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The one-dimensional p-wave topological superconductor model with open-boundary conditions is examined
in its topological phase. Using the eigenbasis of the non-interacting system I show that, provided the interactions
are local and do not result in a closing of the gap, then even and odd parity sectors are unitarily equivalent.
Following on from this, it is possible to define two many-body operators that connect each state in one sector
with a degenerate counterpart in the sector with opposite parity. This result applies to all states in the system
and therefore establishes, for a long enough wire, that all even-odd eigenpairs remain essentially degenerate
in the presence of local interactions. Building on this observation I then set out a full definition of the related
many-body Majorana operators and point out that their structure cannot be fully revealed using cross-correlation
data obtained from the ground state manifold alone. Although all results are formulated in the context of the
1-dimensional p-wave model, I argue why they should also apply to more realistic realisations (e.g. the multi-
channel p-wave wire and proximity coupled models) of topological superconductivity.

PACS numbers: 74.78.Na 74.20.Rp 03.67.Lx 73.63.Nm

Since the realisation that topological superconductors can
support Majorana bound states,1,2 significant advances have
been made towards generating the necessary effective p-
wave symmetry. There are now a large number of can-
didate systems in which these Majorana states could po-
tentially be observed,3–5 the most well-known being those
based on proximity-coupled semiconductor nano-wires.6,7

In these nano-wire systems, observations of anomalous
zero-bias conductances are a strong experimental indica-
tion of the Majorana modes,8–10 although they are not yet
fully conclusive.11–16 Recently, approaches using magnetic
molecules, whose bound states can be resolved both energet-
ically and spatially, have also attracted considerable interest,
see e.g. Ref. 17 and references within. Much of the excite-
ment surrounding topological superconductors comes from
the knowledge that with each each pair of Majorana zero-
modes one can associate an effective ground-state degeneracy,
within which it should be possible to manipulate quantum in-
formation robustly using non-local braiding operations.18–20

A topological ground-state degeneracy is a key signature of
what is known as strong topological-order.21 Although now
it forms one element of a growing literature on interacting
topological signatures, see for example Refs. 22–27, its en-
during usefulness stems from its direct applicability to both
free-fermion and interacting many-body systems. An interest-
ing feature of the degeneracy associated with localised zero-
energy Majorana excitations is that they are formulated using
solvable quadratic Hamiltonians and therefore their existence
implies that every eigenstate of the system, and not just the
groundstate, has an eigen-partner of opposite parity at the ap-
proximately the same energy. Thus the low energy excitation
spectrum is governed in these case by2

Heff = itγLγR (1)

where t = a exp(−Lx/ξ) where γL and γR are the Majorana
quasi-particles localised at both ends of the wire. This effec-
tive picture is valid when applied to the ground state manifold
or in a weakly interacting regime such that a treatment on the

level of mean-field theory is accurate. Beyond the mean-field
description however one expects that this quasi-particle de-
scription breaks down and indeed the low-energy single parti-
cle excitation spectrum is actually a special case of the more
complicated sum

Heff =
∑
n

tn(|ne〉〈ne | − |no〉〈no |) (2)

where the tn do not necessarily have to be the same.
In this paper however I show that, in the topological phase

of an infinite open wire, provided the interactions are local
and do not result in a closing of the gap, even and odd parity
sectors of the p-wave Hamiltonian are spectrally equivalent.
Remarkably this argument holds also in the limit of strong in-
teractions and thus implies that in the topological phase all
tn → 0 as the wire length is increased and thus the effective
description (1) again becomes valid simply because all cou-
pling constants have become exponentially small. As a direct
consequence of this, it then becomes possible to define infi-
nite lifetime zero-energy excitations that persist even in the
presence of strong interactions.

The nature of the Majorana states has been addressed
previously in the context of single interacting wires using
bosonization28–33 and additional numerical approaches related
to the Density Matrix Renormalization Group.29,34 Identical
microscopic models also arise in the context of nano-wire
bridges on superconducting islands.35 Recently the robust na-
ture of the Majorana degneracy to hopping disorder was con-
trasted to the general instability of zero-modes in wider para-
fermionic family of 1d models.36 Additional contributions to
this general area also include examining the occurrence of
zero-modes in interacting Hamiltonians with odd numbers
of Majorana particles.37–39 This work presented here compli-
ments the aforementioned approaches by establishing that the
Majorana degeneracy applies to all eigenstates of the inter-
acting model and thus allows the straightforward definition of
many-body Majorana operators that are well defined quasi-
particle excitation of the interacting system. Moreover, the
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general arguments presented here do not rely on the assump-
tion of an odd number of participating Majorana modes, a
condition which necessarily implies the existence elsewhere
of a non-participating/unpaired Majorana zero-mode.

