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ABSTRACT

We construct global F-theory GUTs with SU(5)×U(1) gauge group defined by specifying
a fully resolved Calabi-Yau fourfold and consistent four-form G-flux. Its specific U(1)
charged matter spectrum allows the desired Yukawa couplings, but forbids dangerous
proton decay operators. The model we find: (1) does not follow from an underlying
higgsed E8 gauge group (2) leaves the class of theories that can be analyzed with current
split-spectral cover techniques. This avoids recently proposed no-go theorems for models
with hypercharge flux, as required to break the GUT group. The appearance of additional
fields is related geometrically to considering a more general class of sections and 4–1 splits.
We show explicitly that the four-dimensional chiral matter index can still be computed
using three-dimensional one-loop Chern-Simons terms.
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1 Introduction and Summary

Over the past years, considerable effort has been spent on engineering phenomenologically
viable SU(5)-GUTs in F-theory. This was initiated in local models with decoupled gravity
in [1–3]. Since then, vast progress has been made both in providing a more detailed local
construction as well as in finding global completions [4, 5]. Despite various successes
such as the construction of fully resolved fourfolds with SU(5) and SO(10) gauge group
singularities [6–10], fully consistent phenomenological models have yet to be found. This
can, at least in a large class of GUT scenarios, be traced back to the fact that U(1)
symmetries [11–16] are difficult to control in F-theory. This is naturally so because they,
unlike non-Abelian gauge factors, do not localize and depend on the global properties
of the Calabi-Yau manifold. Moreover, Abelian gauge factors can be crucial in order to
prohibit proton decay in GUT models. That is, appropriate U(1)-charges can be used to
allow only the desired couplings and forbid proton decay inducing couplings. However,
the actual U(1) gauge group (and, therefore, charges) depend on the global Calabi-Yau
geometry and are difficult to engineer.

The authors of [17–20] developed local methods in order to classify and study F-
theory seven-brane gauge theories with gauge group SU(5)× U(1)k. In this framework,
the 7-brane theory is determined by an auxiliary geometric object, the spectral cover C,
which encodes information about a Higgs fields used to break an underlying E8 symmetry
as

E8 −→ SU(5)GUT × SU(5)⊥ −→ SU(5)GUT × U(1)4. (1.1)

Matter states in the 7-brane worldvolume theory originate from the decomposition of the
248 representation of E8. In the general case, monodromies of the spectral cover then
lead to further identifications among some of the Abelian gauge group factors. More
precisely, in the presence of a U(1)k gauge group factor, the spectral cover splits into k+1
irreducible components. The structure of E8 determines that C is defined by a degree five
polynomial and therefore k ≤ 4. Accordingly, there are exactly two possibilities in the
case of a single U(1), namely the factorization into a linear and a quartic factor and the
factorization into a quadratic and a cubic piece. These two cases are dubbed 4–1 split
and 3–2 split, respectively, and their associated field contents are displayed in Table 1.1
By definition, the 7-brane spectral cover captures only physics that is localized on the

Model Matter spectrum
4–1 split 5−3, 52, 10−1, 104 15

3–2 split 5−4, 51, 56, 10−3, 102 15

Table 1.1: Different SU(5)× U(1) spectra originating from E8 branching rules.

discriminant and contains no information about the existence of a U(1) gauge symmetry
in the low-energy effective action or the spectrum of SU(5)-singlets, as has been noted
various times in the literature [14,16,20,21].
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Globally, the appearance of extra U(1) factors is equivalent to additional sections
generating a non-trivial Mordell-Weil group of the Calabi-Yau manifold. Global models
with sections coming from a factorized Tate model where studied recently in [16]. In this
paper, we construct an F-theory GUT with SU(5)×U(1) low-energy gauge symmetry by
specifying a concrete elliptically fibered Calabi-Yau manifold that is not contained in the
above class of models. A priori there is no reason for the spectral cover and the low-energy
gauge group to match. We find the first concrete model in the literature where such a
match does not occur. The low-energy spectrum does not fit into 248 of E8 due to the 110

singlet states, as was first discovered in [16]. In our example, there are in addition four
distinctly charged 5 representations of SU(5) which are also at odds with a spontaneously
broken E8. Their appearance can be explained by considering a more general class of
rational sections. Unlike their holomorphic counterparts, rational sections are allowed to
wrap entire fiber components instead of intersecting them transversely [15, 16], thereby
allowing a larger variety of U(1) charges. Using the intersection properties of the fiber
geometry, we give a simple generalized geometric interpretation of the classification into
different splits and propose that there exists another split that has not been studied so
far.

According to this generalized definition of splits, our model is an example of a 4–1
split. However, due to the existence of four distinct 5 representations instead of just
two, two phenomenologically desirable features can be realized: First of all, a Peccei-
Quinn type symmetry can be used to forbid a µ-term and dimension five proton decay
operators. Second of all, our set of matter curves admits in principle non-trivial anomaly
free solutions to the constraints imposed on hypercharge flux that were examined in [22].

These results are presented as follows: In Section 2 we present the field content of our
GUT in detail, describe how to match the different MSSM fields with the different repre-
sentations of SU(5)×U(1) and explain the conditions imposed by anomaly cancellation.
We then proceed with a detailed construction of the Calabi-Yau manifold in terms of a
hypersurface in a toric variety in Section 3. Next of all, the matter spectrum is analyzed
and interpreted geometrically in Section 4. Finally, we construct a set of consistent four-
form fluxes in Section 5. By using three-dimensional one-loop Chern-Simons terms, we
compute the chiral indices of the four-dimensional matter representations and show that
the spectrum is anomaly free.

2 More general GUT Models: Field Theory

Let us start with a brief field theoretic description of the model that we will construct in
the remainder of this paper. The representation content of our four-dimensional theory
is

10−1, 5−8, 5−3, 52, 57, 15, 110, (2.1)
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where the conjugate representations are understood to be included as well. Recalling
that the necessary Yukawa couplings in order to reproduce the MSSM are

10M10M5H and 10M5M5H, (2.2)

we match the MSSM representations as

5M ←→ 5−7 5H ←→ 52 5H ←→ 58 10M ←→ 10−1. (2.3)

Note that one could also swap the U(1)-charges assigned to 5M and 5H. With the above
choice, both the dimension four proton decay operator

10M5M5M (2.4)

as well as a tree-level µ-term in the superpotential

µ5H5H (2.5)

are forbidden by the U(1)-symmetry. The absence of the latter terms is equivalent to
prohibiting operators such as

10M10M10M5M, (2.6)

which would induce dimension 5 operators after integrating out heavy modes. Let us
remark that U(1)-symmetries with charge assignments such that

Q(5H) 6= −Q(5H) (2.7)

are called Peccei-Quinn (PQ) symmetries. The remaining representation 5−3 will carry
exotic matter, while the SU(5)-singlets are candidates for right-handed neutrinos.

