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Abstract

The problem of counting points is revisited from the perspective of
reflexive 4-dimensional polytopes. As an application, the Hilbert series
of the 473, 800, 776 reflexive polytopes (equivalently, their Calabi-Yau
hypersurfaces) are computed.ar
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1 Introduction

A recurring theme in string theory is that massless (relative to the string
scale) degrees of freedom are computed by cohomology groups of suitable
bundles or sheaves on the compactification manifold. In general, this can be
quite a difficult problem to compute and often requires an expensive Gröbner
basis computation when one gets down to business. Fortunately, toric vari-
eties are both a rather common tool in the construction of compactification
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manifolds and at the same time much more friendly for the computation of
cohomology groups. The underlying reason is the defining fact of toric va-
rieties: there exists an action of the algebraic torus (C×)d, where d is the
dimension of the toric variety.

For example, consider P2 with the line bundle O(n) of first Chern class n.
Its sections are the homogeneous polynomials of degree n. However, there is
a special basis for the homogeneous polynomials, namely the homogeneous
monomials. This basis is distinguished by the weights under the torus action.
For example, let x, y, and z be the homogeneous coordinates and take the
torus action to be

(η, ξ) · [x : y : z] =
[
x : ηy : ξz] (η, ξ) ∈ (C×)2 (1)

Then the monomial xaybzc transforms with the weight (b, c) and it is the
only homogeneous polynomial with this weight up to scale. Therefore, we
can identify the sections with points in the weight lattice ' Z2. In other
words, the number of sections equals the number of integral points in the
triangle b, c ≥ 0, b+ c ≤ n. These are easy enough to count, and one finds

dimH0
(
P2,O(n)

)
=

(n+ 1)(n+ 2)

2
=

(
n+ 2

2

)
, n ≥ 0. (2)

The same holds for sections of a line bundle L on a toric variety XΣ, each
graded piece H0(XΣ,L)m under the torus action has multiplicity one and the
allowed weights m ∈M ' Zd form a lattice polyhedron.

For essentially the same reason, Batyrev [1] was able to express the Hodge
numbers of a complex 3-dimensional Calabi-Yau hypersurface in a toric va-
riety defined by a lattice polytope ∇ in the beautifully mirror-symmetric
formula

h11(X∇) = #(∇)− 4− 1−
∑

codim(ν)=1

Int(ν) +
∑

codim(ν)=2

Int(ν)Int(ν∗)

h21(X∆) = #(∆)− 4− 1−
∑

codim(δ)=1

Int(δ) +
∑

codim(δ)=2

Int(δ)Int(δ∗)

via the number of lattice points in the polytope, its dual ∆ = ∇∗, and the
number of interior points in various faces. Similar equations for complete
intersections were found [2, 3] later as well.
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Figure 1: Illustration of the naive point counting algorithm.

2 Counting Points

2.1 Naive Algorithm

For all the reasons presented in the introduction, let us now consider the
problem of enumerating the lattice points in a lattice polytope. Note that
there is also a rich story about approximate point counts which we will
completely ignore out in the following. The naive algorithm to enumerate the
points is simply to find a rectangular bounding box (by finding the minimum
and maximum values of the vertex coordinates) and then iterate over them in
a loop. See Figure 1 for an illustration; Green is the initial lattice polytope,
blue is the bounding box. The actual loop would be written like this in Sage:

sage: triangle = Polyhedron([(1,0), (0,1), (-3,-2)])

sage: pts = []

sage: for p in CartesianProduct(range(-3,1+1), range(-3,1+1)):

... if triangle.contains(p):

... pts.append(p)

sage: pts
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[[-3, -2], [-2, -1], [-1, -1], [-1, 0], [0, 0], [0, 1], [1, 0]]

Sage also contains PALP [4, 5, 6, 7] and has a friendly interface for it. The
wrapper class returns the points as the columns of a matrix:

sage: triangle = LatticePolytope([(1,0), (0,1), (-3,-2)])

sage: triangle.points()

[ 1 0 -3 -2 -1 -1 0]

[ 0 1 -2 -1 0 -1 0]

2.2 Smarter Ways

Much more can be done for counting lattice points. For one, there is a curse of
dimensionality: the volume of the d-dimensional unit simplex is 1

d!
times the

volume of the unit hypercube. Hence, going through all points in a bounding
box becomes less and less efficient. Note that one can directly enumerate the
points of a simplex using the Smith normal norm. This suggests to

1. Triangulate the lattice polytope

2. Enumerate the points in each simplex

A yet more sophisticated way to enumerate lattice points is Barvinok’s
algorithm [8] and uses generating functions. The data of the integral points
in a lattice polytope P can clearly be encoded in the polynomial

fP (x) =
∑

(n1,...,nd)∈P

xn1
1 · · ·x

nd
d . (3)

In particular, fp(1) equals the number of integral points in P . The central
result is that this generating function can be written as a rational function.
For example, take the 1-dimensional lattice interval [n1, n2] with n1, n2 ∈ Z.
Then

f[n1,n2](x) =

n2∑
i=n1

xi =
xn1

1− x
− xn2+1

1− x
. (4)

