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Abstract: We propose a new model of flavour chiral symmetry breaking in a (2+1)-

dimensional defect gauge theory of strongly coupled fermions by introducing probe D5/D5-

flavour branes on the conifold. After working out the flavour brane embeddings at zero

temperature, we thoroughly investigate the spectra of small fluctuations on the world vol-

ume of the flavour branes (meson spectra) and conclude that it is free of tachyons. Thus

the proposed probe brane embedding is stable. Moreover, we introduce finite temperature

and an external magnetic field and study the thermodynamics of the resulting configura-

tions. Namely, we compute the free energies, entropies, heat capacities and magnetisations.

The results are used to establish a detailed phase diagram of the model. We find that the

effect of magnetic catalysis of chiral symmetry breaking is realised in our model and show

that the meson-melting phase transition coincides with the chiral symmetry breaking phase

transition. Furthermore, we show that the model is in a diamagnetic phase.ar
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1 Introduction

The idea of the gauge/gravity correspondence is among the most impressive developments

coming from string theory [1]. Since it relates the strongly coupled regime of the gauge

theory to the weakly coupled regime of the string theory, it evolved into a powerful tool

in the study of strongly interacting systems. Many of the holographic models that have

been constructed over the years have common features with QCD at strong coupling, like

confinement/deconfinement phase transition and chiral symmetry breaking.

An important development in this line of research came from the Sakai-Sugimoto construc-

tion [2, 3], which is realised through the addition of D8 and D8-branes in a non-extremal

D4-brane background [4]. This model has very specific characteristics, both in the UV and

in the IR. The separation between the branes in the UV gives rise to a flavour symmetry

similar to the chiral symmetry of QCD, while the merging of the branes in the IR, spon-

taneously breaks chiral symmetry1.

1The holographic realization of the chiral symmetry breaking first appeared in a different framework.

When we embed only one flavour D7-brane in a confining geometry (like the Constable-Myers background)

the axial U(1) can be broken spontaneously, and this is identified with a spontaneous chiral symmetry

breaking [5].
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An alternative model to geometrically realise the chiral symmetry breaking was introduced

by Kuperstein and Sonnenschein in [6]. This model is realised through the addition of D7

and D7-branes on the conifold, namely the Klebanov-Witten background [7]. The main

advantage of the Kuperstein-Sonnenschein model compared to the Sakai-Sugimoto model

is that the former is a genuine (3+1)-dimensional gauge theory, while in the latter model is

a (4+1)-dimensional gauge theory compactified on a circle and therefore it is not possible

to cleanly separate the mass scale of the glueballs from the mass scale of the KK modes.

In the present paper we propose a novel model of chiral symmetry breaking in a (2+1)-

dimensional gauge theory of strongly coupled fermions, whose geometric realization is in-

spired by the Sakai-Sugimoto and Kuperstein-Sonnenschein models. To implement this idea

we introduce a pair of D5 and D5 probe branes into the Klebanov-Witten background.

The dual gauge theory is a (2+1)-dimensional defect in the (3+1)-dimensional quiver gauge

theory dual to the Klebanov-Witten model [7]. The presence of the anti-brane completely

breaks the supersymmetry of the background. An overview of the paper is as follows: In

section 2 we analytically derive the probe D5 and D5-brane embeddings. The brane wraps

a maximal S2 in the conifold and has a non-trivial profile along the direction of the fiber

as a function of the holographic coordinate. The D5 and D5-branes merge smoothly in the

IR (see figures 1 and 2). This joint solution spontaneously breaks the chiral symmetry of

the theory.

In section 3 we study the meson spectrum of the model, introducing Cartesian-like coordi-

nates, in order to verify the stability of the brane profile under semiclassical fluctuations

along the transverse directions and the gauge fields. The thorough analysis reveals a spec-

trum that is tachyon-free, with one massless vector and two massless scalar fields. The

massless scalar fields are the Goldstone modes of the spontaneously broken conformal sym-

metry and U(1)× U(1) chiral symmetry.

In section 4 we investigate the thermodynamics of the proposed model, after the addition

of a finite temperature and an (external) magnetic field. As in the archetypal construc-

tion of Kuperstein-Sonnenschein [6], the addition of any finite temperature immediately

leads to chiral symmetry restoration. Turning on a magnetic field promotes the breaking

of the global flavour symmetry, an effect known as magnetic catalysis of chiral symmetry

breaking [8]2. The competition between the dissociating effect of the temperature and the

binding effect of the magnetic field results in an interesting non-trivial phase structure of

first order phase transitions, presented in figure 7. The calculation of the free energy and

the heat capacity for the different phases determines which of them are stable, unstable or

metastable and in turn if chiral symmetry is spontaneously broken or restored. We also

compute the entropy density and the magnetisation for the various phases. Across the

phase transition, the entropy density features a finite jump corresponding to the released

latent heat and we conclude that the chiral symmetry restoration phase is simultaneously

a meson-melting phase transition. The theory has negative magnetisation suggesting a

diamagnetic response which is stronger in the quark gluon plasma (melted mesons) phase.

Thus it is also a conducting phase.

2For the holographic approach at magnetic catalysis, cf. [9]
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2 General setup

In this article we are investigating the addition of a flavour sector to the Klebanov-Witten

background [7] that geometrically realises chiral symmetry breaking in the holographic dual

of a 2 + 1 dimensional gauge theory of strongly coupled fermions.

The Klebanov-Witten background is the near horizon limit of the geometry on Nc

coincident D3-branes at the tip of a conical singularity. The resulting geometry is an

AdS5 × T 1,1 supergravity background with a metric given by3:

ds2 =
r2

L2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
L2

r2

dr2 +
r2

6

(
2∑
i=1

dθ2
i + sin2θidφ

2
i

)
+
r2

9

(
dψ +

2∑
i=1

cosθidφi

)2
 , (2.1)

where L4 = 27
4 πgsNcl

4
s .

The introduction of Nf flavour probe D5/D5-brane pairs adds 2+1 dimensional funda-

mental degrees of freedom to the quiver diagram of the theory. To stay in the probe

approximation we consider Nf � Nc, on field theory side this corresponds to the quenched

approximation, when fundamental loops are suppressed.

Our ansatz for the profile of the D5–branes is inspired by the classification of the supersym-

metric embeddings of D5–branes in the Klebanov-Witten background performed in [12]. A

supersymmetric probe D5–brane necessarily forms a 2+1 dimensional defect in the world-

volume of the D3–branes. It also extends along the holographic coordinate and wraps a

maximal S2 in the T 1,1 part of the geometry, which is orthogonal to the fiber (parametrised

by ψ in equation (2.1)) and has projections on both S2’s (parametrised by (θi, φi) , i = 1, 2

in equation (2.1)). The kappa-symmetry requires that either of the following conditions

are satisfied [12]:

θ2 = θ1, φ2 = 2π − φ1 and x3 = const. (2.2)

θ2 = π − θ1, φ2 = φ1 and x3 = const.. (2.3)

Alternatively, one can define (cf. (2.2)),

θ± =
θ1 ± θ2

2
and φ± =

φ1 ± φ2

2
(2.4)

and fix θ− = 0 , φ+ = π or θ+ = π/2 , φ− = 0. Fixing, without loss of generality, θ− , φ+

and x3 the metric reads

ds2 =
r2

L2

(
−dt2 + dx2

1 + dx2
2

)
+
L2

r2

(
dr2 +

1

9
dψ2

)
+

1

3
dΩ2

2, (2.5)

Note that the presence of D5-branes will break supersymmetry completely in our setup.