Having introduced the spectrum, we now turn to the conditions any anomaly-free
spectrum must satisfy. Before turning on hypercharge flux to break up the above SU(5)-
multiplets, these conditions are

0 =χ(10−1) +
∑
q

χ(5q),

bα(5)Θα5 = − 20

3
χ(10−1) +

10

3

∑
q

χ(5q)q3 +
2

3

∑
p

χ(1p)p3,

−aαΘα5 = − 10

3
χ(10−1) +

5

3

∑
q

χ(5q)q +
1

3

∑
p

χ(1p)p,

bαΘα5 = 6χ(10−1) + 2
∑
q

χ(5q).

(2.8)

They follow from demanding that the non-Abelian anomaly, the purely Abelian anomaly
and two mixed anomalies are cancelled, respectively. The index q ∈ {−8,−3, 2, 7} ranges
over the different charges of the 5-representations and p runs over the U(1)-charges of
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the SU(5)-singlets. aα, bα and bα(5) are coefficients of the Green-Schwarz terms and Θα5

is a Chern-Simons coefficient, all of which will be related to compactification data in
Subsection 3.3. The relation between geometric data and Green-Schwarz coefficients has
recently been studied in the context of anomaly cancellation in F-Theory in [23].

After turning on hypercharge flux an additional set of anomaly cancellation conditions
must be imposed. These can be understood as constraining all possible hypercharge
fluxes. For a single U(1) in the low-energy effective action there are four constraints,
namely [22,24]

N−1
10 =

∑
q

N q
5 = 0,

−N−1
10 +

∑
q

N q
5 q = 0,

3N−1
10 +

∑
q

N q
5 q

2 = 0,

(2.9)

where Na
b denotes the number of flux quanta along ba. Since we have five parameters

and four linear constraints, the above equations admit a one parameter set of solutions:

N−1
10 = 0,

N−8
5 = λ, N−3

5 = −3λ,

N2
5 = 3λ, N7

5 = −λ.

(2.10)

We close this section by emphasizing that the above matter spectrum with its ad-
ditional 5 representations might allow to circumvent the “no-go”-theorem forbidding
hypercharge flux in models with 4–1 split [22]. To be precise, the anomaly constraints
(2.9) and their generalized version for cases with several distinctly charged 10 representa-
tions always eliminate precisely four flux parameters in models with a single U(1) factor,
as we see above. The “no-go”-theorem is based on a counting argument [22]: Since the
4–1 splits in models with an underlying E8 symmetry never have more than four distinct
matter curves charged under SU(5), the only solution to the anomaly equations in these
models is to have no flux. However, we will show in the next section that there indeed
exist models of a very similar type that can have more representations and therefore
might admit non-trivial hypercharge flux. Furthermore, the existence of additional mat-
ter curves allows one to realize a PQ-symmetry in a model with 4–1 split, another feature
that was formerly ruled out, since it requires the existence of at least three distinct 5
representations

It is interesting to note2 that the U(1)-charges of 5 and 10 fields can be described by
a spectral cover with two U(1) factors and ad-hoc breaking to a certain diagonal U(1). In
fact, for any 3–1–1 or 2–2–1 split one can define a U(1) operator such that the resulting
U(1) charges take the above form. For now, we simply note that naive application of the

2We would like the thank Joe Marsano and Sakura Schäfer-Nameki for pointing this out to us.
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Tate minimal model algorithm [25,26] does not yield a factorizing spectral cover. A more
detailed discussion of the non-uniqueness of the Tate model will appear elsewhere [27].

Finally, let us remark that we do not attempt to construct a phenomenologically viable
model in this paper. In particular, we will not try to fix multiplicities to obtain three
generations with the correct doublet-triplet splitting or study the number of exotics in
the spectrum, as was done locally in [17,18,20,28]. However, the point that we do wish to
make is that, in the context of F-theory compactifications, there arise naturally Abelian
factors in the gauge group whose matter representations do not unify into a spontaneously
broken E8. Such theories can easily circumvent phenomenological stumbling blocks that
have been found previously. A more complete study of the systematics of SU(5)× U(1)
models is underway [27].

3 Calabi-Yau Geometry and its Sections

In this section we introduce the fully resolved Calabi-Yau geometries relevant for the
SU(5) × U(1) GUT models with the spectrum given in Section 2. In Subsection 3.1
we summarize some basics about elliptic fibrations. We argue that the pattern of U(1)
charges naturally allows to introduce ‘splits’ independent of the factorization of defining
equations or a spectral cover. The Calabi-Yau threefold and fourfold examples supporting
our GUT spectrum are introduced in Subsection 3.2 and 3.3. We carefully discuss the
sections of these elliptic fibrations.

3.1 Basics on Elliptic Fibrations with SU(5) × U(1)

Before focusing on a specific example, let us quickly review the geometric features of
elliptic fibrations as relevant for F-theory models with SU(5) × U(1) gauge symmetry.
Compactification of F-theory on an elliptically fibered threefold or fourfold yields a six-
and four-dimensional effective theory respectively. In fact, one is interested in a singular
Calabi-Yau manifold obtained by shrinking all irreducible fiber components not inter-
secting the zero section. These singularities give rise to non-Abelian gauge symmetries.
However, arbitrary singularities are not allowed and it is probably necessary that there
exists a resolution to a smooth Calabi-Yau. Therefore one can either consider smooth
Calabi-Yau manifolds where one can always contract the fiber components not intersect-
ing the zero section, or one can work with singular Calabi-Yau manifolds but then has
to prove that a resolution exists.

By definition, an elliptic fibration is a surjective map π : X → B from the Calabi-
Yau variety to a base B whose generic fiber is T 2 and such that there is a section. The
fiber degenerates along a divisor in the base B called the discriminant. The generic
degenerate fibers have been classified by Kodaira and fall into an ADE-like pattern. For
the purposes of this paper, we will be mostly interested in the In Kodaira fibers (the
An−1 series). Their dual graph (drawing a node for each P1 irreducible component and a
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connecting line if they intersect) is the cycle graph with n nodes. Without monodromies
the In Kodaira fiber yields a low-energy An−1 = SU(n) gauge theory, which is what we
will be interested in. More special fibers need not fall into the Kodaira classification
starting at codimension-two in the base (codimension one along the discriminant). For
starters, the codimension-two fibers may actually be higher-dimensional, a feature that
we like to avoid in our F-theory models.