This paper examines the combined Hamiltonian

H = H0 +HI . (3)

whereH0 is the 1D p-wave superconducting model2 andHI is
an electron-electron interacting term. The bare tight-binding
Hamiltonian for a single wire is given by

H0 = −µ
Nx∑
x=1

c†xcx (4)

−
Nx−1∑
x=1

(
tc†xcx+1 + |∆|eiφc†xc

†
x+1 + h.c.

)
,

where µ is a chemical potential, t the hopping energy, |∆| the
magnitude of the pairing potential and φ the superconducting
phase.40 The general form of the interaction term can be writ-
ten as

HI =
1

4

∑
x1x2x3x4

ν̄x1x2x3x4
c†x1

cx3
c†x2

cx4
(5)

where ν̄x1x2x3x4
= νx1x2x3x4

− νx1x2x4x3
. In the topolog-

ical p-wave wire literature one often finds the specific form
νx1x2x3x4

= I(x1, x2)δx1,x3
δx2,x4

with x2 = x1+1.The sub-
sequent analysis however can be applied to the more general
form above, provided we insist that the term is local.

The Hamiltonian H0 may be written in terms of free
fermions H0 =

∑
n εn(β†nβn − 1/2) by a Bogoliubov trans-

formation

c†x =
∑

U∗xnβ
†
n + Vxnβn (6)

cx =
∑

Uxnβn + V ∗xnβ
†
n

where, without loss of generality, we can choose the phase
φ = 0 such that U and V are real2.

When |∆| > 0 and |µ| < 2t the H0 system is known to be
in a topological phase with a Majorana zero modes exponen-
tially localized at each end of the wire2. In the limit Nx →∞
the (L)eft and (R)ight Majorana modes have precisely the en-
ergy E = 0 and the corresponding operators have the form

γL = i
∑
x

(c†x − cx)uL(x) = i(β†1 − β1) (7)

γR =
∑
x

(c†x + cx)uR(x) = (β†1 + β1)

Inverting (7) we can write the complex fermion zero-mode
responsible for the degeneracy as

β†1 =
1

2
(γR − iγL) β1 =

1

2
(γR + iγL) (8)

For hard-wall boundary conditions one finds that

uL(x) = CAx sin(θx) (9)
uR(x) = CAx̄ sin(θx̄) (10)

where C is a normalisation factor, x̄ = Nx − x, and

A =

√
t− |∆|
t+ |∆|

, θ = cos−1(
−µ+ 2t

2
√
t2 − |∆|2

).

The Majorana wave-functions in this case are therefore os-
cillating functions inside a exponentially decaying envelope.
The correlation length is given by ξ = t/∆.

Of course these exact expressions for Majorana wavefunc-
tions are only strictly true in the infinite smooth wire. Al-
though the precise local character of the wave functions may
change if we introduce for example disorder, we will still have
well defined zero-modes provided that the functions uL and
uR decay exponentially. In what follows we will find it useful
to distinguish between coordinates at the left of the system xL
and coordinates on the right of the system xR. What actually
constitutes the left and right (or middle) is determined by the
coherence length ξ and the length Nx but by allowing our-
selves the freedom to increase the wire length we can always
assume that uR(xL) → 0 and uL(xR) → 0. In terms of the
(now real) matrices U and V , because

Ux,1 = uR(x) + uL(x) (11)
Vx,1 = uR(x)− uL(x),

we have

UxL,1 = uL(xL), UxR,1 = uR(xR), (12)
VxL,1 = −uL(xL), VxR,1 = uR(xR).

Before addressing the interactions directly we need to ad-
dress briefly our book-keeping of bulk excitations of the sys-
tem. Although expressions for these excitations are also possi-
ble to write down, they can be complicated and knowing their
precise form is not necessary for what we want to show. What
is important is that that all eigenstates of the H0 system can
be written in terms of these β†n operators acting on the ground
state. For an 8 site system in Fock space we would have for
example | 10000000〉 = β†1| 00000000〉 where | 00000000〉 is
the ground state defined as

| 00000000〉 = N
∏

βn| ref〉 (13)

such that βn| 00000000〉 = 0 for all n. The factor N is a
normalisation constant and | ref〉 is a reference state, often
chosen to be the vacuum of the c-fermions defined above i.e.
cx| ref〉 = 0 for all sites x.