Nevertheless the “straight” embeddings satisfying (2.2) continue to extremise the DBI

3For a discussion of the dual field theory, see [6, 7]; for other aspects of these models, see also [10, 11].
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action of the probe branes. The two pairs of “straight” probe D5/D5-branes meet at the

origin of the AdS. This configuration is analogous to the V-shaped embeddings of [6], thus

corresponding to a phase in which the U(Nf ) × U(Nf ) chiral symmetry of the theory is

preserved.

However, there is also the possibility of a joined (U-shaped in the terminology of [6]) solution

which breaks the chiral symmetry of the theory down to the diagonal U(Nf ). In general

the profile of these U-shaped embeddings would describe a two-surface in the T 1,1 part of

the geometry, which changes at different holographic slices (as a function of r). It turns

out that the intuitive configuration in which the probe brane still wraps the same maximal

S2 as the straight embeddings, but has the position in the direction of the fiber running

with the holographic coordinate, namely ψ = ψ(r), is a solution to the general equations

of motion. This is why we consider the following ansatz for the U-shaped embeddings:

x0 x1 x2 x3 r θ− φ+ θ+ φ− ψ

D3 × × × × · · · · · ·
D5/D5 × × × · × × × · · ψ(r)

The D5/D5-branes will follow a non-trivial trajectory in the (ψ, r)-subspace, as determined

by minimizing the DBI world volume action of the D5-branes. Using (2.5) we arrive at the

following one-dimensional Lagrangian,

S = −τ5

∫
dξ6
√

detP [g] = 2N
∫
drr2

√
1 +

r2

9

(
∂ψ

∂r

)2

, (2.6)

where N = (2π/3) τ5Vol(R2,1) and the factor of two reflects that it describes a D5/D5

configuration. This leads straightforwardly to the equation of motion

r4

9 ψ
′√

1 + r2

9 ψ
′2

= c0 , (2.7)

in which the constant c0 can be determined from the physical requirement that ψ′(r0) =∞

c0 =
r3

0

3
. (2.8)

The solution to the equation of motion is given by,

ψ
(0)
± (r) = ±arctan

√( r

r0

)6

− 1

 . (2.9)

A qualitative visualisation of all the possible types of embeddings is presented in figure

2. The asymptotic expansion of ψ
(0)
± (r) is given by ψ

(0)
± (r) = ±π

2 ∓
r30
r3

+ . . .. In the 2+1

dimensional defect field theory the non-trivial profile of ψ(r) corresponds to the insertion

of a dimension three operator with expectation value proportional to r3
0. This condensate

breaks spontaneously the chiral U(Nf )×U(Nf ) symmetry of the theory, thus it can be used
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Figure 1. The profile of ψ
(0)
± (r) which asymptotes to ±π2 . Here, r0 = 1.
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Figure 2. Visualisation of the V-shaped (straight) and U-shaped embeddings.

as an order parameter of the chiral phase transition. Note that when we introduce more

scales to the problem (such as temperature and external magnetic field) the asymptotic

expansion of ψ
(0)
± (r) will be ψ± = ±ψ∞∓ c

r3
, where ψ∞ and c will vary with the extra scale

of the theory. Furthermore ψ∞ and c will be thermodynamically conjugated and we will

use them to characterize the different phases of the theory.

Before we continue with the addition of temperature and external magnetic field we

have to verify that the U-shaped embedding in figure 1 is stable under semiclassical fluc-

tuations or equivalently we have to explore the meson spectrum of the theory and verify

that it is tachyon free.
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3 Meson Spectrum

In this section we study the meson spectrum of our model. To this end will study the

quadratic fluctuations of the D5-brane along the transverse directions and the gauge fields.

Following the approach of [6] we perform a change of coordinates in the (r, ψ) plane,

convenient for the parametrization of the U-shaped embedding:

y = r3 cosψ , z = r3 sinψ . (3.1)

In this coordinates the relevant part of the metric (2.1) transforms to:

L2

r2

[
dr2 +

r2

9
dψ2

]
=

1

9

L2

z2 + y2

(
dz2 + dy2

)
. (3.2)

Remarkably in the (z, y) coordinates the two branches of the U-shaped embedding described

by (2.9) are covered by y(z) = y0 = r3
0 for z ∈ (−∞,∞). Let us choose a classical

embedding corresponding to θ− = 0 and φ+ = π. We are now ready to fluctuate our probe

brane. We select the following ansatz for the scalars:

y = r3
0 + (2πα′) δy (t, z, θ+, φ−) , θ− = (2πα′) δθm (t, z, θ+, φ−) ,

φ+ = π + (2πα′) δφp (t, z, θ+, φ−) , x3 = (2πα′) δx3 (t, z, θ+, φ−) . (3.3)

In addition we turn on the U(1) gauge field of the D5–brane Aa, which enters in the DBI

action through the term (2πα′)Fab and thus contributes to the quadratic order of the α′

expansion. We introduce the symmetric matrix S in the following way:

||E0
ab||−1 = S , (3.4)

while the non-zero elements are

Stt = G−1
00 , S11 = S22 = G−1

11 , Szz = G−1
zz ,

S++ = G−1
θ+θ+

, S−− = G−1
φ−φ−

, (3.5)

with

−G00 = G11 =
(r60+z2)1/3

L2 , Gzz = L2

9 (r60+z2)
,

Gθ+θ+ = L2

3 , Gφ−φ− = L2

3 sin2 θ+ . (3.6)

The non-cross terms in the quadratic expansion of the action are

−L(2)
δθmδθm

=
1

2

√
−E0 g

(0)
θ−θ−

Sab∂aδθm∂bδθm + f(z) δθ2
m ,

−L(2)
δyδy =

1

2

√
−E0 g

(0)
yy S

ab∂aδy∂bδy , (3.7)

−L(2)
δφpδφp

=
1

2

√
−E0 g

(0)
φ+φ+

[
1 −

g
(0) 2
zφ+

g
(0)
φ+φ+

Szz

]
Sab∂aδφp∂bδφp ,

−L(2)
δx3δx3

=
1

2

√
−E0 g

(0)
33 S

ab∂aδx3∂bδx3 , −L(2)
δFδF =

1

4

√
−E0 S

mp Snq Fpq Fmn ,
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with

f(r) ≡ 1

4

√
−E0 S

−−
[
g

(0) ′′

φ−φ−
− 2Szz

(
g

(0) ′

zφ−

)2
]
. (3.8)

while the cross terms are

−L(2)
δφpδy

=
√
−E0 g

(0)
φ+y

Sab∂aδφp∂bδy +
√
−E0 ∂y

(
g

(0)
zφ+

Szz
)
y=r30

δy ∂zδφ+,

−L(2)
δθmδφp

=
√
−E0 S

−−

[
g

(0) ′

φ+φ−
− g

(0)
Vol(R

2,1)zφ+ g
(0) ′

zφ−
Szz

]
δθm∂φ−δφp , (3.9)

−L(2)
δθmδy

=
√
−E0 S

−− g
(0) ′

yφ−
δθm∂φ−δy ,

where g
(0)
ab are the components of the ten dimensional metric as functions of (z, y, θ+, θ−)

and g
(0)
ab
′ = ∂θ−g

(0)
ab |θ−=0,y=r30

.