We can distinguish two kinds of sections, and both will feature prominently in this
paper. The first and simpler case is that of a holomorphic section (or just section), mean-
ing that there is a holomorphic embedding s : B ↪→ X of the base in the elliptic fibration
such that the composition π ◦ s = idB is the identity map on B. The second and more
complicated case is that of a rational section, that is, we require only a birational mor-
phism s′ : B 99K B′ ⊂ X such that π◦s′ = idB. This means that s′ : B → B′ is generically
one-to-one, but not defined over some points. The points where s′ cannot be defined is
where the divisor B′ ⊂ X wraps a whole fiber component. Clearly, a holomorphic section
is a special case of a rational section, but we stress that rational sections are perfectly
fine for F-theory compactifications. For physics applications, the rational sections give us
important additional freedom: A holomorphic section must intersect any fiber in a single
point, that is, it intersects a single irreducible fiber component with intersection number
one. Rational sections, on the other hand, can wrap components of codimension-two
fibers and therefore have more freedom in the intersection numbers. This translates into
less constraints for the U(1) matter charges, as we will see in the following.

By definition, an elliptic fibration has at least one section. We pick one and call it the
zero section; physics does not depend on this choice. The set of all sections then forms
an Abelian group under fiber-wise addition. That is, identify the torus T 2 = C/(Z⊕ τZ)
such that the zero section passes through 0 ∈ C. Any pair of section then passes through
two points, which can be added in C/(Z ⊕ τZ) to obtain another section. The sections
together with this group law are called the Mordell-Weil group MW (X). Its rank is the
number of independent U(1) gauge factors. We will be mostly interested in the rank-one
case in the remainder of this paper, where there is an (up to sign) unique section that
generates MW (X) ' Z. To obtain an SU(5) × U(1) low-energy gauge theory, we thus
need an I5 discriminant locus without monodromy together with two sections (the zero
section and the Mordell-Weil generator). Up to relabelling, there are three different ways
for the I5 and two sections to intersect which are depicted in Figure 1.

These three possibilities translate into different patterns of U(1) charges for matter
fields. Note that U(1) charges can be normalized arbitrarily, for example it is sometimes
claimed that the up quark has electric charge 2

3
. We will be using the sane normalization

where the minimal charge is one. With this nomenclature, the three possibilities are

5–0 split: The SU(5) singlets have minimal U(1) charge one.

4–1 split: The SU(5) singlets have U(1) charges in 5Z. The 5 of SU(5) (fundamental rep-
resentation) have U(1) charge 2, 3 mod 5. The 10 (antisymmetric representation)
have U(1) charges 1, 4 mod 5.
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5–0 split 4–1 split 3–2 split

σ0 σ1 σ0

σ1

σ0

σ1

Figure 1: The three different relative orientations of the I5 discriminant and two
sections σ0, σ1. This notion matches the splitting of the spectral cover
if and only if the spectral cover unbroken gauge group is the low-energy
effective SU(5)× U(1).

3–2 split: The SU(5) singlets have U(1) charges in 5Z. The fundamentals have U(1)
charges 1, 4 mod 5. The antisymmetrics have U(1) charges 2, 3 mod 5.

In special examples the two sections can be obtained by imposing that some polynomial
related to the Calabi-Yau hypersurface equation factorizes. Note, however, that the 5–0
split has obviously nothing to do with a factorization of a degree-5 polynomial into a
degree-5 and a degree-0 polynomial and does therefore not appear in the constructions
of [16–19].

3.2 Calabi-Yau Threefold and its Sections

In this paper, we will be investigating F-theory compactifications on elliptically fibered
Calabi-Yau fourfolds. In particular, we will be interested in the U(1) charges of matter
fields, which are determined by codimension-two fibers. Hence this question is about the
geometry of a three-dimensional variety and nothing in the analysis changes in an essential
manner when we go from three- to fourfolds with the same fiber structure. Therefore,
we will first discuss some crucial aspects in the context of Calabi-Yau threefolds in this
section. For simplicity, we will be looking at the simplest possible base P2, though it
would be very easy to apply our methods to more complicated toric bases or to complete
intersections where the additional equations are constant along the fiber direction.

To be completely explicit, we will be considering the Calabi-Yau hypersurface [30] in
the ambient toric variety specified by Table 3.1. The hypersurface in the 4-d toric variety
is cut out by the equation

p =
∑

m∈∆∩M

αmh
nh0
·m+1

0 h
nh1
·m+1

1 d
nd0
·m+1

0 · · · fnf3
·m+1

3 = 0 (3.1)

where ∆ is the dual (polar) polytope to ∇, and M is the dual lattice to N . The elliptic
fibration is a toric morphism, that is, induced by a map of the fan Σ of the toric ambient
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Point nz ∈ ∇ ∩N Coordinate z Divisor V (z)

−1 −1 −1 −1 h0 Ĥ0

0 0 0 1 h1 Ĥ1

−2 −1 1 0 d0 D̂0

−1 0 1 0 d1 D̂1

0 0 1 0 d2 D̂2

0 −1 1 0 d3 D̂3

−1 −1 1 0 d4 D̂4

−1 0 0 0 f0 F̂0

0 1 0 0 f1 F̂1

1 0 0 0 f2 F̂2

−1 −1 0 0 f3 F̂3

Table 3.1: The toric data for the smooth Calabi-Yau threefold X. Together with
the origin, these are the only integral points in the lattice polytope ∇
and we will be using the notation on the right for the corresponding
toric divisors. The Hodge numbers are h11(X) = 7 and h21(X) = 63.
Together with the fact that there is a I5 discriminant component, the
Shioda-Tate-Wazir formula [29] tells us that rankMW (X) = 1. The
fan is given in (A.1).

space, given explicitly in Eq. (A.1), to the fan of P2 by projecting on the last two coordi-
nates of N ' Z4. In terms of homogeneous coordinates, the projection map π : X → P2

is given by

π : [h0 : h1 : d0 : . . . : d4 : f0 : . . . : f3] 7→ [h0 : h1 : d0d1d2d3d4] (3.2)

We see that the homogeneous coordinates f0, . . . , f3 corresponding to the rays in the
kernel of the projection parametrize the fiber in the ambient space. The I5 discriminant
component is the curve [z0 : z1 : 0] ∈ P2 and the 5 divisors D̂0, . . . , D̂4 map to it.
In a generic fiber of the discriminant (codimension-one over the base), the Calabi-Yau
hypersurface cuts out a P1 in each of the 5 components, yielding the I5 Kodaira fiber.

