) > u2
0/2

2/7). Using the relation mq = u0 m̃/(2πα
′) for the condensate

we obtain:

〈Omq〉 ≡ 2πα′
δF

δL(ρ)
=

Nf

4π α′3/2 gs
ρ3 V (ρ, L(ρ))

L′(ρ)√
1 + L′(ρ)2

∣∣∣∣∞
ρ0

= −
Nf u

3
0

2π α′3/2 gs
c̃ , (A.7)

which is the expression for the condensate in equation (2.12).

B BFSS model. Discretisation

B.1 Bosonic action

The bosonic part of the BFSS action is given by:

Sb =
1

g2

∫ β

0
dt tr

{
1

2
(DtXi)2 − 1

4
tr[Xi, Xj ]2

}
. (B.1)

Next we discretise time to Λ sites tn = an, (n = 0, . . . ,Λ − 1), where the lattice spacing is

a = β/Λ and the point tΛ = Λa = β is identified with the point 0. To discretise the covariant

derivative Dt we define the transporters:

Un,n+1 = P exp

[
i

∫ (n+1)a

na
dtA(t)

]
, (B.2)

where P denotes a path ordered product. Let us consider for a moment the pure derivative

part of Dt. On the lattice we have:

∂tX
i
n →

Xi
n+1 −Xi

n

a
. (B.3)

To make the above expression gauge covariant we have to transport back the field at tn+1 to

tn. For the discrete version of the covariant derivative, we obtain:

Dt →
Un,n+1X

i
n+1Un+1,n −Xi

n

a
, (B.4)

where Un+1,n = U †n,n+1. Using equation (B.4) for the discrete bosonic action we obtain:

Sb = N
Λ−1∑
n=0

tr

{
−1

a
Xi
nUn,n+1X

i
n+1U

†
n,n+1 +

1

a
(Xi

n)2 − a

4
[Xi

n, X
j
n]2
}
, (B.5)
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where without loss of generality we have taken g = 1√
N

.10 The action Sb can be written in a

much simpler form by using the U(n)Λ gauge symmetry of the model. Indeed, at each lattice

site we have a local U(N) symmetry. Using that symmetry we can perform the transformation:

X ′
i
0 = Xi

0 , (B.6)

X ′
i
1 = U0,1X

i
1 U
†
0,1 ,

X ′
i
2 = (U0,1U1,2)Xi

2 (U0,1U1,2)† ,

. . .

X ′
i
Λ−1 = (U0,1U1,2 . . . UΛ−2,Λ−1)Xi

Λ−1 (U0,1U1,2 . . . UΛ−2,Λ−1)†

introducing the notation W = (U0,1U1,2 . . . UΛ−2,Λ−1UΛ−1,0) for the bosonic action (B.5) we

obtain:

Sb = −1

a
Ntr

{
Λ−2∑
n=0

X ′
i
nX
′i
n+1 +X ′

i
Λ−1W X ′

i
0W†

}
+N

Λ−1∑
n=0

tr

{
1

a
(X ′

i
n)2 − a

4
[X ′

i
n, X

′j
n]2
}
.

(B.7)

The unitary matrix W has the decomposition W = V DV †, where D = diag{eiθ1 , . . . , eiθN } is

a diagonal unitary matrix and V is a unitary. But the action (B.7) has the residual symmetry

X ′in → V X ′inV
†, which we can use to diagonalise W:

Sb = −1

a
Ntr

{
Λ−2∑
n=0

X ′
i
nX
′i
n+1 +X ′

i
Λ−1DX ′

i
0D
†

}
+N

Λ−1∑
n=0

tr

{
1

a
(X ′

i
n)2 − a

4
[X ′

i
n, X

′j
n]2
}
.

(B.8)

We use this form of the action for coding on a computer.

We could also use the additional symmetry X ′in → hnX
′i
nh
†
n, where hn is a diagonal

unitary matrix, to “distribute” the diagonal matrix D among all of the hop terms. Indeed,

defining the matrix DΛ = diag{eiθ1/Λ, . . . , eiθN/Λ}, which satisfies (DΛ)Λ = D, one can verify

that under the transformation:

X ′
i
n = (V hn)X̃i

n(V hn)† ,where : hn = (DΛ)n , (B.9)

the action (B.7) transforms into:

Sb[X̃,DΛ] = N

Λ−1∑
n=0

tr

{
−1

a
X̃i
nDΛX̃

i
n+1D

†
Λ +

1

a
(X̃i

n)2 − a

4
[X̃i

n, X̃
j
n]2
}
. (B.10)