3.1 Spectrum of δx3

Looking in (3.7) it is clear that the scalar modes δx3 decouple from the rest, and it is

possible to solve them separately. Applying the usual ansatz

δx3 = eiMt h3(z) Θ(θ+) Φ(φ−) , (3.10)

separating variables and defining z = z̃ r3
0 and M = M̃ r0/L

2, we have

∂z̃

[
(1 + z̃2)4/3 h

′
3(z̃)

]
+

1

9

[
M̃2 − 3κ (1 + z̃2)1/3

]
h3(z̃) = 0 (3.11)

cot θ+ Θ
′
(θ+)

Θ(θ+)
+

Θ
′′
(θ+)

Θ(θ+)
+

1

sin2 θ+

Φ
′′
(φ−)

Φ(φ−)
= −κ , (3.12)

Equation (3.12) is the known spherical harmonics differential equation for the two-sphere

Y (θ+, φ−) ≡ Θ(θ+) Φ(φ−) = Cl,m P
m
l (cos θ+) eimφ− with κ = l (l + 1) (3.13)

where Cl,m is the normalization constant. It is sufficient to study the lowest Kaluza-Klein

state, in order to characterize the stability. Setting κ = 0 (l = 0) in (3.11) we obtain:

∂z̃

[
(1 + z̃2)4/3 h

′
3(z̃)

]
+

1

9
M̃2 h3(z̃) = 0 . (3.14)

Equation (3.14) can be brought to Schrödinger form via the coordinate change z̃ = z̃(ξ),

where ξ′(z̃) = 1/3(1 + z̃2)2/3

∂2
ξ h3(ξ) +

(
M̃2 − V (ξ)

)
h3(ξ) = 0 , where (3.15)

V (ξ) = 6
(
1 + z̃(ξ)2

)1/3
> 0 .

The fact that the effective potential is positive implies that there are no bound states

(meson states) with negative M̃2 and therefore the meson spectrum corresponding to the

fluctuations along x3 is tachyon free. We continue by solving numerically equation (3.14).

The meson spectrum is obtained by imposing either even or odd boundary condition at the
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turning point of the U-shaped embedding (z = 0 in our coordinates). For the first several

excited states we obtain:

M̃even = 3.335, 6.189, 8.932, 11.703, 14.523, . . . (3.16)

M̃odd = 4.797, 7.561, 10.312, 13.107, 15.950, . . . (3.17)

once again we confirm that the spectrum is tachyon free.

3.2 Spectrum of δθ

The scalar modes δθm couple to the other modes only through dependence on φ−, however

for the lowest lying Kaluza-Klein modes we can suppress the φ− dependence and the modes

δθm decouple from the rest. To implement this we consider the ansatz:

δθm = eiωt h(z)Y (θ+) . (3.18)

Separating variables, and defining again z = z̃ r3
0 and M = M̃ r0/L

2, we obtain the

following set of differential equations

∂z̃
((

1 + z̃2
)
h′(z̃)

)
+

(
M̃2

9(1 + z̃2)1/3
− 4z̃2

9(1 + z̃2)
+
κ+ 4

9

)
h(z̃) = 0 , (3.19)

Y
′′
(θ+) + cot θp Y

′
(θ+) − 1

3

(
κ− 2 +

3

sin2 θ+

)
Y (θ+) = 0 . (3.20)

Changing variables in (3.20) in the following way

cos θ+ = 1− 2x , (3.21)

it is possible to obtain an analytic solution

Y (θ+) = c
√
x(1− x) 2F1

[
1

6

(
9−
√

33− 12κ
)
,
1

6

(
9 +
√

33− 12κ
)
, 2, κ

]
. (3.22)

Quantizing the first argument of the hypergeometric function we obtain

κ = −4− 3m(m+ 3) . (3.23)

To verify stability it is enough to focus on the lowest lying Kaluza-Klein modes, which

implies m = 0 and hence κ = −4. We can further bring the equation to a Schrödinger form

via the change of coordinates z̃ = ξ(z̃), where ξ′(z̃) = 1/3(1 + z̃2)2/3

∂2
ξ h(ξ) +

(
M̃2 − Veff(ξ)

)
h(ξ) = 0 (3.24)

Veff(ξ) =
3
(
1 + 2z̃(ξ)2

)
(1 + z̃(ξ)2)2/3

> 0 (3.25)

Again the positive effective potential implies that there are no states with negative M̃2 and

hence the spectrum of fluctuations of δθm is tachyon free. Solving numerically (3.19) for

κ = −4 and imposing separately even and odd boundary conditions at z̃ = 0, we obtain

the first several excited states

M̃even = 2.995, 6.099, 8.874, 11.659, 14.487, . . . (3.26)

M̃odd = 4.668, 7.49010.263, 13.067, 15.918, . . . , (3.27)

confirming that the spectrum is tachyon free.
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3.3 Spectrum of δy and δφp

The equations of motion for the fluctuations of δy and δφp are coupled, furthermore both

couple to the fluctuations of δθm, However, the coupling to δθm is through the φ− depen-

dence and is suppressed at the lowest Kaluza-Klein mode. In general it is hard to solve the

coupled equations of motion for δy and δφp in separated variables. However for the lowest

Kaluza-Klein mode one can separate variables by considering the following ansatz:

δy = eiωt hy(z) cos θ+ , δφp = eiωt hφ(z) . (3.28)

The result is a system of coupled differential equations for hy and hφ:

h′′y(z̃) +

(
M̃2

9 (1 + z̃2)4/3
− 2

(
3 + 5z̃2

)
9 (1 + z̃2)2

)
hy(z̃)−

4

1 + z̃2
h′φ(z̃) = 0 (3.29)

h′′φ(z̃) +
2z

1 + z̃2
h′φ(z̃) +

M̃2

9 (1 + z̃2)4/3
hφ(z̃)− 2z̃

9 (1 + z̃2)
hy(z̃) = 0 (3.30)

We can bring (3.29) and (3.30) into a Schrödinger form, via the following transformation:(
hy
hφ

)
=
(
1 + z̃2

)−1/6

(
2(3
√

1 + z̃2 − z̃)
√

6 (
√

1 + z̃2 + 2 z̃)

−1
√

6

)
.

(
∆1

∆2

)
(3.31)

and a change of variables z̃ = z̃(ξ), such that ξ′(z̃) = (1/3)
(
1 + z̃2

)−2/3
. The result is:

∂2
ξ

(
∆1

∆2

)
+

[
M̃2 1̂−

(
V11 V12

V21 V22

)]
.