The simplest way to define a section is to pick a toric divisor on the generic fiber,
that is, set one of the fi to zero. Together with the hypersurface equation, this cuts
out a certain number of points in each fiber. The number of points can be computed
using intersection theory, or naively by plugging in fi = 0 into the hypersurface equation.
Homogeneous coordinates whose points are not in the star of the cone 〈nf0〉 cannot vanish
simultaneously with f0 and can be scaled to one.3 Setting f0 = 0, f2 = di = 1, i > 0 the
hypersurface equation (3.1) takes the form

p : α0f1 +
(
α1h

2
0 + α2h0h1 + α3h

2
1 + α4h0d0 + α5h1d0 + α6d

2
0

)
f3 = 0. (3.3)

This equation can be solved trivially for the homogeneous fiber coordinates [f1 : f3]
along the F̂0 divisor. In fact, f1 6= 0 = f3 is forbidden if all coefficients αm are sufficiently

3These coordinates lie in the Stanley-Reisner ideal when multiplied with f0
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generic, so we may scale f3 = 1 as well. Thus, the section is

σ0 : [h0 : h1 : d0] 7→ [h0 : h1 : d0 : 1 : 1 : 1 : 1 : 0 : f1(h0, h1, f0) : 1 : 1],

f1(h0, h1, f0) = − 1
α0

(
α1h

2
0 + α2h0h1 + α3h

2
1 + α4h0d0 + α5h1d0 + α6d

2
0

)
.

(3.4)

We see that σ0 = {p = f0 = 0} is not only a section, which could have been learned from
intersection theory alone, but also that it is a holomorphic section.

It remains to find a second section, namely the generator of the Mordell-Weil group.
This is made more interesting by the fact that none of the remaining toric fiber divisors
F̂1, F̂2, F̂3 defines a section for us. In fact, F̂1 and F̂3 define two-sections and F̂2 a
three-section. Hence we will approach this section differently, and, instead of explicitly
finding its equation, we will determine its homology class. A first guess, which is wrong
but instructive, is to take [F̂1 − F̂0]. It is a two-section minus a section and therefore,
numerically, a section. In more elaborate terms,4 the generic fiber has the homology class
Ĥ0 ∩ Ĥ1 = π−1([0 : 0 : 1]). By a simple intersection computation, its intersection with
the tentative section is therefore

[F̂1 − F̂0] ∩ Ĥ0 ∩ Ĥ1 = 1. (3.5)

However, other intersection numbers show that the class [F̂1 − F̂0] does not contain
a section. By intersecting the fibral5 divisors with Ĥ0, Ĥ1 we obtain the irreducible
component curves Ci ' P1 of the I5 Kodaira fibers as

Ci = D̂i ∩ Ĥ0 = D̂1 ∩ Ĥ1. (3.6)

Computing the intersection numbers with the tentative section, we obtain

[F̂1 − F̂0] ∩ Ci = [F̂1 − F̂0] ∩ D̂i ∩ Ĥ0 =


−1 i = 0,

1 i = 1, 2,

0 i = 3, 4.

(3.7)

The fact that the intersection number is negative means that the I5 component curve
C0 is contained [F̂1 − F̂0] as we slide it along over the discriminant. That is, the whole
fibral divisor D̂0 is contained in [F̂1 − F̂0]. But since a rational section may only con-
tain components of codimension-two fibers and not complete fibral divisors (which are
codimension-one over the base), [F̂1 − F̂0] is not a rational section after all. However, it
is clear that this can be fixed by subtracting the fibral divisor D̂0.

Therefore our new best guess for the class of the section generating the Mordell-Weil
group is [F̂1− F̂0− D̂0]. Computing intersection numbers, one finds that it still does not

4Note that the divisors Ĥ0 = π−1([0 : ∗ : ∗]) and Ĥ1 = π−1([∗ : 0 : ∗]) are elliptic fibrations over the
coordinate P1 in the base that intersect the discriminant transversely.

5The fibral divisors D̂i are the divisors swept out by irreducible components of the I5 Kodaira fiber
as we move the curves along over the discriminant.
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work and one needs to subtract further vertical divisors. After repeating the same steps
several times, the end result is the homology class

[σ1] = [F̂1 − F̂0 − D̂0 − D̂3 − D̂4 + Ĥ0]. (3.8)

Showing that this homology class actually contains a section is more involved and will be
presented in Subsection A.2. This is the section generating the Mordell-Weil group and,
as we will see in the following, it is only a rational section. Computing the intersection
number σ1∩ D̂1∩ Ĥ0 and noticing that σ0 intersects D̂0 only from Eq. (3.4), we note that
this elliptic fibraiton is of the 4–1 split type. Finally, we note from the sheaf cohomology
computation that the section σ1 exists only on the Calabi-Yau hypersurface and does not
extend to a section on the whole ambient toric variety. This is why its construction has
been so tedious.

3.3 Calabi-Yau Fourfold and its Sections

As we have mentioned previously, the matter content induced by a particular Calabi-Yau
manifold depends on the codimension-two singularities of the variety and one can extend
the base from P2 to P3 without changing the types of matter representations that can
occur. Extending the toric data in Table 3.1 to a fourfold is therefore very simple: We
embed the points nz into N ′ ' Z5 via

nz 7→
{

(nz, 0) for z 6= h0

(nz,−1) for z = h0
(3.9)

and add an additional point nh2 = (0, 0, 0, 0, 1) whose divisor we denote by Ĥ2. By abuse
of notation, we will use the same letters for divisors and homogeneous coordinates. Since
we will never be talking about the Calabi-Yau fourfold and the threefold at the same
time, their meaning should be clear from context.