In the case that β†1 is a zero mode (ε1 → 0), any two states

| 0abcd.....〉 and | 1abcd....〉 (14)

will have approximately the same energy. In this case one
should note of course that within a large system the bulk
state energies become arbitrarily close to one another and
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thus when speaking of the so called Majorana degeneracy
for higher energy states of the system we simply mean that
eigenstates with a different occupancy of the zero mode. For
the two such lowest energy states in the system the first in-
dex also indicates the parity, although this is not always the
case. For example the state | 11000000〉 has even fermion par-
ity but has the zero energy mode occupied. It will therefore
be important to distinguish between eigenstates in two differ-
ent ways. In the first we simply denote |n〉e for total even
occupied states and |n〉o for its counterpart in the odd sec-
tor with the opposite occupancy on the zero energy mode. In
what follows however it will also be helpful to indicate the
occupation of the zero mode explicitly and define |n〉0 as the
states with the mode empty and |n〉1 as states with the mode
occupied. A useful sub-division of this latter labelling is one
which defines the total number of fermionic occupations N ,
not including the zero mode β†1β1 and a sub-label j denoting
the
(
Nx−1
N

)
different possibilities with this set. In this case if

we set n = j +
∑N−1
i=0

(
Nx−1
i

)
we relate these two labelling

schemes:

|n〉e = | j,N〉0 and |n〉o = | j,N〉1 when N is even,
|n〉e = | j,N〉1 and |n〉o = | j,N〉0 when N is odd.

Now we are in a position to show that the weak interaction
term (i.e. as long as it does not close the gap and trigger a
quantum phase transition to a non-topological phase) does not
destroy the equivalence between even and odd sectors. Let us
first expand HI in the eigenbasis of H0. Substituting (6) into
(5) we get

HI =
1

4

∑
x1x2x3x4

νx1x2x3x4
× (15)∑

i

(U∗x1iβ
†
i + Vx1iβi )

∑
j

(Ux3jβj + V ∗x3jβ
†
j )∑

k

(U∗x2kβ
†
k + Vx2kβk)

∑
l

(Ux4lβl + V ∗x4lβ
†
l )

Although it is a technical exercise in indexing and sign count-
ing, it is a computationally simple task to calculate any ma-
trix element 〈n |HI |m〉 of this interacting term. An impor-
tant observation regarding terms of HI , and indeed any par-
ity preserving operator in the H0 eigenbasis, is that for each
term that applies to one parity sector there is counterpart in the
other sector which we can obtain by switching occurrences of
β1 with coefficient Ux,1 or Vx,1 with the β†1 occurring in the
same product in the expansion but with swapped and negated
coefficients −Vx,1 or −Ux,1.

The equivalence between even and odd sectors is proven by
showing that the effective Hamiltonians describing the ener-
gies of bands | j,N〉0 and | j,N〉1 are the same to an order of
perturbation theory that scales with the length of the system.
To make this argument we first show that, in the topological
phase, matrix elements between states within the same band ,
of any parity preserving operator that is local in position space

( Olocal) , are the same in both even and odd sectors, i.e.

0〈j,N |Olocal| k,N〉0 = 1〈j,N |Olocal| k,N〉1 (16)

From here we can then argue that a degenerate perturbative
expansion of energies about the special point with flat disper-
sion is convergent for a finite range of perturbing parameters
and therefore that, for a long enough wire, both even and odd
sector Hamiltonians are equivalent.

The reason (16) is true is that while the even and odd sub-
Hamiltonians (H(e) and H(o)) are not generally equal, they
only differ in those matrix elements which are connected by
terms containing a single unpaired β†1 or β1. These terms (de-
noted D) carry coefficients ( either Ux,1 or Vx,1 depending on
where in the expansion they occured) which factor into left ±
right superpositions

p〈j,N |D| k,M〉p = Lnm ± (−1)pRnm (17)

and are therefore generally not equivalent under the parity
swap. However, these terms can only connect states with a
different zero-mode occupation and are therefore not relevant
for (16) and subsequent use in the degenerate perturbative ex-
pansion about the special point.