(
∆1

∆2

)
= 0 , (3.32)

where:

V11(ξ) =
3 + 54 z̃(ξ)2 − 24 z̃(ξ)

√
1 + z̃(ξ)2

7 (1 + z̃(ξ)2)2/3
; V22(ξ) =

18 + 44 z̃(ξ)2 + 24 z̃(ξ)
√

1 + z̃(ξ)2

7 (1 + z̃(ξ)2)2/3
;

V12(ξ) = V21(ξ) =
√

6
−3 + 2z̃(ξ)2 + 10z̃(ξ)

√
1 + z̃(ξ)2

7 (1 + z̃(ξ)2)2/3
; . (3.33)

For normalizable solutions of (3.32) vanishing at infinity, a sufficient condition for M̃2 to

be positive is the matrix potential V̂ =

(
V11 V12

V21 V22

)
to be positively definite. This would

be the case if Tr V̂ > 0 and det V̂ > 0. Using (3.33) this is indeed the case

Tr V̂ =
3 + 14z̃(ξ)2

(1 + z̃(ξ)2)2/3
> 0 and det V̂ =

24 z̃(ξ)4

(1 + z̃(ξ)2)2/3
> 0 . (3.34)

Therefore we conclude that M̃2 > 0 and the meson spectrum corresponding to δy and δφp
is tachyon free for normalizable solutions vanishing at infinity. In fact the only normalizable

solution non-vanishing at infinity is the constant solution. We will show that such a solution

has M̃ = 0 and following [6] we will identify it with the Goldstone boson of the broken

conformal symmetry.
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Next we proceed by solving numerically the coupled system of equations (3.29) and (3.30).

Again the modes can be either even or odd depending on the boundary conditions at the

turning point of the U-shaped embedding. It turns out that the even modes of δy couple

to the odd modes of δφp and the odd modes of δy couple to the even modes of δφp.

δy even and δφp odd: Solving numerically equations (3.29) and (3.30) for the spectrum

of the δy even, δφp odd modes we obtain:

Meven−odd = 2.474, 4.354, 6.0967.340, 8.931, . . . (3.35)

δy odd and δφp even: Solving numerically equations (3.29) and (3.30) for the spectrum

of the δy odd, δφp even modes we obtain:

Modd−even = 2.637, 4.558, 5.89075, 7.529, 8.753, . . . (3.36)

One can also check that the constant solution δy = 0 and δφp = 1 is a solution to the

equations of motion (3.29) and (3.30) for M = 0. Following [6] we associate this Goldstone

mode to the spontaneously broken conformal symmetry.

We conclude that there are no tachyons in the meson spectrum of δy and δφp.

3.4 Fluctuation along the worldvolume gauge fields

Another set of modes that decouples from the rest are the worldvolume gauge fields. Fol-

lowing the analysis of [6], we are interested only on the two-sphere independent modes with

coordinates dependence t, x1, x2 and z. We also ignore the components of the gauge field

along the S2 directions. The reduced action for the fluctuations of the gauge field is

S = −(2πα′)2N
∫

d3x dz (C(z)FµνF
µν + 2D(z)FµzF

µ
z ) (3.37)

where:

C(z) =
π L4

9
(
r6

0 + z2
)2/3 , D(z) = π

(
r6

0 + z2
)2/3

. (3.38)

Changing the radial coordinate to:

ξ(z) =

z∫
0

dz′

√
C(z′)

D(z′)
=

L2 z

3 r4
0

2F1

(
1

2
,

2

3
,

3

2
, −z

2

r6
0

)
(3.39)

and using that4 C(z)D(z) = π2 L4/9 = const, we arrive at

S = −T ′
∫

d3x

ξ∗∫
−ξ∗

dξ

(
1

4
FµνF

µν +
1

2
FµξF

µ
ξ

)
, (3.40)

where:

T ′ =
4

3
π L2 (2πα′)2N and ξ∗ =

π1/2 L2

6 r0

Γ(1/6)

Γ(2/3)
. (3.41)

4Note that this is not the case for the Kuperstein-Sonnenschein model considered in [6].
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Next we follow refs. [2, 6, 10, 11] and expand the components of the gauge field in terms

of the complete sets {αn(ξ)}, {βn(ξ)}:

Aµ(x, ξ) =
∑
n

anµ(x)αn(ξ) , Aξ(x, ξ) =
∑
n

bn(x)βn(ξ) . (3.42)

After substituting in equation (3.41) we obtain:

Saa = −T ′
∫
d3x

ξ∗∫
ξ∗

dξ
∑
m,n

(
1

4
fnµν f

µν m αn αm +
1

2
anµ a

µm∂ξα
n ∂ξα

m

)
(3.43)

Sbb = −T ′
∫
d3x

ξ∗∫
ξ∗

dξ
∑
m,n

1

2
∂µb

n ∂µbmβn βm (3.44)

Sab = +T ′
∫
d3x

ξ∗∫
ξ∗

dξ
∑
m,n

anµ ∂
µbm ∂ξα

n βm (3.45)

Since the functions αn are defined in the finite interval ξ ∈ [−ξ∗, ξ∗], a simple choice of

basis (which proves useful) is:

αn =
1

ξ
1/2
∗

cos(Mn ξ), (3.46)

Mn =
nπ

ξ∗
=

6
√
π Γ(2/3)

Γ(1/6)
n (3.47)

The functions (3.46) satisfy:

(αn, αm) ≡
ξ∗∫
−ξ∗

dξ αn αm = δnm, and

ξ∗∫
−ξ∗

dξ ∂ξα
n ∂ξα

m = M2
n δnm . (3.48)

Note that the zero mode α0 = const, corresponding to M0 = 0 is normalizable. This is

different from the analysis of the vector mesons considered in refs. [2, 6, 10, 11] and as we

are going to show leads to the presence of a massless vector field in the meson spectrum.

The second equation in (3.48) as well as the fact that α0 = const, suggests the following

choice for the functions βn:

βn =


1
Mn

∂ξα
n = − 1

ξ
1/2
∗

sin(Mn ξ) for n ≥ 1

α0 = 1

ξ
1/2
∗

for n = 0
. (3.49)

One can easily check that (β0, βn) = 0 for n ≥ 1 and hence using the second equation in

(3.48) one concludes that:

(βn, βm) ≡
ξ∗∫
−ξ∗

dξ βn βm = δnm . (3.50)
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With the choice of basis functions αn and βn given in equations (3.46) and (3.49) the total

action for the meson modes S = Saa + Sab + Sbb becomes:

S = −T ′
∫

d3x

{
1

2
∂µb

0 ∂µb0 +
1

4
f0
µν f

µν 0 +

∞∑
n=1

[
1

4
fnµν f

µν n +
1

2
M2
n

(
anµ −

1

Mn
∂µb

n

)2
]}

.

(3.51)

After the gauge transformation anµ → anµ + 1
Mn

∂µb
n (for n ≥ 1), we obtain:

S = −T ′
∫

d3x

{
1

2
∂µb

0 ∂µb0 +
1

4
f0
µν f

µν 0 +

∞∑
n=1

[
1

4
fnµν f

µν n +
1

2
M2
n a

n
µ a

µn

]}
, (3.52)

where Mn is given by equation (3.47). As one can see the spectrum of the fluctuations

of the gauge field gives rise to massive vector fields (for n ≥ 1) with spectrum given by

(3.47) as well as a massless vector field (the n = 0 mode). In addition there is also a

massless scalar b0, which following refs. [2, 6, 10, 11] we associate with the Goldstone

mode of the spontaneously broken U(1) × U(1) chiral symmetry5. The interpretation

of the massless vector mode is more subtle: Goldstone vector modes correspond to the

spontaneous breaking of higher-dimensional Lorentz symmetries [13]. Our defect field

theory breaks the SO(1,3) Lorentz symmetry down to SO(1,2), however this breaking is

explicit. At present we do not have a clear understanding of the mechanism that gives rise

to the massless vector mode. We plan to revisit this interesting question in future work.