Now let us discuss the measure of the transporter fields Un,n+1. The measure can be written

as:
Λ−1∏
n=0

DUn,n+1 =
Λ−1∏
n=1

DUn,n+1DU0,1 =
Λ−1∏
n=1

DUn,n+1DW , (B.11)

10This can always be arranged by an appropriate resealing of the matrices and the time coordinate.
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where we have used the that U0,1 = W (U1,2 . . . UΛ−2,Λ−1)† and the translational invariance

of the measure. But the action (B.10) depends only on the matrix W (infact only on the

eigenvalues ofW). Therefore the integration over the measure of the transporter fields results

to: ∫ Λ−1∏
n=0

DUn,n+1e
−Sb[X̃,DΛ] = (V olU(N))Λ−1

∫
DWe−Sb[X̃,DΛ] ∝ (B.12)

∝
∫ N∏

k=1

dθk
∏
l>m

|eiθl − eiθm |2 e−Sb[X̃,DΛ(θ)] ∝
∫ N∏

k=1

dθk e
−Sb[X̃,DΛ(θ)]−SFP[θ] ,

where SFP[θ] is given by:

SFP[θ] = −
∑
l 6=m

ln

∣∣∣∣sin θl − θm2

∣∣∣∣ . (B.13)

B.2 Fermionic action

The fermonic part of the action is:

Sf =
1

2g2

∫
dτ tr

{
ψαC9αβ Dτψβ − ψα(C9γ

i)αβ [Xi, ψβ]
}
. (B.14)

We begin by splitting the fermions into two eight component fermions: ψ = (ψ1, ψ2) and

defining the forward and backward derivatives D±:

(D−W )n = (Wn − Un,n−1Wn−1Un−1,n)/a ,

(D+W )n = (Un,n+1Wn+1Un+1,n −Wn)/a . (B.15)

One can show that the discretised kinetic term then becomes:

Skin
f =

1

2g2

∫
dτ tr

(
ψαC9αβ Dτψβ

)
=

a

2g2

Λ−1∑
n=0

tr
{
ψT1,n(D−ψ2)n + ψT2,n(D+ψ1)n

}
= (B.16)

=
1

g2
tr

{
−

Λ−1∑
n=0

ψT2,nψ1,n +

Λ−2∑
n=0

ψT2,nUn,n+1ψ1,n+1Un+1,n ± ψT2,Λ−1UΛ−1,0ψ1,0U0,Λ−1

}
,

where the plus/minus sign in the last term corresponds to periodic/anti-periodic boundary

conditions for the fermions.11 Using the gauge from the previous subsection when the hol-

lonomy is concentrated on a singe link we can write Skin
f as:

Skin
f =

1

g2
tr

{
−

Λ−1∑
n=0

ψT2,nψ1,n +
Λ−2∑
n=0

ψT2,nψ1,n+1 ± ψT2,Λ−1Dψ1,0D
†

}
. (B.17)

11Namely the conditions ψ−1 = ±ψΛ−1 and ψΛ = ±ψ0.
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Since all fields transform in the adjoint of SU(N) instead of dealing with matrices we can

use the corresponding real components: Xa = tr(T aX) and ψa = tr(T aψ), where T a are the

standard basis of SU(N) normalised as trT aT b = δab. Skin
f can then be written as:

Skin
f =

1

g2

N2−1∑
a,b=0

Λ−1∑
m,n=0

8∑
α=1

ψα+8
m,aK

ab
mnψ

α
n ,b , (B.18)

Kab
mn = (δm+1,n − δm,n)δab ± δm,Λ−1δn,0 d

ab (B.19)

dab = tr
(
T aDT bD†

)
. (B.20)

where the plus/minus sign corresponds to periodic/ant-periodic boundary conditions. The

kinetic term can also be written as:

Skin
f =

N2−1∑
a,b=0

Λ−1∑
m,n=0

16∑
α,β=1

ψαm ,aMkin
mn,αβ,ab ψ

β
n ,b (B.21)

Mkin
mn,αβ,ab =

1

2g2

(
08 −Kba

nm

Kab
mn 08

)
αβ

. (B.22)

Discretising the potential part of the action is straightforward. One obtains:

Spot
f =

N2−1∑
a,b=0

Λ−1∑
m,n=0

16∑
α,β=1

ψαm ,aM
pot
mn,αβ,ab ψ

β
n ,b (B.23)

Mpot
mn,αβ,ab =

1

2g2
a ifabc (C9γ

i)αβ X
c,i
n . (B.24)

Finally, defining:

Mmn,αβ,ab =
1

2g2

(
08 −Kba

nm

Kab
mn 08

)
αβ

+
1

2g2
a ifabc (C9γ

i)αβ X
c,i
n . (B.25)

We can write:

Sf = ψTMψ . (B.26)
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