For all terms that do connect states with the same parity
and band index we see that either (I) β1 and β†1 do not oc-
cur, or that (II) they both occur. For the case (I) where nei-
ther occur we see that for every contributing non-zero term
in one sector there is an identical term with exactly the same
coefficient in the other sector. For case (II) where both β1

and β†1 occur in order to calculate the corresponding term in
the opposite sector we must parity swap pairs of coefficients
(e.g. Uxa,1Vxb,1 ↔ Vxa,1Uxb,1) and therefore by (12) they are
equivalent provided xa and xb occur near each other.

Let us now turn to our perturbation analysis. This local re-
striction on xa and xb requires not only that HPerturb is local
but also that Hs

Perturb is local. For a finite system this limits the
order at which the perturbation expansions of even and odd
sectors remain equivalent. This is not a problem however as
we can make our idealised wire as long as we wish. A more
problematic issue in this regard is showing the convergence of
the perturbative series. For the groundstates | 0〉e and | 0〉o
there are no problems and one finds the expected situation
where the two states remain degenerate to an order of per-
turbation theory that is proportional to the system length Nx.
However, technical problems do arise when performing per-
turbative expansions of higher energy states which form part
of the bulk. In this case, it becomes possible for divergences to
occur when intermediate states in the expansion have energies
that are close to the energy of the state we are considering.

As alluded to above, to get around this problem we note
that the special non-interacting parameters ∆ = t and µ = 0
(see Ref. 2) lie within the parameter space of the topologi-
cal phase . In this case the Majorana operators become com-
pletely localised around end points with uL(x) = δx,1 and
uR(x) = δx,Nx

. Furthermore we see that in this case the dis-
persion relation is flat and all states | j,N〉p with the same
values of N and p are degenerate. This simplifies things con-
siderably because we can then use degenerate perturbative
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expansion41–43 in HPerturb = HI +H∆ +Hµ where

H∆ = (∆− t)
∑
x

c†xc
†
x+1 + h.c. (18)

Hµ = −µ
∑
x

c†xcx (19)

for each degenerate band. Since the general observation re-
garding matrix elements in the topological phase is also true
at the special point we see that to order s = Nx in any degen-
erate expansion, the matrix elements 0〈j,N |Hs

Perturb| k,N〉0
and 1〈j,N |Hs

Perturb| k,N〉1 remain the same. As we are free
to make the wire as long we like we can therefore say that,
provided the perturbation expansion converges, then H(e) and
H(o) are unitarily equivalent.

This is the main result of this work. An interesting special
case of the above result is the half-interacting wire, i.e. a wire
where the interactions only occur on the left or right hand side.
From (17) we see that we can factor the even and odd parity
sub-Hamiltonians as

H(e) = E + S + L+R (20)
H(o) = E + S + L−R.

whereE is the diagonal matrix containing all the original non-
interacting energiesEn and S represents interacting terms that
are the same in both even and odd sectors (i.e. those that do
not contain any β1 or β†1 terms). In this basis we see that if
interactions appear only in the left of the system, and not in
the right of the wire, then H(e) = H(o). In the appendix we
analyse this particular scenario in more detail and outline its
connection with previous works.38,39

Implications for the Majorana mode structure: For the non-
interacting system, because we can move anti-symmetric con-
siderations onto other quasi-particle operators β†n and βn, we
can define

γR =
∑
|n〉1 0〈n |+ |n〉0 1〈n | (21)

γL = i
∑
|n〉1 0〈n | − |n〉0 1〈n |

The unitary equivalence of the even and odd sectors means
that we can proceed in a similar way when we allow HI to be
non-zero. In principle we would like to write

γ̄R =
∑
| n̄〉1 0〈n̄ |+ | n̄〉0 1〈n̄ | (22)

