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Abstract

We construct finite mass, asymptotically flat black hole solutions in d = 4 Einstein–
Yang-Mills theory augmented with higher order curvature terms of the gauge field. They
possess non-Abelian hair in addition to Coulomb electric charge, and, below some non-zero
critical temperature, they are thermodynamically preferred over the Reissner-Nordström
solution. Our results indicate the existence of hairy non-Abelian black holes which are
stable under linear, spherically symmetric perturbations.

Introduction.– In recent years it has been realized that the electrically charged Reissner-
Nordström (RN) black hole, when considered as solution of a more general theory, may become
unstable to forming hair at low temperatures. This has lead to the discovery of some holographic
models for condensed matter systems, and, in particular, to a gravitational description of
superconductivity (see [1] for a review).

The case of Einstein-Yang-Mills (EYM) model with negative cosmological constant Λ in
d = 4 spacetime dimensions provides an interesting illustration of these aspects. As shown in
[2], there is a second order phase transition between the RN–anti-de Sitter solutions, which
are preferred at high temperatures, and symmetry breaking non-Abelian black holes, which are
preferred at low temperatures. In [2], Λ plays an essential role; although electrically charged
hairy black holes do exist also in a Minkowski spacetime background [3], they have rather
different properties as compared to the anti-de Sitter (AdS) solutions in [2]. In particular they
do not emerge as perturbation of the RN black holes, and, similar to the well-known d = 4
asymptotically flat, purely magnetic EYM solutions [4], are also perturbatively unstable.

However, one might take the view that in the strong coupling regime the (Λ = 0) EYM
theory is incomplete. Perhaps the simplest possibility to describe this situation is to supplement
the action of the EYM model with higher order curvature terms, for both gravitational and
gauge field sectors. As discussed e.g. in [5], the inclusion of (string theory inspired-) corrections
to the gravity action does not lead to qualitatively new features. By contrast, we will here argue
that the situation is different vis a vis the inclusion of higher order Yang-Mills (YM) curvature
terms. This possibility has been overlooked so far in the literature. The first relevant order in
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this case is the fourth, in which case the most general such density added to the Lagrangian
consists of the four terms,

Ls = c1Tr {FµνFρσF
µνF ρσ}+ c2Tr {FµνF

µνFρσF
ρσ} (1)

+ c3Tr
{

FτνF
µτFµλF

λν
}

+ c4Tr
{

FµνF
νρFρλF

λµ
}

,

with some constant coefficients ci. A particularly priviledged such combination, which we
adopted here, is that with c1 = c2 = −4c3, c4 = 0. In that case, Ls features only the second
power of any “velocity field” and is a causal density just like the Gauss-Bonnet term in gravity
[6] or the Skyrme [7] term of the O(4) sigma model. With this specific choice of the constants
ci, the Lagrange density (1) is nothing else than the trace of the square of the 4−form cur-
vature Fµνρσ = {Fµ[ν , Fρσ]}. This is the second member of the YM hierarchy [8], providing
a natural generalization of the usual YM model. A convenient way to express this system is

Tr
{

(FµνF̃
µν)2

}

, where a tilde denotes the Hodge dual.

Notwithstanding our specific choice for the constants ci in (1), we have verified that for
certain other choices, some salient features of the solutions discussed in this work, in particular
the instability of the RN black hole, persist.

The model.– Ignoring for simplicity other possible corrections, we consider the following
action for the model

S =

∫

d4x
√−g

[1

4
R− 1

2
Tr {FµνF

µν}+ 3τ

2
Tr

{

(FµνF̃
µν)2

}]

, (2)

(here we have set 4πG/e2 = 1, such that the only parameter of the theory is τ).
In what follows, we shall prove that the presence of the last term in (2) leads to an instability

of the RN black hole, together with the occurance of stable black holes with non-Abelian hair
outside the horizon. We shall restrict attention to the following spherically symmetric Ansatz:

ds2 =
dr2

N
+ r2(dθ2 + sin2 θdφ2)−Nσ2dt2, (3)

where N, σ are functions of r and t in general. The minimal gauge group for which the super-
position of a Coulomb field and a non-Abelian hair is not forbidden by the ’baldness’ theorems
[9] is SU(3). Then, as in the τ = 0 case in [3], we shall restrict to an SU(2)× U(1) truncation
of the SU(3) group, the general spherically symmetric ansatz for the gauge potential being

A =
{

(νT3 + UT8)dr + (wT1 + w̃T2)dθ + ((wT2 − w̃T1) sin θ + cos θT3) dφ+ (vT3 + V T8)dt
}

, (4)

where ν, w, w̃, v and U, V are functions of (r, t) and Ti are the standard generators of the SU(3)
Lie algebra.