Of the six triangulations that induce inequivalent intersection numbers on the Calabi-
Yau hypersurface in the ambient toric fivefold, we choose the one given by (A.2). We
remark that for this choice the zero section corresponding to f0 = 0 is not holomorphic
anymore. However, this no problem for F-theory appliations. By the exact same rea-
soning as before, we find that there is (up to sign) a single Mordell-Weil generator. Its
homology class is almost identical to the one in Eq. (3.8), namely

[σ1] = [F̂1 − F̂0 − D̂0 − D̂3 − D̂4 + 2Ĥ0] . (3.10)

To make contact with the notation in [23,31,32] let us define a shifted bases of divisors,
which we denote by unhatted letters. Most of the redefinitions are trivial, namely

Di = D̂i for i 6= 0, Fi = F̂i, and Hi = Ĥi, (3.11)

but the following have a deeper meaning:

D0 = F̂0 + 2Ĥ1

D5 = −39D̂2 − 76D̂3 − 38D̂4 + 7F̂3 + 39F̂1 − 41F̂2 + 31F̂0

(3.12)
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D0 represents a physically motivated choice for our base divisor in terms of which the
low-energy effective action takes a more convenient form, while D5 is the Abelian U(1)-
divisor associated with the Mordell-Weil generator in the class [σ1] and is obtained via
the Shioda map. A convenient basis of independent divisors is given by the set

(D0, Dα, Di, Dm) ≡ (D0, H1, Di, D5) . (3.13)

Here Dα, α = 1, . . . , h1,1(B3) are so-called vertical divisors defined as pre-images of base
divisors under the projection, i.e. Dα = π−1(Db

α). In this particular case h1,1(P3) = 1
and there is only a single independent vertical divisor.

Having introduced this notation, we can compute the Green-Schwarz coefficients ap-
pearing in Eq. (2.8). aα is given by

c1(B3) = aαDb
α , (3.14)

and therefore aα = 2 for our model, while bα and bα(5) are the expansion coefficients of
the base divisors wrapped by the GUT-divisor and the brane supporting the U(1)-factor,
respectively. Here, they can be computed to be

bα = −D
2
i ·H2

B ·H3
= 1 and bα(5) = −D

2
5 ·H2

B ·H3
= 570 (3.15)

and we refer to [23] for the general case.

Finally, let us comment on the fact that the appearance of a non-holomorphic zero
section means that not all of the intersection numbers given in [23] hold anymore. To be
precise, one only has

D0 ·DΛ ·Dα ·Dβ = 0 (3.16)

instead of [D0 · DΛ] = 0 in the cohomology of all of X4, as holds for holomorphic zero
sections.

4 Matter and Abelian Charge Assignments

In this section we derive the matter spectrum present in the Calabi-Yau threefold and
Calabi-Yau fourfold compactifications. Focusing first on the Calabi-Yau threefold we
discuss the intersection theory and the split of the resolving fibers in Subsection 4.1. The
U(1) charges of the fundamental matter are obtained in Subsection 4.2. We comment on
the lift of these results to the Calabi-Yau fourfold. The four-dimensional chiral spectrum
is then computed in Section 5.

4.1 Intersection Theory

By computing the discriminant of the elliptic fibration as a degree-36 polynomial over
the base P2 explicitly [33], one can always enumerate the codimension-two fibers where
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the I5 Kodaira fiber degenerates further. We now pick a sufficiently generic hypersurface
using random coefficients in Eq. (3.1), find the location of the codimension-two fibers
numerically, and analyze the hypersurface in these special fibers. Roughly, the hyper-
surface will factorize in one of the irreducible components of the toric ambient fiber, and
this defines the charge of the localized matter field.

Naively, we face an impasse: the combinatorial description of the geometry of the
ambient toric variety knows nothing about whether a hypersurface equation factorizes or
not. Hence no toric intersection computation on the toric variety XΣ can possibly capture
the irreducible curves that are stuck on the codimension-two fiber; but the zero modes
on those curves are precisely the matter fields that we are after. However, this argument
is a bit too simple minded and, while we cannot use simply intersection theory on XΣ,
toric methods still apply. The trick is to construct the irreducible components of the
fibers of the ambient space, which are two-dimensional toric varieties. The hypersurface
restricted to the ambient toric fiber will factorize into multiple irreducible components,
each of which has its own divisor class on the surface. Then all that remains is to pull
back the sections to this fiber component and apply the usual toric intersection theory
there.

To clarify this procedure, let us look at an example and consider the irreducible
fiber component C0 = D̂0 ∩ Ĥ0 of the I5 Kodaira fiber that intersects the zero-section
σ0. The star of the corresponding ray 〈nd0〉 contains the homogeneous coordinates h0,
h1, d1, d2, d4, f0, f1, and f3. We set d0 to zero and all remaining variables to one.
According to the fibration map Eq. (3.2), the point on the I5 discriminant locus [h0 :
h1 : 0] ∈ P2 is parametrized by the ratio of h0 and h1, which we treat in the following as
numerical constants that have been fixed to restrict us to a particular codimension-two
fiber. Plugging this into the hypersurface equation, we obtain four non-zero terms

p(h0, h1, 0, d1, d2, 1, d4, f0, f1, 1, f3) = β0d1d
2
2d4f1+β1d1d2f0f

2
1 +β2d2d4f3+β3f0f1f3 (4.1)

where β0, . . . , β3 are constants depending on the fixed h0, h1.

For special values of the h0, h1 the coefficients βi become special and the hypersurface
equation factorizes. This is how the I5 Kodaira fiber degenerates further at codimension-
two fibers. A computation shows that [34]

• at 2 distinct codimension-two fibers the coefficient β2 vanishes and the polynomial
factorizes as

p(h0, h1, 0, d1, d2, 1, d4, f0, f1, 1, f3) = f1 ×
(
β0d1d

2
2d4 + β1d1d2f0f1 + β3f0f3

)
(4.2)

• at 3 distinct codimension-two fibers the hypersurface equation factors as

p(h0, h1, 0, d1, d2, 1, d4, f0, f1, 1, f3) = (β′0d1d2f1 + β′1f3)× (β′2d2d4 + β′3f0f1) (4.3)

• at further 14 codimension-two degenerate fibers the hypersurface equation on the
fiber component C0 does not factorize. Instead, other irreducible components of
the I5 fiber, that is, Ci = D̂i ∩ Ĥ0 for i 6= 0, become reducible.
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• finally, there are 3 remaining codimenion-two fibers where multiple I5 components
factor simultaneously. This is where the 10 matter fields are localized.