For any lattice polytope there exists an analogous formula by clever combi-
nations of arithmetic series and subtracting the overcounted points.
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2.3 Implementation

For purposes of toric geometry we are mainly interested in reflexive polytopes
in dimensions 3, 4, and perhaps 5. These have not too many integral points,
for example a 4-dimensional reflexive polytope has between 6 and 680 lattice
points [9] and the average is closer to the lower bound. In practical terms, this
means that the necessary pre-processing (triangulation, Smith forms) renders
all improved algorithms actually slower than the naive approach. However,
one still needs to make some crucial optimizations in the implementation of
the naive algorithm. These are:

• Unwind the inner (and next-to-inner) loop, that is, rewrite inequalities

Ax ≤ b ⇔ a1x1 ≤ b−
d∑
i=2

aixi (5)

such that one needs only one multiplication when iterating over x1.

• Permute coordinates such that the longest edge of the bounding box is
the innermost loop.

• Reorder inequalities to always try the most restrictive inequality first.

• Use convexity: If two points are in the polytope, so are all intermediate
points.

There is no doubt that these optimizations are implemented in PALP, though
there is no clear documentation and the source code is quite hard to read.
Furthermore, PALP is really only applicable towards reflexive polytopes and
sometimes one needs to compute with non-reflexive polytopes for which cer-
tain compile-time assumptions in PALP will fail. For these reasons, the
author has re-implemented this algorithm in Sage [10, 11], so yet another
way to compute the integral points in Figure 1 is

sage: triangle = Polyhedron([(1,0), (0,1), (-3,-2)])

sage: triangle.integral_points()

((-3, -2), (-2, -1), (-1, -1), (-1, 0), (0, 0), (1, 0), (0, 1))

The implementation is written in Cython [12], a variant of the Python lan-
guage that can be compiled to native machine code. It automatically checks
bounds and uses machine integers if possible possible and arbitrary-precision
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Figure 2: Comparison of a naive implementation, PALP via a pseudo-tty
interface, and the author’s implementation in Sage.

integers when necessary. Finally, there are no dimension or size restrictions,
nor does the polytope have to be full-dimensional or contain the origin.

In Figure 2, the three different implementations are compared for the
4-dimensional cross-polytope scaled by a factor of n. Of course just run-
ning PALP without parsing the output into Sage would be the fastest, but
then that is not really useful for general computations. As one can see from
Figure 2, for polytopes with relatively few points (for example, reflexive
ones) trying to interface with an external program is limited by the latency
of executing the program and setting up redirections for stdin/out. This
illustrates one of the key findings of the Sage project: in order to leverage
domain-specific solutions into a framework that combines various mathemati-
cal disciplines, it is crucial to develop libraries and not stand-alone monolithic
programs. For example, much effort has been spent to separate Singular [13]
into a shared library, and this made Singular much more useful to a general
audience outside of computational algebraic geometry.
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3 Hilbert Polynomials

As an application that was suggested during the Max’s memorial confer-
ence, let us compute the Erhard polynomials of the 473, 800, 776 reflexive
4-dimensional polytopes and, from that, the Hilbert polynomials of the cor-
responding Calabi-Yau hypersurfaces. This illustrates the aforementioned
need to combine libraries for domain-specific problems to perform an inter-
disciplinary computation. In particular, one needs to

• Access the database of 4-d reflexive polytopes via PALP,

• Compute the dual description for dilated (non-reflexive) polytopes, for
which we use the Parma Polyhedra Library [14],

• Count the integral points as implemented in Sage, and

• Polynomial algebra via libSingular [13, 15].

The basic question is to count the number of integral points of a lattice
polytope after dilating it by a factor of n ∈ Z≥. For example, take the
polytope defining P4,

∇ = conv{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (−1,−1,−1,−1)}. (6)

By direct computation one can easily find the number of integral points for
low-lying values of n, namely E(∇, n) = 1, 6, 21, 56, 126, 251, 456, 771,
1231, 1876, . . . . On general grounds, these point counts must be the values
of a polynomial, the so-called Erhard polynomial E(∇, n). Since the point
count approximates the volume for large n, the Erhard polynomial must be a
polynomial of the same degree as the ambient space. Hence, to compute the
Erhard polynomial one can just pick ≥ 5 values and compute their Lagrange
polynomial. For example,

sage: R.<x> = QQ[]

sage: R.lagrange_polynomial([(0,1),(1,6),(2,21),(3,56),(4,126),

... (5,251),(6,456),(7,771),(8,1231),(9,1876)])

5/24*x^4 + 5/12*x^3 + 55/24*x^2 + 25/12*x + 1

The Erhard polynomial can also be evaluated at negative values, even though
somewhat unnatural at first sight. It turns out to be much more symmetric
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if we allow negative values, for example

n −5 −4 −3 −2 −1 0 1 2 3 4 5
E(∇, n) 126 56 21 6 1 1 6 21 56 126 251

This symmetry is called Erhard reciprocity,[16]