γ̄L = i
∑
| n̄〉1 0〈n̄ | − | n̄〉0 1〈n̄ |

where | n̄〉0 = | {0, n̄}〉 and | n̄〉1 = | {1, n̄}〉 and the inte-
gers n̄, although they can no longer be related to the binary
numbers indicating the occupancy of the other non-zero exci-
tations in the non-interacting system, still count the remaining
degrees of freedom in the model. However, in a practical cal-
culation we would have obtained the eigenvectors | n̄〉e and
| n̄〉e as opposed to | n̄〉0 and | n̄〉1 . As I mentioned above,
it is only in the case of extremum energy states that the oc-
cupancy of the zero-mode is reliably inferred from the total
parity. In addition to this we must also realise that in any nu-
merical calculation the wave-functions will be returned with

some arbitrary phase. To solve this problem we can fix the
relative phases of the even-odd wavefunctions using our bare-
non interacting Majorana modes. For our situation with real
coefficients only we calculate s(R)

n = sign( o〈n̄ |β†1 +β1| n̄〉e)
and set | n̄〉o → s

(R)
n | n̄〉o . Then, with s(L)

n = sign( o〈n̄ |β†1−
β1| n̄〉e), we can then write

γ̄R =
∑

I | n̄〉o e〈n̄ |+ I | n̄〉e o〈n̄ | (23)

γ̄L = i
∑

s(L)
n | n̄〉o e〈n̄ | − s(L)

n | n̄〉e o〈n̄ |.

We see that these operators behave as Majorana’s should :
{γ̄R, γ̄L} = 0 and γ̄2 = I .

The fact that the many-body Majorana operators are well
defined quasi-particle excitations has some interesting con-
sequences when probing their structure using data obtained
from the ground states of DMRG/MPS based variational
techniques.29 In this approach one first calculates both of
the systems groundstates and then probes the cross correla-
tors 1〈0̄ |O| 0̄〉0. However it is clear from (23) the many-
body Majorana operators inherit their structure from all eigen-
states of the system and that position space structure of say
γ̄R could be very different from the single contributing term
| 0̄〉o e〈0̄ | + | 0̄〉e o〈0̄ |. Therefore simply probing the ground
state cross-correlators would not provide the full picture of
the Majorana quasi-particle as we have come to understand it.
This is in contrast to the linear Majorana operators obtained
in the non-interacting limit, which can be defined using cross-
correlators of any single even-odd pair of eigenstates. There,
when one examines the non-interacting states 1〈0 |Ox| 0〉0
with e.g. Ox = c†x + cx one picks up the function uR(x)
exactly. In the interacting case the correlator 1〈0̄ |Ox| 0̄〉0,
while containing contributions from the linear terms, will also
contain non-zero contributions from higher-order multinomi-
als in the many-body Majorana expansion.44

In this paper I have argued that in the topological phase,
even and odd parity-sectors remain equivalent despite the po-
tential presence of local interaction terms. From this obser-
vation it follows that there are particle-hole symmetric many-
body operators which connect states of even and odd parity
at the same energy. The arguments given here, apply to all
states of the system and therefore imply that the many-body
Majorana modes are true infinite-lifetime quasi-particles that
are valid for the full Hilbert space. They therefore behave in
much the same way as the linear Majorana operators of the
non-interacting system.

Although it is formulated specifically for the spinless p-
wave model, similar arguments should also apply to quasi-
1-dimensional variants of the p-wave model and to models
that obtain the p-wave symmetry through effective means (e.g.
using combinations of Zeeman-splitting and spin-orbit and
proximity coupling) . The reason for this is that, regardless
of the precise underlying mechanism, the mean-free descrip-
tions of the associated topological phases contain Majorana
bound states with the same particle-hole structure as (11), but
where the x-index now represents additional position and in-
ternal indices. Therefore, provided the interacting term only
connects local position indices, the argument describing the
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matrix elements should follow through in the same way.
One caveat is that for these more general models we can-

not simply perturb away from a special point with universally
flat dispersion. Therefore in order to show that these expan-
sions converge, a more sophisticated resolvent treatment of
the nearly degenerate bands would be needed. However, it is
important to emphasise that, in these cases, the issue is not
whether the perturbative expansions in the even and odd sec-

tors are different, but rather showing that both expansions ac-
tually converge.
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APPENDICES

In these Appendices I present numerical results that back up
the main claims of the manuscript, details on how to calculate
arbitrary matrix elements in the noninteracting basis, and a
further discussion of the situation with interactions in only one
half of the wire.

Appendix A: Numerical results

Figure 1 shows the difference in energy between all par-
ity eigenpairs at different lengths. The key feature to notice
is that the energy difference between all eigenstates decays
exponentially with the system length. This corroborates the
main claim of this paper, albeit with very small system sizes.
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FIG. 1. The difference in energy between eigenpairs of different
parity decreases exponentially with system size. The black line runs
through the mean energy difference. The parameters used for this
plot are t = 1, ∆ = 0.98, µ = −0.02 and Vint = 0.3. The parame-
ters are chosen so that the Majorana bound states are closely confined
to the system edges.