To understand the intersection theory on the fiber, we have to construct the fiber
component C0 = D̂0 ∩ Ĥ0 as a toric variety. That is, the remaining homogeneous co-
ordinates d1, d2, d4, f0, f1, f3 on the right hand side of Eq. (4.1) are the homogeneous
coordinates of a two-dimensional toric variety. The toric surface can be reconstructed
from knowing how the homogeneous coordinate rescalings act. First, one has to identify
the subset of homogeneous rescalings on the 4-d toric variety XΣ that do not change the
values of h0 and h1. Then, ignore the action on d0 since it is being set to zero. The result

d4

f3

f1

f0

d2

d1

Point nz Coord. z V (z)
1 0 d1 D̄1

1 1 d2 D̄2

0 1 d4 D̄4

−1 0 f3 F̄3

1 −1 f1 F̄1

0 −1 f0 F̄0

Figure 2: The toric ambient space fiber C0, that is, one of the five irreducible
components of π−1([h0 : h1 : 0]).

is that the toric surface on which Eq. (4.1) is defined is the one shown in Figure 2. In
more elaborate terms, this is the relative star construction of [35]. This toric surface is
embedded into the fiber of the toric variety Xσ over [h0 : h1 : 0] via

i0 : [d1 : d2 : d4 : f0 : f1 : f3] 7→ [h0 : h1 : 0 : d1 : d2 : 1 : d4 : f0 : f1 : 1 : f3] (4.4)

We now take advantage of the toric surface description of the fiber component. First,
we can formulate the factorization of the hypersurface equation as follows:

• At 2 distinct codimension-two fibers, where the hypersurface factors as in Eq. (4.2),
the I5 fiber component splits into two irreducible components with homology classes

V (p) =
(
F̄1

)
+
(
F̄0 + F̄3

)
, (4.5)

• and at 3 distinct codimension-two fibers, where the hypersurface equation factors
as Eq. (4.3), the I5 fiber component splits into two irreducible components with
homology classes

V (p) =
(
F̄0 + F̄1

)
+
(
F̄3

)
. (4.6)
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Furthermore, the sections σ0, σ1, as divisors on XΣ, can be pulled back by the embedding
map i0, see Eq. (4.4). The details of the toric algorithm for the pullback by the fiber
embedding can be found in [35]. The result is that

i∗0(σ0) =F̄0,

i∗0(σ1) =F̄3 − F̄0.
(4.7)

To summarize, the I5 Kodaira fiber degenerates at 2 + 3 codimension-two fibers by
splitting the irreducible component intersecting the zero-section in two, yielding a fiber
of Kodaira type I6. However, in the first two fibers it splits into two curves that are
distinct from the split in the last 3 fibers. The fiber components and their intersection
number with the sections is given in Table 4.1.

I6 component C̄0 C̄1 C̄2 C̄3 C̄4 C̄5

Realization F̄0 + F̄1 F̄3 C1 C2 C3 C4

∩σ0 0 1 0 0 0 0
∩σ1 1 −1 0 0 1 0

I6 component C̄0 C̄1 C̄2 C̄3 C̄4 C̄5

Realization F̄3 F̄0 + F̄1 C1 C2 C3 C4

∩σ0 1 0 0 0 0 0
∩σ1 −1 1 0 0 1 0

Table 4.1: Intersection numbers of the two different I6-type codimension-two fibers
where the codimension-one I5 fiber splits the fiber component intersect-
ing the zero section. The curves C̄i are the I6 fiber components in
cyclic order. The curves Ci are the I5 fiber components Ci = D̂i ∩ Ĥ0.

4.2 Fundamental Matter

The two different degenerations of the I5 Kodaira fiber into codimension-two I6-type
fibers result in localized 2 × 5 and 3 × 5 matter of SU(5). They will turn out to be
distinguished by their U(1) charge, as we are about to see. The U(1) charge is given
by the intersection of the curves stuck at codimension-two fiber, that is, the irreducible
components of the factored I5 component, with the image of the section under the Shioda
map [15] S : MW (X)→ H4(X,Q). For a single I5 Kodaira fiber, this boils down to

U(1)-charge(C̄i) = C̄i ∩ S(σ1)

= C̄i ∩ σ1 − C̄i ∩ σ0 +
∑

1≤a,b≤4

(C̄i ∩ D̂a)

 4
5

3
5

2
5

1
5

3
5

6
5

4
5

2
5

2
5

4
5

6
5

3
5

1
5

2
5

3
5

4
5


ab

(σ1 ∩ Cb) (4.8)
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For example, consider C̄0 = F̄0 + F̄1, a curve contributing to the 2× 5. Its intersections
with σ0, σ1 are listed in the upper half of Table 4.1.

U(1)− charge(2× 5) = 1− 0 + ( 0 0 0 1 )

 4
5

3
5

2
5

1
5

3
5

6
5

4
5

2
5

2
5

4
5

6
5

3
5

1
5

2
5

3
5

4
5

( 0
0
1
0

)
=

8

5
(4.9)

Similarly, the U(1) charge of the other 3×5 ends up being 7
5
. As noted in Subsection 4.1,

there are further 14 codimension-two fibers giving rise to 5 and 3 more yielding 10 matter.
Their U(1) charge can be computed by straightforward application of the same methods
and we will leave the details as an exercise to the reader. The result is that, after clearing
denominators to make the U(1) charges integral, the SU(5)-charged spectrum is

2× 58 + 3× 57 + 6× 53 + 8× 52 + 3× 101. (4.10)

The Calabi-Yau fourfold will have the same types of representations arising, since they are
determined by the behaviour at a generic point on a matter curve. In other words, after
intersecting the matter curve with a divisor crossing it, the same analysis for the SU(5)×
U(1) representation content applies. Of course, the 6-d quaternionic representations
will be split up into conjugate pairs of 4-d representations, and the multiplicity of the
representations will be different. In fact, the multiplicities do depend on the four-form
flux which is a phenomenon for fourfolds that has no threefold analogue, and will be the
topic of the following section.

5 Chiral Index from One-Loop Chern-Simons Terms

In this final section we compute the four-dimensional chiral indexes for the matter spec-
trum induced by an F-theory compactification on the Calabi-Yau fourfold of Subsec-
tion 3.3. We first make some general remarks on G4 fluxes and their induced three-
dimensional Chern-Simons terms in Subsection 5.1. The explicit computations of the
chiral indices for our example are presented in Subsection 5.2.