In conclusion, once again we find no tachyons in the meson spectrum. Therefore, we

conclude that the classical U-shaped embedding that we considered is stable under quantum

fluctuations.

4 Thermodynamics

In the following we intend to investigate the thermal physics in the presence of a finite

temperature and an (external) magnetic field. As was observed previously in the case

of the Kuperstein-Sonnenschein model [14], we will demonstrate below that, at vanishing

magnetic field, any finite temperature immediately leads to chiral symmetry restoration.

This is because in the absence of another scale, there is no way to distinguish between a low

and a high temperature phase. Thus if chiral symmetry can be restored at any temperature,

the chirally symmetric configuration will always be favoured at finite temperature in the

absence of other fields. The situation changes when we turn on a magnetic field by exciting a

gauge field on the world volume of the probe branes, in addition to the finite temperature.

As in other models studied recently [9], we find that the magnetic field promotes the

breaking of the global flavour symmetry, an effect known as magnetic catalysis of chiral

symmetry breaking. The competition between the dissociating effect of the temperature

and the binding effect of the magnetic field results in an interesting non trivial phase

structure of the theory.

5In general we could add Nf flavour branes and realise breaking of an U(Nf )×U(Nf ) chiral symmetry.

However, the Goldstone modes corresponding to the breaking of the non-abelian part of the symmetry,

SU(Nf ) × SU(Nf ), cannot be captured by the abelian DBI action considered in this section.
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4.1 Finite temperature

In order to study the finite temperature scenario we introduce an emblackening factor

b(r) = 1 − r4H
r4

into the metric as usual which will lead to a modified e.o.m for ψ(r). The

temperature is given by

T =
rH
πL2

. (4.1)

The induced metric on the D5-branes reads

ds2
D5 =

r2

L2

(
−b(r)dt2 + dx2

1 + dx2
2

)
+
L2

r2

[
dr2

b(r)

(
1 +

r2b(r)

9
ψ′(r)2

)
+
r2

3

(
dθ2

1 + sin2θ1dφ
2
1

)]
,

(4.2)

The modified action reads

S = −2NT
∫
dr r2

√
1 +

r2

9
b(r)

(
∂ψ

∂r

)2

, (4.3)

with NT = N ′/T = (2π/3) τ5Vol(R2)/T . The modified equation of motion reads

r4

9 b(r)ψ
′(r)√

1 + r2

9 b(r)ψ
′2(r)

= cT , (4.4)

where we have cT = c0

√
b(r0). The asymptotic large r behavior of the profile function

ψ(r) is

ψ(r) =
∆ψ∞

2
− 3cT

r3
+ . . . , (4.5)

where ∆ψ∞ is a non-normalizable mode corresponding to a source/coupling in the bound-

ary field theory, while cH is a normalizable mode corresponding to a VEV/condensate.

Defining:

r̃ =
r

rH
, r̃0 =

r0

rH
, b(r̃) = 1− 1

r̃4
, c̃T =

cT
r3
H

=
1

3
r̃3

0

√
b(r̃0) . (4.6)

we obtain:

∆ψ∞(r̃0) =

∞∫
r̃0

dr̃

r̃

6 r̃3
0

√
b(r̃0)√

b(r̃)
√
r̃6b(r̃)− r̃6

0b(r̃0)
. (4.7)

The parameter ∆ψ∞ and the temperature T are the two physical quantities that charac-

terize a given physical state. However, since the temperature is the only independent scale

in the theory (∆ψ∞ is dimensionless) we expect that states with different temperature will

be equivalent. This is why we expect that there will be only one stable phase of the theory.

Equation (4.7) describes the properties of the U-shaped embeddings corresponding to

the chiral symmetry broken (χSB) phase of the theory. However, at finite temperature there

is another type of embeddings: the trivial (or parallel) embeddings ψ′ = 0, corresponding

to cT = 0 which are straight embeddings that fall into the horizon of the black hole. As

discussed in section 2 the pair of straight embeddings correspond to a phase with restored

chiral symmetry (χSR phase). Furthermore, since the straight embeddings fall into the
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horizon (see figure 3) their fluctuations are quasi-normal modes corresponding to melting

mesons. We conclude that a transition from the U-shaped embeddings to the parallel

embeddings would correspond to a chiral symmetry restoration phase transition, which

is also a meson-melting phase transition. In order to decide which phase is energetically

S1  

r

⌦R1,2 ⌦ S2

1

r0

rH

Figure 3. Visualisation of the parallel (χSR phase) and U-shaped (χSB phase) embeddings. The

U-shaped embeddings have normal modes corresponding to bound meson states. The parallel em-

beddings fall into the horizon and their fluctuations are dissipating quasi-normal modes correspond-

ing to melting mesons. A transition from the parallel to the U-shaped embeddings corresponds to

both chiral restoration and meson melting phase transition.

favoured we can directly evaluate the free energy density F of each phase, by using the

relation SE = β F , where SE is the regularised wick rotated version of the on-shell DBI

action (4.3) and β = 1/T . From equations (4.3) and (4.4) one can see that the on-shell

action diverges as Λ3
UV , where ΛUV is a UV cutoff. This can be regulated [17] by the

addition of a volume counter term ∼
∫ √

γ at r = ΛUV . For the regularised free energies

(in units of 2N r3
H) of the U-shaped and parallel embeddings we obtain:

F̃U = FU/(2N ′r3
H) =

∞∫
r̃0

dr̃ r̃2

(
r̃3
√
b(r̃)√

r̃6b(r̃)− r̃6
0b(r̃0)

− 1

)
− r̃3

0

3
(4.8)

F̃|| = F||/(2N ′r3
H) =

∞∫
1

dr̃(r̃2 − r̃2)− 1

3
= −1

3
. (4.9)

Evaluating numerically F̃U and F̃|| we generated the plot in figure 4. One can see that the

U-shaped embeddings have higher free energies than the straight ones and the χSR phase

is favoured. Note that this is true at any temperature. Therefore, the meson-melting chiral

restoration phase transition takes place at zero temperature. This is expected, because the
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temperature is the only independent scale of the theory. This will no longer be the case

once we turn on an external magnetic field.

In this case it is also possible to determine the stable phase analytically. Using that all

temperatures are equivalent it is sufficient to analyse the limit of small temperature rH → 0,

which implies the limit r̃0 → ∞. One can show that in this limit F̃U → 0, therefore to

leading order the difference of the free energies is:

∆F = FU − F|| =
2

3
N ′r3

H > 0. (4.10)

Therefore the parallel embeddings are always energetically favoured and in the finite tem-

perature case chiral symmetry is restored.

1 2 3 4 Dy•

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05
F

Figure 4. The red line corresponds to F̃||, while the blue curve represents F̃U . One can see that

the U-shaped embeddings have higher free energies than the straight ones and the chiral symmetry

restored phase is favoured.

4.2 Introducing a magnetic field

In the previous subsection we showed that any finite temperature restores the chiral sym-

metry in the dual gage theory. Our next goal is to turn on an external magnetic field.