Appendix B: Matrix elements in the non-interacting eigenbasis

In the main text the eigenbasis of the non-interacting sys-
tem is used to construct matrix elements of the full interacting
Hamiltonian. In this appendix, we review these calculations,
following the notation of Ref. 45. Starting with the general
form of quadratic Hamiltonian

H0 =
1

2

[
c†↔ c↔

] [ f g
g∗ −fT

] [
cl
c†l

]
(B1)

where [
c†↔ c↔

]
=
[
c†1, c

†
2, ...c

†
N , c1, c2, ...cN

]
(B2)

The system may be cast in terms of free fermions using a Bo-
goliubov transformation[

β†1, ..., β
†
N , β1, ..., βN

]
(B3)

=
[
c†↔ c↔

] [ U V ∗

V U∗

]
= [ψ†↔][W ]. (B4)

It is useful to introduce

ρnxx′ = 〈n |c†xcx′ |n〉
κnxx′ = 〈n |cxcx′ |n〉 (B5)

In terms of U and V matrices we may write :

ρ = V ∗V T κ = V ∗UT . (B6)

The general form of the interaction term can be written as

HI =
1

4

∑
x1x2x3x4

ν̄x1x2x3x4c
†
x1
c†x2

cx4
cx3

(B7)

where we use the standard convention ν̄x1x2x3x4 =
νx1x2x3x4 − νx1x2x4x3 . Using the eigenbasis of the original
Hamilton we expand out the terms in the interaction term as

HI =
1

4

∑
x1x2x3x4

ν̄x1x2x3x4

∑
i

(U∗x1iβ
†
i + Vx1iβi ) (B8)∑

j

(U∗x2jβ
†
j + Vx2jβj )

∑
k

(Ux3kβk + V ∗x3kβ
†
k)∑

l

(Ux4lβl + V ∗x4lβ
†
l ).

In the case of the p-wave wire in the main text we set
νx1x2x3x4

= Iint(x1, x2)δx1,x3
δx2,x4

with x2 6= x1.

Expanding out the the full Hamiltonian H = H0 +Hint we
have

H = H0 +
∑
k1k2

H11
k1k2β

†
k1
βk2 (B9)

+
1

2

∑
k1,k2

(H20
k1k2β

†
k1
β†k2 + h.c.)

+
∑

k1k2k3k4

(H40
k1k2k3k4β

†
k1
β†k2β

†
k3
β†k4 + h.c.))

+
∑

k1k2k3k4

(H31
k1k2k3k4β

†
k1
β†k2β

†
k3
βk4 + h.c.))

+
1

4

∑
k1k2k3k4

(H22
k1k2k3k4β

†
k1
β†k2βk4βk3 + h.c.))

where if we set

h = f + Γ

Γlm =
∑
pq

ν̄lqmpρpq

∆lm =
1

2
ν̄lqmpκpq

F 0 = Tr(fρ)− 1

2
Tr(gκ∗ + g∗κ)

we can write

H0 = F 0 +
1

2
Tr(Γ∗ρ−∆∗κ),

H11 = U†hU − V †hTV + U†∆V − V †∆∗U ,

H20 = U†hV ∗ − V †hTU∗ + U†∆U∗ − V †∆∗V ∗,
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and

H40
k1k2k3k4 =

1

4

∑
x1x2x3x4

ν̄x1x2x3x4
U∗x1k1U

∗
x2k2V

∗
x4k3V

∗
x3k4

H31
k1k2k3k4 =

1

2

∑
x1x2x3x4

ν̄x1x2x3x4
(U∗x1k1V

∗
x4k2V

∗
x3k3Vx2k4

+ V ∗x3k1U
∗
x2k2U

∗
x1k3Ux4k4)

H22
k1k2k3k4 =

∑
x1x2x3x4

ν̄x1x2x3x4
×

[U∗x1k1V
∗
x4k2Vx2k3Ux3k4) (B10)

− U∗x1k2V
∗
x4k1Vx2k3Ux3k4)]

+ [U∗x1k1U
∗
x2k2Ux3k3Ux4k4 − (k3 ↔ k4)