For static solutions, one can set the functions ν, w̃, v and U to zero without any loss of
generality, resulting in the equations

m′ = Nw′2 +
(1− w2)2

2r2
+

r2V ′2

2σ2
+ τ

(1− w2)2V ′2

r2σ2
, σ′ =

2σ

r
w′2,

w′′ + (
N ′

N
+

σ′

σ
)w′ +

w(1− w2)

r2N
+

2τ(w2 − 1)V ′2

r2Nσ2
= 0, (5)
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together with the first integral for the electric potential,

V ′ = Q
σ

r2

(

1 +
2τ(1− w2)2

r4

)

−1

, (6)

with Q an arbitrary constant.
The RN solution corresponds to a vanishing SU(2) field, w(r) = ±1, and m(r) = M − Q2

2r
,

σ = 1, V (r) = Φ − Q/r. This solution has an outer event horizon at rh = M +
√

M2 −Q2,
which becomes extremal for Q = M .

Solutions with nonzero magnetic gauge fields should also exist. However, one can see that,
for Q 6= 0, the first integral (6) excludes the existence of particle-like configurations with a
regular origin. Thus, the only physically interesting solutions of this model describe black
holes, with an event horizon at r = rh > 0, located at the largest root of N(rh) = 0. The
regularity conditions at the horizon imply the following series expansion there

m(r) =
rh
2

+m1(r − rh) + . . . , σ(r) = σh +
2σhw

2
1

rh
(r − rh) + . . . ,

w(r) = wh + w1(r − rh) + . . . , V (r) = v1(r − rh) + . . . , (7)

where v1 =
Qr2

h
σh

r4
h
+2τ(1−w2

h
)2
, m1 =

σ2

h
(1−w2

h
)2+v2

1
(r4

h
+2τ(1−w2

h
)2)

2rhσ
2

h

, w1 =
(σ2

h
−2τv2

1
)wh(w

2

h
−1)

(1−2m1)rhσ
2

h

. It is also

straightforward to show that the requirement of finite energy implies the following asymptotic
behavior at large r

m(r) = M − Q2

2r
+ . . . , σ(r) = 1− J2

2r4
+ . . . , w(r) = ±1 +

J

r
+ . . . , V (r) = Φ− Q

r
+ . . . . (8)

Once the parameters σh, wh and J, M, Q are specified, all other coefficients in (7), (8) can
be computed order by order. M and Q correspond to the mass and electric charge of the
solutions; other quantities of interest are the Hawking temperature TH = 1

4π
σ(rh)N

′(rh), the

entropy S = AH

4
= πr2h and the chemical potential Φ. J here is an order parameter describing

the deviation from the Abelian solution.
The results.– The solutions of the equations (5), (6) interpolating between the asymptotics

(7), (8) were constructed numerically, by employing a shooting strategy. Finite mass, non-
Abelian black holes exist for any τ ≥ 0. For given Q, rh, τ , the solutions are found for discrete
values of the parameter wh, labeled by the number of nodes, n, of the magnetic YM potential
w(r). To simplify the picture, in this work we have restricted attention to solutions with a
monotonic behavior of the magnetic gauge potential w(r) (and thus n = 0, 1 only).

In characterizing the non-Abelian configurations, it is convenient to introduce the quantity

κ =
τ

Q2
. (9)

For 0 ≤ κ < 1/2, the solutions can be thought of as nonlinear superpositions of the RN and the
purely magnetic SU(2) black holes in [10]. In particular, they are unstable since the magnetic
gauge potential has always n ≥ 1 nodes. Moreover, their free energy F = M − THS is always
greater than that of the RN configuration with the same TH and Q.
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Figure 1: The profiles of a typical non-Abelian nodeless solution are shown together with the
corresponding potentials for the perturbation equations (12), (14) below.

The picture is very different for κ ≥ 1/2. In this case, for given κ, we notice the existence
of a set of non-Abelian solutions emerging as perturbations of the RN black holes, for a critical
value of the charge to mass ratio. This instability of the Abelian configuration is found within
the Ansatz (4), for values of the magnetic gauge potential w(r) close to the vacuum values ±1
everywhere, w(r) = ±1 + ǫW (r). The perturbation W (r) starts from some nonzero value at
the horizon and vanishes at infinity, being a solution of the linear equation

(NW ′)′ − (1− 2τQ2

r4
)
2W

r2
= 0 , (10)

where N = (1 − rh
r
)(1 − Q2

rhr
). The second term in this equation can be seen as an effective

mass term µ2 for W near the horizon, with µ2 ∼ 1 − 2κ(Q/rh)
4. We have found that for any

κ ≥ 1/2 (i.e. µ2 < 0), an instability occurs for a critical value of the mass to charge ratio of
the RN solution. An approximate value of this ratio is found by using an asymptotic matching
expansion for the approximate solutions of (10) at the horizon and at infinity, the result

Q

M
=

2
√
6
√

1 +
√
1 + 48κ

7 +
√
1 + 48κ

(11)

providing good agreement with the numerical data.
This unstability signals the emergence of a symmetry breaking branch of the non-Abelian

solution bifurcating from the RN black holes. In contrast to the solutions with κ < 1/2, here
we notice the existence of a fundamental branch of solutions without nodes in the magnetic
gauge function w(r), see e.g. the typical profile shown in Fig. 1.