We will show that magnetic catalysis stabilises the χSB phase of the theory resulting in

an interesting phase structure. To excite an external magnetic field we turn on the U(1)

gauge field of the probe branes. To this end we consider the ansatz A3 = Hx2, which

corresponds to a constant magnetic field F23 = H along the x1 direction. Combining the

effects of finite temperature and constant magnetic field, yields the following DBI action

on the D5 branes,

SDBI = −2NT
∫
dr r2

√
1 +B2

L4

r4

√
1 +

r2

9
b(r)

(
∂ψ

∂r

)2

, (4.11)

where B := 2πα′H. Thus, the final form of the equation of motion reads

r4

9

√
1 +B2L4

r4
b(r)ψ′(r)√

1 + r2

9 b(r)ψ
′2(r)

= cH , (4.12)
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with c2
H = c2

T

(
1 +B2L4

r40

)
.

Similarly to the finite temperature case, the asymptotic large r behavior of the profile

function is

ψ(r) =
∆ψ∞

2
− 3cH

r3
+ . . . , (4.13)

where ∆ψ∞ is a non-normalizable mode corresponding to a source/coupling in the bound-

ary field theory, while cH is a normalizable mode corresponding to a VEV/condensate.

Using the change of coordinates (4.6) and the definitions:

η = B
L2

r2
H

, c̃H =
cH
r3
H

= c̃(r̃0)

(
1 +

η2

r̃4
0

)1/2

, (4.14)

we obtain the following expression for the asymptotic angular separation of the U-shaped

embeddings:

∆ψ∞(r̃0, η) =

∞∫
r̃0

dr̃

r̃

√
b(r̃0)

b(r̃)

6 r̃0

√
r̃4

0 + η2√
r̃2(r̃4 + η2)b(r̃)− r̃2

0(r̃4
0 + η2)b(r̃0)

. (4.15)

In the limit r̃0 →∞, η → 0+, we find ∆ψ∞ = π, which is the result at zero temperature

and magnetic field. In the limit r̃0 → ∞, η → ∞, the integral can be evaluated to give

∆ψ∞ = 3π, corresponding to the result at zero temperature and finite magnetic field.

Finally, in the limit r̃0 → 1+, we have ∆ψ∞ = 0, which corresponds to an U-shaped

embedding touching the horizon of the AdS-black hole. This suggests (we will confirm it

numerically) that 0 ≤ ∆ψ∞ ≤ 3π, while the size of the ψ cycle is 4π. Therefore we conclude

that the two branches of the U-shaped embeddings never intersect as they approach the

UV boundary, which is satisfying since an intersection could trigger instability.

To investigate further the properties of the U-shaped embeddings we will study the

dependence of the “condensate” c̃H on the separation parameter ∆ψ∞ at fixed ratio of

the magnetic field and the temperature squared, described by the parameter η. Exploring

analytically this dependence at small temperatures and weak magnetic fields (r̃0 � 1 and

fixed η) one can show that at η = 1/2 there is a qualitative change. To explore this in full

details we generated plots of c̃H versus ∆ψ∞ for 0 ≤ η ≤ 1/2 and η ≥ 1/2. As one can see

from the first plot in figure 5 for 0 ≤ η ≤ 1/2, c̃H is a singe-valued monotonically increasing

function of ∆ψ∞, while ∆ψ∞ is in the range (0, π]. For η > 1/2, in the range (0, π] c̃H is still

a single-valued growing function of ∆ψ∞, however for ∆ψ∞ > π it becomes a multivalued

function. The two branches meet at a maximum value of ∆ψ∞ = ∆ψmax
∞ , which increases

as η increases. In a next subsection we will show that the branch with positive slope is

unstable (has negative heat capacity) in the range [π,∆ψmax
∞ ), but remains meta-stable for

part of the interval (0, π]. On the other hand the branch with a negative slope is always

at least meta-stable and allows the realisation of a χSB phase.

4.3 Phase structure

To find the stable phases of the theory we have to compare the free energies of the different

phases. The introduction of an external magnetic field does not lead to new UV divergencies
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in the dual gauge theory6. Therefore, we can use the same regularisation as in the finite

temperature case. Regularising the wick rotated on-shell action (4.11), for the free energies

of the U-shaped and parallel embeddings we obtain:

F̃U = FU/(2N ′r3
H) =

∞∫
r̃0

dr̃

 r̃
(
r̃4 + η2

)√
b(r̃)√

r̃2 (r̃4 + η2) b(r̃)− r̃2
0

(
r̃4

0 + η2
)
b(r̃0)

− r̃2

− r̃3
0

3
,(4.16)

F̃|| = F||/(2N ′r3
H) =

∞∫
1

dr̃(
√
r̃4 + η2 − r̃2)− 1

3
= −1

3
2F1

(
−3

4
,−1

2
,
1

4
,−η2

)
. (4.17)

To explore quantitatively the dependence of the free energy FU on the parameter ∆ψ∞, we

have to employ numerical techniques. However, let us first provide a qualitative analysis.

Using that the free energy is the wick rotated on-shell DBI action (4.11) it is relatively

easy to show that:

δF̃

δ∆ψ∞
= − 1

4NT r3
H

(
δSDBI
δψ

) ∣∣∣
r=∞

=
cH
2r3
H

=
1

2
c̃H ≥ 0 . (4.18)

Therefore, for the U-shaped embeddings F̃ is a monotonically increasing function of ∆ψ∞.

One can also show that in the limit r̃0 → 1 we have F̃U → F̃|| and ∆ψ∞ → 0. Thus

we conclude that at ∆ψ∞ = 0 the U-shaped and parallel embeddings have the same free

energies. Furthermore, since F̃U grows and F̃|| remains constant as ∆ψ∞ increases, we

conclude that at least in the interval 0 ≤ ∆ψ∞ ≤ π (when F̃U is single-valued) the parallel

embeddings have lower free energy than the U-shaped and the theory is in a χSR phase.

On the other hand for η > 1/2 and ∆ψ∞ > π at a given value of ∆ψ∞ there are

two possible U-shaped embeddings (look at figure 5) and F̃U is a multivalued function.

One of the branches is a continuation of the curve from the interval (0, π) and thus has

free energy higher than the parallel embeddings. The other branch begins at r̃0 → ∞,

when ∆ψ∞ → π, one can show that in this limit F̃U → 0 and since F̃ is a monotonically

increasing function of ∆ψ∞ we conclude that the other branch is always positive (it exists

6One can see that by analysing the divergencies of the action (4.11).
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only for ∆ψ∞ ≥ π). Therefore, in order to have a phase transition we need the parallel

embedding also to have positive free energies. The critical ηcr above which the phase

transition exists can be calculated from the condtion F̃||(ηcr) = 0. Using equation (4.17)

we find ηcr ≈ 0.828695. Note also that the multivalued nature of the free energy suggests

that this is a first order phase transition.