+ V ∗x3k1V
∗
x4k2Vx1k3Vx2k4 ]

A critical feature of the main text is that we distinguish be-
tween terms in Hs = (H0 +HI)

s that

1. don’t include either β†1 or β1 (we call these terms S)

2. include either β†1 or β1 (we denote these terms D )

3. include β†1’s and β1’s in equal number (we call theseB)

Crucial to this line of reasoning will be the observation that, in
Eq. (B9), for every occurrence of β†1 with coefficient Ux1,1 (or
Vx1,1) there is a parity swapped occurrence of β1 with coeffi-
cient Vx1,1 (or Ux1,1 ) coming from the same term in the ex-
pansion. Furthermore, this parity swapped contribution must
act in the opposite parity sector. For those terms S that do not
contain either β†1 or β1 it is a trivial task to show that matrix
elements are the same in each sector. For those terms D that
contain either β†1 or β1, using Eq. (10) in the main text, we
see that matrix elements can be sub-divided into contributions
from the left and right of the wire

e〈n |De|m〉e = Lnm +Rnm (B11)

o〈n |Do|m〉o = Lnm −Rnm

where De is the same as Do but with the swap β1 ↔ β†1
and corresponding coefficient swap Ux,1 ↔ Vx,1 at the same
value of x. However, while these terms are different in even
and odd sectors, it is clear that they cannot connect states that
share both the same band (N ) and parity (p) index, i.e. if
|n〉 = | j,N〉, |m〉 = | k,N〉 and p denotes the occupation of
the zero mode (0 or 1) then

p〈j,N |D| k,M〉p = (Lnm ± (−1)pRnm)[1− δNM ].

For the termsB where both β†1 and β1 occur we see that we
can only connect matrix elements of the same band.

p〈j,N |B| k,M〉p = B(p)
nmδNM (B12)

The essential question is then in what scenario does B(0)
nm =

B
(1)
nm. Our parity swapping arguments imply that if a matrix

element B(0)
nm 6= 0 then there will also exist another non-zero

matrix element in the other sector B(1)
nm whose value is related

B
(0)
nm by the swap Ux,1 ↔ −Vx,1 or Vx,1 ↔ −Ux,1 in each of

the contributing coefficients.
Now this is where the localised nature of the Majorana

modes and the Hamiltonian comes into play. If HI is a lo-
cal such that |x1 − x2| < l for some finite length l , then Hs

l
will only will have non-zero elements between between sites
within a distance sl). Considering then elements 〈n |Hs|m〉
we see clearly that as long as s is not comparable to the system
size Nx, then the x-indices of the coefficients occurring in the
expansion of Hs

I cannot occur at opposite sides of the system.
(i.e. x1 & x2 ∈ xL or x1 & x2 ∈ xR). In this case, because
of relations Eq. (10) of the main text, one always has equal-
ity between coefficient pairs (e.g. UxL,1UxL,1 , UxR1VxR,1

.... ) and their parity swapped counterparts (e.g. VxL,1VxL,1

, VxR,1UxR,1 ....). This implies that for matrix elements be-
tween states within the same band, every contribution in the
even sector has an equal counterpart in the odd sector.

Appendix C: The half-interacting wire

In the eigen-basis of the non-interacting system the non-
interacting Hamiltonian is diagonal

H =

[
H(e) 0

0 H(o)

]
=

[
E(e) 0

0 E(o)

]
(C1)

where, if there are zero modes the diagonal matrices E(e) =
E(o). The zero-mode operators in this basis are defined as

β†1 =
∑
| {1, n2, n3, ...}〉〈{0, n2, n3, ...} | (C2)

β1 =
∑
| {0, n2, n3, ...}〉〈{1, n2, n3, ...} |

which as matrices take the form

β†1 =

[
0 Ne
No 0

]
, β1 =

[
0 No
Ne 0

]
(C3)

where the sub matrices Ne/o are diagonal with elements 1 or
0 depending on the occupation of the n1 zero mode in that
sector. For example in this notationNe has a 1 on the diagonal
if the n1 = 1 in | {n1, n2, ...}〉e. In the diagonal basis we have
Ne = I −No and we could for example write

β†1 =

[
0 Ne

I −Ne 0

]
, β1 =

[
0 I −Ne
Ne 0

]
(C4)

In this case then the Majorana operators are

γR := (β†1 + β1) = σx ⊗ I (C5)

γL := i(β†1 − β1) = σy ⊗ F

where the diagonal operator F = I−2Ne = −I+2No. Both
operators γR and γL take an eigenstate in one sector, (which
in this basis are column vectors with one element 1 and all
others 0 : i.e. |n〉 = [0000...1...0000]T ), to the corresponding
parity swapped state in the other sector. With our convention
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γR does not introduce a phase shift or change of sign. On the
other hand γL, upon swapping the state to the other sector,
introduces a ±i phase shift.