5.1 General Remarks on G4-Fluxes and Chiralities

Naively reducing the six-dimensional matter multiplets to four dimensions, the resulting
matter representations appear in vector-like pairs. Thus, the resulting theory is non-
chiral. However, this changes as soon as fourform fluxes are included on the M-theory side.
Effectively, their inclusion is equivalent to projecting out certain matter multiplets, hence
leading to non-trivial chiral indices. The complete data of an F-theory compactification
to four dimensions therefore consists of the Calabi-Yau fourfold X4 supplemented by a
choice of G-flux satisfying certain consistency conditions. We will now explain what these
conditions are, construct a concrete set of fluxes and calculate the resulting chiral indices.
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First of all, a consistent choice of G4 must satisfy a quantisation condition [36], i.e.

G4 + 1
2
c2(X̂4) ∈ H4(X̂4,Z) , (5.1)

where c2(X̂4) is the second Chern class of X̂4. Furthermore, the fourth cohomology
group of X̂4 splits into orthogonal subspaces, namely a horizontal one whose elements
are derived from complex structure variations of the global (4, 0)-form on X̂4 and a
vertical one. The vertical subspace contains four-forms obtained by taking the wedge
product of two (1, 1)-forms on X̂4. While horizontal fluxes give rise to a non-trivial flux
superpotential, the vertical fluxes induce chirality in the four-dimensional theory and we
therefore concentrate on them. For more details on flux quantisation in F-theory, we refer
to [37,38]. Chirality induced by G-fluxes has recently been studied in [1–3,10,23,39–43].
We will follow the general approach of [23,42].

In order to determine the chiral indices a given flux induces, we employ a result
obtained by using M-/F-theory duality in three and four dimensions, respectively. On
the M-theory side, non-trivial G-flux induces a Chern-Simons term in three dimensions

S
(3)
CS = −1

2

∫
ΘM
ABA

A ∧ FB , (5.2)

with flux coefficients

ΘM
AB =

1

2

∫
X4

G4 ∧ ωA ∧ ωB . (5.3)

and ωA the basis of (1, 1)-forms introduced in Subsection 3.3. On the F-theory side,
Chern-Simons terms originate from integrating out charged matter in the circle reduction
from four to three dimensions and one can show that their coefficients are given by

ΘF
ΛΣ = −

∑
R

χ(R)
∑
w∈R

wΛwΣ sign(w) (5.4)

Here Λ,Σ = (i, 5), R runs over all complex representations and w are the weights of a
representation R. To each weight w one can naturally assign a curve in X4 and we take
sign(w) to be +1 if this curves shrinks to a point in the F-theory limit X4 → X̂4 and −1
otherwise. For details of how to calculate sign(w) we refer to [23, 42], where analogous
computations were carried out.

Before giving an explicit form of G4, we impose some additional constraints:

Θiα = Θαβ = Θ0α = 0

Θ0i = Θ00 = 0
(5.5)

The first three equations forbid a broken non-Abelian gauge group, non-geometric fluxes
and fluxes along the 3d/4d-circle respectively. For holomorphic zero sections the remain-
ing two constraints follow automatically from the first three and therefore we impose
them by hand for our rational zero section.
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After enforcing the constraints in Eq. (5.5), the only other non-vanishing Chern-
Simons terms apart from (5.4) are Θ05. A loop calculation on the F-Theory side deter-
mines them to be [23]

ΘF
05 =

1

6

∑
q

n(q)q , (5.6)

where n(q) counts the number of fields with U(1) charge q. For example, in the case of
our spectrum one has that

n(−1)− n(+1) = 10χ(10−1) (5.7)

since every 10 representation has ten different weights. Note that the matching condition
ΘF

05 = ΘM
05 is precisely equivalent to the cancellation of the gravitational-Abelian anomaly

in Eq. (2.8), since Θ05 = 1
2
Θα5.

5.2 Chiral Matter Spectrum in the Example

For the triangulation (A.2) we find four independent flux parameters, namely

G4 =α
(

2D2
2 − 28D3D4 − 7D2

4 + 9
4
F 2

3 − 28
5
D2F1 + 4F 2

1 + 11
10
F3F2 + 122

15
F1F2 − 36

5
F 2

2

− 65
6
F1F0 − 9F 2

0

)
+ β

(
−D2

2 + 8D3D4 + 2D2
4 − 1

2
F 2

3 + 6
5
D2F1 − 1

5
F3F2 − 49

15
F1F2

+ 12
5
F 2

2 + 3F1F0 + 2F 2
0

)
+ γ
(
−D2

2 + 8D3D4 + 2D2
4 − 1

2
F 2

3 + 6
5
D2F1 + 11

5
F3F2

− 47

15
F1F2 +

8

5
F 2

2 + 3F1F0 + 2F 2
0

)
+ δ
(
− 2D2

2 + 20D3D4 + 5D2
4 − 7

4
F 2

3 + 12
5
D2F1

+ 11
10
F3F2 − 118

15
F1F2 + 24

5
F 2

2 + 21
2
F1F0 + 7F 2

0

)
.

(5.8)

Given G4, one can match the flux-induced Chern-Simons coefficients with those produced
by chiral matter on the F-theory side by solving

ΘM
ΛΣ = ΘF

ΛΣ. (5.9)

There is a small ambiguity in solving (5.9) for the chiral indices, since the two SU(5)-
singlets give proportional contributions. We therefore demand that the theory is anomaly-
free and obtain the unique solution

χ(5−8) = α , χ(5−3) = β , χ(52) = γ , χ(57) = δ ,

χ(10−1) = −α− β − γ − δ , χ(15) = −8α + β + 4γ + 11δ ,

χ(110) = −5α + 8γ + 14δ .

(5.10)
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Let us stress that it is a non-trivial consistency check that all four anomaly conditions
in Eq. (2.8) are satisfied, since the above ambiguity only gave us one free parameter.