Our numerical plots are shown in figure 6. One can see that the qualitative description

that we obtained above is confirmed. Indeed for η > ηcr there is a first order phase

transition. Between the χSR and χSB phase of the theory. If we assume that initially

the magnetic field was very low (small η) the theory would be in the χSR phase, as we

increase the magnetic field we reach a point where for certain values of the parameter ∆ψ∞
the χSB phase is stabilised. This chiral symmetry breaking transition is induced by the

external magnetic field, and is a manifestation of the effect of a magnetic catalysis. The

interesting phase structure that we observe is due to the competition of this effect with the

dissociating effect of the finite temperature. Interestingly magnetic catalysis takes place

only if the ratio of the magnetic field and the square of the temperature are above some

critical value (η > ηcr)
7. Alternatively we could assume that initially the temperature
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Figure 6. The regularized free energies F|| (red) and FU (blue) plotted versus ∆ψ∞ for various

values of η. The red dashed lines represents an analytic fit. One can see that for η < ηcr ≈ 0.83

there is no phase transition. For η > ηcr the red and blue curves intersects and there is a phase

transition.

was very low (large η). Then at finite magnetic field and for ∆ψ∞ > π the theory is in a

χSB phase. As we increase the temperature at fixed ∆ψ∞ and magnetic field the theory

7 This is in contrast with the results of the D3/D7 system analysed in ref. [14], where a phase transition

existed for any ratio of the magnetic field and the square of the temperature.
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undergoes chiral symmetry restoration phase transition due to the dissociating effect of the

temperature. Note that this is also a meson melting phase transition and interestingly in

our model the two transitions take place simultaneously.

The properties of the theory in these controlling parameters can be summarised in

a two dimensional phase diagram. In figure 7 we show that phase diagram in the ∆ψ∞
vs. 1

η plane. The horizontal line at ∆ψ∞ = π in the plot corresponds to the limiting

case r̃0 → ∞, B → 0, while keeping η−1 fixed, which is the zero temperature scenario

without magnetic field. As was discussed above, below the horizontal line, only the χSR

configurations (parallel embeddings) are stable, while the χSB configurations (U-shaped

embeddings) are metastable for η < 1/2. For η ≥ 1/2 the χSB phase can be unstable (has

negative heat capacity), however there is still a region (the light shaded area) where the χSB

phase can be metastable (have positive heat capacity) . The vertical dashed line represents

the critical value η−1
cr . Only to the left of this line there exists a first order phase transition

which happens at the critical value (∆ψ∞)cr for which the free energies of the parallel and

U-shaped embeddings are equal. Below this critical curve, the χSB configurations are stable

(the dark shaded region in fig. 7), while above the critical curve the χSB configurations

become metastable (positive heat capacity) and the χSR configurations are stable. For even

higher ∆ψ∞, there is another curve corresponding to (∆ψ∞)max, above which only χSR

configurations are possible. As observed above, the limiting case r̃0 → ∞, η → ∞ yields

the greatest possible angular separation for the U-shaped configuration, ∆ψ∞ = 3π. The

light shaded regions represents those areas of the phase diagram where χSB configurations

are metastable, this analysis is based on studies of the heat capacity (cf. section 4.5).

4.4 Entropy density

Equation (4.18) and the fact that our theory is defined at fixed temperature T and magnetic

field B, suggest that the density of the thermodynamic potential F describing our ensemble

satisfies:

dF = −S dT −M dH +N ′ cH d∆ψ∞, (4.19)

where S is the entropy density, and M is the magnetisation of our system and cH is the

density of the vev of the operator with source ∆ψ∞. Equation (4.19) suggests that the

entropy density S is given by:

S = −
(
∂F

∂T

)
H,∆ψ∞

= −π L2 r2
H

3F̃ + rH

(
∂F̃

∂r̃0

)
η

(
∂r̃0

∂rH

)
H,∆ψ∞

+ (4.20)

+rH

(
∂F̃

∂η

)
r̃0

(
∂η

∂rH

)
H,∆ψ∞

)
.

Calculating the partial derivatives in (4.20) at fixed ∆ψ∞ is somewhat difficult techni-

cally, because ∆ψ∞ is known only as an integral expression. Fortunately, its thermo-

dynamically conjugated variable N ′ cH is a simple function of rH , r̃0 and η (equation

(4.14)). Therefore,we have to use the Legendre transformed thermodynamic (TD) po-

tential I = F −N ′ cH∆ψ∞. In our holographic set up the TD potential I can be found by
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Figure 7. The phase diagram in the ∆ψ∞ vs
r2H
BL2 plane.

applying a Legendre transformation and a wick rotation on the on-shell action (4.11). We

find:

IU = 2N ′
∞∫
r0

dr

(√
r4 +B2L4 − 9c2

Hr
2

r4 − r4
H

− r2

)
− r3

0

3
. (4.21)

I|| = F|| = −
2

3
(N ′r3

H) 2F1

(
−3

4
,−1

2
,
1

4
,−B

2L4

r4
H

)
(4.22)

Next using that:

dI = −S dT −M dH −N ′∆ψ∞ dcH , (4.23)

we arrive at:

S = −
(
∂I

∂T

)
H,cH

= −πL2

(
∂I

∂rH

)
B,cH

− πL2

(
∂I

∂r0

)
B,cH

(
∂r0

∂rH

)
B,cH

. (4.24)

Remarkably, one can show that the derivative
(
∂I
∂r0

)
B,cH

vanishes and we arrive at:

S̃U = SU/(2πL
2N ′r2

H) =

∞∫
r̃0

dr̃

(r̃4 − 1)3/2

18c̃H(r̃0, η)2r̃2√
(r̃4 + η2)(r̃4 − 1)− 9c̃H(r̃0, η)2r̃2

, (4.25)

S̃|| = S||/(2πL
2N ′r2

H) =
√

1 + η2 . (4.26)
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It is instructive to study the entropy of the straight embeddings, corresponding to the

deconfined phase with non-broken chiral symmetry, and compare it to the entropy of the

U-shaped embeddings corresponding to the confined phase with broken chiral symmetry.

Clearly, one expects that the entropy of the confined phase is lower than the entropy of

the deconfined phase. We are able to confirm this expectation with our numerical studies

(see fig. 8).
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Figure 8. The entropies of the straight (red) and U-shaped (blue) embeddings for various values

of η. The lower (upper) part of the blue curve corresponds to the stable (unstable) branch of the

U-shaped embeddings. The dashed line indicates the critical value for ∆ψ∞ for which FU = F||.

4.5 Heat capacity

Our next goal is to study the heat capacity (density) at fixed magnetic field CH . The heat

capacity can be used to explore thermodynamic instabilities and to distinguish between

unstable and metastable phases. Strictly speaking this information should be obtained

from studies of the meson spectrum. However, usually the onset of the thermodynamic

instabilities coincides with the appearance of tachyonic modes in the meson spectrum (see

for example ref. [18]).

Our main result is that, as expected, the heat capacity of the thermodynamically

unstable branch of the χSB phase is negative, while the heat capacity of the other branch

of this phase is positive, thus providing evidence that it is at least metastable. Surprisingly

though, this is the case only when we have two coexisting χSB phases (for η > 1/2 and

∆ψ∞ > π). For 0 ≤ ∆ψ∞ ≤ π the χSB phase has only one branch which is continuation of

the unstable branch from the region ∆ψ∞ > π. Nevertheless, it can still have positive heat
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capacity in the interval 0 ≤ ∆ψ∞ ≤ π and thus can be metastable (the χSR phase is the

stable phase for this range of ∆ψ∞). The region where this metastable phase exists extends

as η decreases and for η < 1/2 it includes the whole interval 0 ≤ ∆ψ∞ ≤ π suggesting that

for η < 1/2 the χSB phase is always metastable, because this is the whole possible range of

∆ψ∞ for η < 1/2. The results of this study are used to determine the light shaded region

for ∆ψ∞ ≤ π in the phase diagram of the theory in figure 7.