E(P,−n) = (−1)d#
{

Int(nP ) ∩ Zd
}

= (−1)dE(P, n− 1). (7)

Note that the second equality is a consequence of reflexivity of the polytope
P , while the first equality holds for arbitrary lattice polytopes. Hence, for
purposes of computing the Erhard polynomial of a 4-d reflexive polytope, we
only need to compute two numbers: E(P, 1) and E(P, 2). The rest follows
from Erhard reciprocity and the fact that E(P, 0) = E(P,−1) = 1. This is a
quite tractable enumeration problem, even if repeated 473, 800, 776 times.

For a toric variety X∇, the integral points of the dual polytope ∆ = ∇∗
can be identified with the monomial basis for the sections of the anticanonical
bundle, as alluded to in the introduction. Therefore, the Hilbert polynomial
of the anticanonical bundle

χ(X∇,−K,n) = dimH0
(
X∇,−K⊗n

)
= #{n∆ ∩ Zd} = E(∆, n) (8)

equals the Erhard polynomial of the dual lattice polytope. Up to a factor of
1
d!

, the leading coefficient of the Hilbert polynomial χ(X∇,−K,n) =
∑d

0 akn
k

hence measures the number of points in the dual polytope which equals the
degree of the variety,

ad = 1
d!

deg(X∇) = 1
d!

∫
c1(X∇)d (9)

Since the Erhard polynomial for a 4-d reflexive polytope has two essential
degrees of freedom, this raises the question of what the other geometric quan-
tity is encoding. This turns out to have a nice answer, it is the average scalar
curvature of the variety.

Finally, physicists are of course mostly interested in the Calabi-Yau hy-
persurfaces Y∇ ⊂ X∇ inside toric varieties. By a standard computation this
must be an anticanonical hypersurface. Using the long exact sequence for
the restriction to the hypersurface, one obtains the Hilbert polynomial

χ(Y∇, n) = H0(X∇, K
n)−H0(X∇, K

n−1)

=
deg(Y∇)

d!
nd + 0 + ad−2n

d−2 + · · ·+ a1n+ 0
(10)
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Figure 3: The points (a1 − 91
588
a3, a3 − 1

5
a1) corresponding to the 14, 373

distinct Hilbert series data (a1, a3). The linear transformation is chosen in
order to fill the positive quadrant.

where we used the vanishing of the average scalar curvature and of the arith-
metic genus to eliminate ad−1 and a0. Hence, the Hilbert polynomial

χ(Y∇, π
∗K,n) = H(X∇, n)−H(X∇, n− 1) = a3n

3 + a1n (11)

of the polarized Calabi-Yau threefold (Y∇, π
∗K) has only two non-vanishing

coefficients.

4 Results

According to eq. (10), the Hilbert series of a polarized Calabi-Yau threefold
(Y∇, π

∗K) boils down to a pair of numbers (a3, a1) ∈ Q2. In fact, there
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are 14, 373 distinct Hilbert series with 386 different values for 5
6
≤ a1 ≤ 91

and 2, 229 different values for 5
6
≤ a3 ≤ 588. Moreover, the Hilbert series

coefficients lie in a fairly narrow wedge 1
5
≤ a3

a1
≤ 84

13
= 588

91
of the Q2 plane.

In Figure 3, we stretch this wedge to fill the positive quadrant.
It probably comes as no surprise that there is a correlation between

the Hilbert series data and the 30, 108 Hodge pairs (h11, h21). In fact, the
Hilbert polynomial coefficient are roughly proportional to h11. For exam-
ple, the maximal value (a1, a3) = (91, 588) is attained at the manifold with
(h11, h21) = (491, 11) with the largest known h11. This dependence on h11 is
nicely illustrated by the left column in Figure 4. However, while this overall
tendency is clearly visible, note that there is no precise relation. For most
Hodge pairs, there are multiple allowed values for the Hilbert series coeffi-
cients. As can be seen in the right column of Figure 4, the spread in a1 is
qualitatively different from the spread in the a3 coefficient. At this point,
the author has no mathematical explanation for this behavior. The Hilbert
series data is available online [17].

5 Conclusions

The Kreuzer-Skarke enumeration of reflexive 4-dimensional polytopes re-
mains the largest single effort in what could be called computational string
theory. When it was performed, it was an amazing feat relative to the avail-
able processing power. For example, the authors were not able to hold all
enumerated polytopes in memory and used a carefully bit-packed hard drive
cache. But technology improved by leaps and bounds in the meantime; In
2011, the requisite amount of RAM costs 20$. Today, we can finally do
something with this giant database. Moreover, we no longer need to write
hand-crafted C code but can use a mix of interpreted languages and existing
libraries, increasing both maintainability and code reuse. And one of these
building blocks is and remains PALP, which was written before most of the
tools we can rely on today were created.
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