Last of all, we remark that the Euler number χ(X4) and

1

2

∫
X4

G4 ∧G4 (5.11)

can easily be calculated using the same toric methods for any choice of flux parameters.
We checked that the tadpole condition can be easily satisfied by constraining the flux
parameters. Our particular fourfold has χ(X4) = 2364.
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A Details on the Calabi-Yau Geometries

A.1 Toric Construction

In the main text we listed the rays of the fan defining the threefold in Table 3.1, and
for the fourfold in Eq. (3.9). To uniquely determine the ambient toric variety (and,
therefore, the Calabi-Yau hypersurface) it is neccessary to also list the generating cones
of the fan. Different choices for the fan will result in different intersection numbers, but
not in different U(1) charges. For the threefold hypersurface, we pick

Σ =
{〈
Ĥ0F̂0Ĥ1F̂1

〉
,
〈
Ĥ0F̂2Ĥ1F̂1

〉
,
〈
D̂0Ĥ0F̂3F̂0

〉
,
〈
D̂0F̂3F̂0Ĥ1

〉
,
〈
Ĥ0F̂3F̂0Ĥ1

〉
,〈

Ĥ0F̂3F̂2D̂3

〉
,
〈
F̂3F̂2D̂3Ĥ1

〉
,
〈
Ĥ0F̂3F̂2Ĥ1

〉
,
〈
Ĥ0D̂1D̂2F̂1

〉
,
〈
Ĥ0F̂2D̂2F̂1

〉
,〈

Ĥ0F̂2D̂3D̂2

〉
,
〈
D̂1Ĥ1D̂2F̂1

〉
,
〈
F̂2Ĥ1D̂2F̂1

〉
,
〈
F̂2D̂3Ĥ1D̂2

〉
,
〈
D̂0Ĥ0D̂1F̂1

〉
,〈

D̂0Ĥ0F̂0F̂1

〉
,
〈
D̂0Ĥ0D̂1D̂2

〉
,
〈
D̂0F̂0Ĥ1F̂1

〉
,
〈
D̂0D̂1Ĥ1F̂1

〉
,
〈
D̂0D̂1Ĥ1D̂2

〉
,〈

Ĥ0F̂3D̂3D̂4

〉
,
〈
D̂0Ĥ0F̂3D̂4

〉
,
〈
D̂0F̂3Ĥ1D̂4

〉
,
〈
F̂3D̂3Ĥ1D̂4

〉
,
〈
D̂0Ĥ0D̂2D̂4

〉
,〈

Ĥ0D̂3D̂2D̂4

〉
,
〈
D̂3Ĥ1D̂2D̂4

〉
,
〈
D̂0Ĥ1D̂2D̂4

〉}
(A.1)
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and for the fourfold hypersurface we are using

Σ =
{
〈Ĥ0Ĥ1Ĥ2F̂3F̂2〉, 〈Ĥ0Ĥ1Ĥ2F̂3F̂0〉, 〈Ĥ0Ĥ1Ĥ2F̂1F̂2〉, 〈Ĥ0Ĥ1Ĥ2F̂1F̂0〉,

〈Ĥ0Ĥ1D̂0D̂1D̂2〉, 〈Ĥ0Ĥ1D̂0D̂1F̂1〉, 〈Ĥ0Ĥ1D̂0D̂2D̂4〉, 〈Ĥ0Ĥ1D̂0D̂4F̂3〉,

〈Ĥ0Ĥ1D̂0F̂3F̂0〉, 〈Ĥ0Ĥ1D̂0F̂1F̂0〉, 〈Ĥ0Ĥ1D̂1D̂2F̂1〉, 〈Ĥ0Ĥ1D̂2D̂3D̂4〉,

〈Ĥ0Ĥ1D̂2D̂3F̂2〉, 〈Ĥ0Ĥ1D̂2F̂1F̂2〉, 〈Ĥ0Ĥ1D̂3D̂4F̂3〉, 〈Ĥ0Ĥ1D̂3F̂3F̂2〉,

〈Ĥ0Ĥ2D̂0D̂1D̂2〉, 〈Ĥ0Ĥ2D̂0D̂1F̂1〉, 〈Ĥ0Ĥ2D̂0D̂2D̂4〉, 〈Ĥ0Ĥ2D̂0D̂4F̂3〉,

〈Ĥ0Ĥ2D̂0F̂3F̂0〉, 〈Ĥ0Ĥ2D̂0F̂1F̂0〉, 〈Ĥ0Ĥ2D̂1D̂2F̂1〉, 〈Ĥ0Ĥ2D̂2D̂3D̂4〉,

〈Ĥ0Ĥ2D̂2D̂3F̂2〉, 〈Ĥ0Ĥ2D̂2F̂1F̂2〉, 〈Ĥ0Ĥ2D̂3D̂4F̂3〉, 〈Ĥ0Ĥ2D̂3F̂3F̂2〉,

〈Ĥ1Ĥ2D̂0D̂1D̂2〉, 〈Ĥ1Ĥ2D̂0D̂1F̂1〉, 〈Ĥ1Ĥ2D̂0D̂2D̂4〉, 〈Ĥ1Ĥ2D̂0D̂4F̂3〉,

〈Ĥ1Ĥ2D̂0F̂3F̂0〉, 〈Ĥ1Ĥ2D̂0F̂1F̂0〉, 〈Ĥ1Ĥ2D̂1D̂2F̂1〉, 〈Ĥ1Ĥ2D̂2D̂3D̂4〉,

〈Ĥ1Ĥ2D̂2D̂3F̂2〉, 〈Ĥ1Ĥ2D̂2F̂1F̂2〉, 〈Ĥ1Ĥ2D̂3D̂4F̂3〉, 〈Ĥ1Ĥ2D̂3F̂3F̂2〉
}
.

(A.2)

We note that these fans have been constructed such that they are compatible with the
projection that we want to use as a toric morphism.

A.2 Showing the Existence of a Section

In this appendix we show that the homology class (3.8) actually contains a section, or
does not only happen to have the right intersection numbers with fiber components. To
settle this question we have to compute the line bundle cohomology group H0(X,OX(s)).
This cohomology group sits in the long exact sequence for the sheaf exact sequence

0 −→ OXΣ
(s+KXΣ

) −→ OXΣ
(s) −→ OX(s) −→ 0 (A.3)

for the restriction from the four-dimensional ambient toric variety to the three-dimensional
Calabi-Yau hypersurface. The toric cohomology groups can easily be computed to be

dimH i
(
XΣ,OXΣ

(s+KXΣ
)
)

=

{
1 i = 1,

0 else,
dimH i

(
XΣ,OXΣ

(s)
)

= 0. (A.4)

Therefore, the long exact sequence

· · · −→ H0(XΣ,OXΣ
(s)) −→ H0(X,OX(s)) −→

−→ H1(XΣ,OXΣ
(s+KXΣ

)) −→ H1(XΣ,OXΣ
(s)) −→ · · · (A.5)

tells us that the homology class [σ1] = [F̂1 − F̂0 − D̂0 − D̂3 − D̂4 + Ĥ0] contains a unique
variety σ1 representing it.
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