In the main text we point out that for the interacting sys-
tem, when the bare system has well-seperated Majorana zero-
modes, the sub-matrices of HI that do not connect basis ele-
ments differing in the occupation of n1, (i.e. represent terms
in the expansion of HI that contain β†1 or β1) are the same for
even and odd sectors and we can denote them as S. For terms
that do contain β†1 or β1 we can decompose them into the left
and right contributions:

e〈n |D(e)|m〉e = Lnm +Rnm (C6)

o〈n |D(o)|m〉o = Lnm −Rnm

and see that generally e〈n |HI |m〉e 6= o〈n |HI |m〉o. The
full structure of the even and odd parity sub-Hamiltonians can
thus be written as

H(e) = E + S +D(e) (C7)
H(o) = E + S +D(o).

whereE is the diagonal matrix containing all the original non-
interacting energies En and we again note that the interac-
tion parameter I is contained within S and D matrices. From
here it is easy to see that if interactions appear only in the
bulk and left of the system, not in the right of the wire, then
H(e) = H(o). With some trivial changes of sign conventions
we can make an identical argument for the system when only
the right-hand side is interacting.

It is interesting to see how the above position dependent in-
teraction terms will affect the structure of the Majorana modes
in the non-interacting eigenbasis. Intuitively we know what
should happen: since the interactions have no effect on the
RHS of the system we expect that the γR should remain the
same while γL should change.

Lets formulate how this happens. As He = Ho then we
know that in this basis the new eigenstates will look the same
in the even or odd sectors. More precisely if ¯|n〉 are the new
eigenstates of the system, then each e〈m|n̄〉e will have a coun-
terpart o〈m|n̄〉o with the same value in the other sector. Hence
the operator γR which is the original (non-interacting) right-
hand-side Majorana, will continue to map between even-odd
eigenstates of the interacting Hamiltonian.

γR| n̄〉e = | n̄〉o, γR| n̄〉o = | n̄〉e (C8)

or

γ̄R = (β̄†1 + β̄1) = (β†1 + β1) = γR. (C9)

On the other hand, although the sum (β†1 + β1) is invariant
under this position dependent interacting term, the individual
operators β1 , β†1 and thus γL are not. We can formulate this
as

β̄1
†

=

[
0 M

I −M 0

]
, β̄1 =

[
0 I −M
M 0

]
(C10)

where M is a symmetric matrix . It immediately follows that
in the non-interacting eigenbasis

γ̄L := i(β̄†1 − β̄1) = i

[
0 −I + 2M

I − 2M 0

]
(C11)

= i

[
0 −A
A 0

]
= σy ⊗A (C12)

From the Majorana condition γ2
L = I we immediately see that

R2 = I and thus that M2 = M . Since M is symmetric and
idempotent it is by definition an orthogonal projector. In the
non-interacting limit we see that A = F and we retain our
original expressions (C5) for γL and γR.

Using the expressions for ¯
β†1 and β̄1 we can calculate the

density operator

ρ̄1 =
¯
β†1β̄1 =

[
M 0
0 I −M

]
(C13)

where we have used the fact that M2 = M . In the non-
interacting limit ( where n̄ = n )M is diagonal with a 1 or a 0
depending on whether the states |n〉e have the fermionic mode
occupied or empty. We see then, that in this limit, M = Ne.

One of the compelling features of the half-interacting wire
is that it allows us to see simply why the local nature of the in-
teractions are essential for preserving the full topological de-
generacy. It is tempting to try to construct a general argument
inferring the existence of the Majorana in the interacting re-
gion from the fact that our Majorana on the RHS is the same
as before. The technical problem with this argument is that
even if we allow arbitrarily high interaction strengths on the
LHS , we cannot not destroy this precise H(e) = H(o) simply
because the left-hand side Majorana mode can always shift
position and decay into the bulk of the non-interacting region.
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