We use the following definition of the heat capacity CH at fixed magnetic field H:

CH = T

(
∂S

∂T

)
H,∆ψ∞

, (4.27)

Strictly speaking this definition can be used everywhere except at the phase transition,

because the entropy has a discontinuity there related to the corresponding latent heat.

However, we are interested in the heat capacity as a measure of the stability of the different

phases. This is why we will use equation (4.27) for all states in a given phase assuming,

where relevant, that the phase is supercooled or over heated, which should be possible as

long as the heat capacity is positive.

Applying the definition (4.27) for the U-shaped embeddings we obtain:

C̃uH = CuH/(4πN ′L2 r2
H) = S̃U − η

(∂S̃U
∂r̃0

)
η

(
∂r̃0

∂η

)
∆ψ∞

+

(
∂S̃U
∂η

)
r̃0

 . (4.28)

Using that
(
∂r̃0
∂η

)
∆ψ∞

= −
(
∂∆ψ∞
∂η

)
r̃0
/
(
∂∆ψ∞
∂r̃0

)
η

and the integral expressions for ∆ψ∞ and

S̃U from equations (4.15) and (4.25), we can obtain somewhat complex expression for CH ,

which we can compute numerically. For the parallel embeddings using again the definition

(4.27) and equation (4.26) we obtain:

C̃strH = CstrH /(4πN ′L2 r2
H) =

1√
1 + η2

, (4.29)

one can see that CstrH is always positive and thus the χSR phase is always at least metastable.

In figure 9 we plot our results for the heat capacity for various values of η. One can see the

general features of the χSB phase described above. Indeed for η < 1/2 the heat capacity is

positive, while for η > 1/2 the unstable branch has negative heat capacity. The red line in

the plots represent the heat capacity of the χSR phase. One can see that for η > ηcr ≈ 0.83

after the phase transition the heat capacity of the χSB phase is higher than the heat ca-

pacity of the χSR phase. In this sense the corresponding meson melting phase transition

is closer to the water/vapour phase transition than to the ice/water one. The higher heat

capacity of the χSB phase can be understood as due to the ability of the bound states to

absorb heat in a potential (non-kinetic) energy.

4.6 Magnetisation

Another quantity of interest is the magnetisation M , defined in our statistical ensemble

(using the TD potential I) as

M = −
(
∂I

∂H

)
T,cH

= −(2πα′)−1

(
∂I

∂B

)
rH ,cH

, (4.30)
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Figure 9. The heat capacities of the U-shaped embeddings for various values of η. The upper

(lower) curves corresponds to the stable (unstable) branch of the U-shaped embeddings.

where we again have used that (∂I/∂r0)cH = 0. Using equations (4.21) and (4.22) and

going to dimensionless variables we obtain:

M̃U = MU/((πα
′)−1N ′L2) =

∞∫
r̃0

dr̃ r̃
η
√
b(r̃)√

r̃2(r̃4 + η2)b(r̃)− r̃2
0(r̃4

0 + η2)b(r̃0)
, (4.31)

M̃|| = M||/((πα
′)−1N ′L2) = −η 2F1

(
1

4
,
1

2
,
5

4
,−η2

)
(4.32)

Note that M̃|| in equation (4.32) is negative for all positive η. Therefore we conclude that

the χSR phase is diamagnetic. This is not surprising since in our case the χSR phase is

also quark-gluon plasma phase (the mesons are melted). Therefore it is also a conducting

phase, which is naturally diamagnetic. It is instructive to analyse the diamagnetic response

of the χSR phase at weak magnetic field (small η). We have:

M|| = −
2N ′
π2

H

T 2
+O

(
H2/T 4

)
. (4.33)

and for the leading contribution to the magnetic susceptibility we obtain:

χ|| = −
2N ′
π2

1

T 2
. (4.34)

Note that the diamagnetic response depends strongly on the temperature and goes to zero

as the temperature approaches infinity. This is also the most simple expression for the
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magnetic susceptibility in 1 + 2 dimensions based on dimensional analysis only. Such a

behaviour is to be expected since at high temperatures (small η) conformality is restored. In

fact very similar behaviour has been observed already in the 1+2 dimensional holographic

gauge theory dual to the D3/D5 intersection analysed in ref. [19].

Our next task is to study and compare the magnetisation of both phases. In figure 10

we have presented numerical plots of the magnetisation for various values of η. The lower

(upper) part of the blue curve corresponds to the stable (unstable) branch of the U-shaped

embeddings. The dashed line indicates the critical value of ∆ψ∞ for which FU = F|| and a

first order phase transition takes place. One can see that the diamagnetic response of the

χSR (deconfined) phase is always stronger, which is expected because it is also a conducting

phase.
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Figure 10. The magnetizations of the straight (red) and U-shaped (blue) embeddings for various

values of η. The lower (upper) part of the blue curve corresponds to the unstable (stable) branch of

the U-shaped embeddings. The dashed line indicates the critical value for ∆ψ∞ for which FU = F||.

One can see that the diamagnetic response of the χSR (deconfined) phase is always stronger, which

is expected because it is also a conducting phase.

5 Conclusions and outlook

In this article, we presented a novel model of chiral symmetry breaking for strongly coupled

fermions living on a 2+1 dimensional defect in the Klebanov-Witten background. After

solving the embedding equation for the U-shaped χSB configuration at zero temperature,

we thoroughly studied the meson spectra of small fluctuations on the world volume of the

D5/D5-brane probes and observed that the spectra are tachyon-free and thus the proposed

embedding is stable. Further we identified the massless scalar modes of the spectrum with
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the Goldstone bosons of the spontaneously broken conformal and chiral symmetry. We also

find a massless vector suggesting that there is spontaneous breaking of a higher dimensional

space-time symmetry.

Moreover, we studied several aspects of thermal physics after introducing finite tempera-

ture and an external magnetic field: The (regularized) free energies of the two classes of

embeddings (straight and U-shaped) we computed numerically to obtain the phase struc-

ture of the system for arbitrary magnetic field and temperature. The interesting phase

structure that we observe is due to the competition of the binding effect of the magnetic

field with the dissociating effect of the finite temperature. Interestingly magnetic catalysis

takes place only if the ratio of the magnetic field and the square of the temperature are

above some critical value. This differs from the results of the D3/D7 system analysed

in ref. [14], where a phase transition existed for any ratio of the magnetic field and the

square of the temperature. Our analysis was further complemented by scrutinising the

heat capacities to distinguish between metastable and unstable regimes of the χSB phases.

The entropy and magnetisations were calculated to establish the physical interpretations

of the χSR phase as a simultaneous flavour-deconfined (meson-melting) and diamagnetic,

conducting phase, and of the χSB phase as flavour-confined (mesonic) phase.

It would be interesting to incorporate a chemical potential and external electric fields to

get an even richer picture of physical phenomena. Moreover, the thermodynamic analysis

of possible instabilities should be complemented by a thorough investigation of the meson

spectra at finite temperature and including other fields. Another worthwhile direction for

future studies is the effect of the backreaction by the flavour probe branes on the back-

ground geometry.

Most importantly, it would be extremely beneficial to better understand the field theory

dual of the bulk construction discussed in this paper and to identify possible applications

to (2+1)-dimensional condensed matter physics; the model may be relevant for modeling

certain effects in condensed matter systems such as graphene or other physical systems

involving strongly coupled fermions in (2+1) dimensions [20–22].
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