Among the solutions bifurcating from RN black holes, those with 1/2 ≤ κ ≤ 2 are of special
interest, sharing some striking similarity with the picture found for the EYM-AdS system in
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Figure 2: The scaled horizon area aH = AH/Q
2 is plotted vs. the scaled temperature tH = THQ

for several values of the ratio κ = τ/Q2.

[2]. A plot of the horizon area as a function of the temperature reveals the existence of a single

branch of non-Abelian solutions, which exist below a critical temperature T
(c)
H only (the range

of the scaled temperature tH = THQ being 0 < tH < 0.0203). In a canonical ensemble, the non-
Abelian black holes within this range of κ exist for a finite interval of rh (i.e. of the entropy) only.
These solutions always possess a positive specific heat, the Hawking temperature vanishing for a

minimal value r
(min)
h =

√
2τ

√√
2κ− 1 of the event horizon radius. As r → r

(min)
h , an extremal

non-Abelian black hole solution with a regular horizon is approached, the charge to mass ratio
of this configurations being always greater than one. Furthermore, it turns out that the free
energy of a RN solution is always larger than the free energy of a non-Abelian solution with the
same temperature and electric charge. Therefore, for 1/2 ≤ κ ≤ 2 these non-Abelian black holes

are preferred. The difference of free energies scales like (T
(c)
H − TH)

2 near the transition point,

signaling that this is a second order phase transition, while J ∼
√

1− TH/T
(c)
H . Moreover, for

the same values of the mass and electric charge, the RN solution has a smaller event horizon
radius (and thus a smaller entropy), than the non-Abelian black hole.

The picture is somehow different for κ > 2. Again, one finds a single branch of solutions
emerging as a perturbation of the RN black hole, nodeless configurations existing also in this
case. However, these solutions exist for values of the temperature greater than the critical value
T

(c)
H and are thermally unstable.
Some of these features are shown in Fig. 2 where we plot the scaled horizon area aH =

AH/Q
2 as a function of the scaled temperature tH = THQ for several values of the ratio τ/Q2.

The branch of RN solutions is also shown there. In Fig. 3 the scaled free energy f = F/Q
is plotted as a function of the scaled temperature tH for several values of κ. The inlet there
shows the behavior of the parameter J which enters the asymptotic behavior of the magnetic
potential, as a function of the ratio TH/T

(c)
H .
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Figure 3: The scaled free energy f = F/Q is plotted vs. the scaled temperature tH = THQ
for several values of κ = τ/Q2. The inlet shows the behavior of the order parameter J which
enters the asymptotics of the magnetic potential.

Existence of stable solutions.– An outstanding question now is whether the F 4 term
leads also to stable non-Abelian black holes. The fact that, for a range of κ, we have found
nodeless solutions which are thermodynamically favored over the RN black holes suggests a
positive answer to this question.

For simplicity, we consider linear, spherically symmetric perturbations only. Even in this
case, the analysis is highly involved and the details will be presented elsewhere. Here we briefly
outline just the key features.

As usual, all field variables are written as the sum of the static equilibrium solution whose
stability we are investigating and a time dependent perturbation. Choosing a gauge such
that U = v = 0, one finds that the fluctuations decouple in two groups. δw(r, t), δV (r, t),
δσ(r, t) and δm(r, t) form even-parity perturbations, whereas δw̃(r, t) and δν(r, t) form odd-
parity perturbations. The linearized equations imply that δσ(r, t), δV (r, t) and δm(r, t) are
determined by δw(r, t) = w1(r)e

−iΩt, leading to a single Schrödinger equation

− d2w1

dρ2
+ Ueven(ρ)w1 = Ω2w1, (12)

(where dr/dρ = Nσ) with a potential

Ueven =
Nσ

r2

[(

1− 2τV ′2

σ2

)(

3w2 − 1 +
8ww′

r
(w2 − 1)− 4w′2(1− w2)2

r2

)

(13)

+4w′2

(

2(1− w2)2

r2
+

r2V ′2

σ2
− 1

)

+
32τ 2w2(1− w2)2V ′2

σ2r4(1 + 2τ
r4
(1− w2)2)

]

,

which is a regular function in the entire range −∞ < ρ < ∞. The corresponding analysis
for the odd sector is much more evolved. After much algebra, the perturbation equations for
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δw̃(r, t) = w̃1(r)e
−iΩt and δν(r, t) = ν1(r)e

−iΩt can be cast in the form

− d2Ψ

dρ∗2
+ Uodd(ρ

∗)Ψ = Ω2Ψ, (14)

where Ψ = [(1+6τ(1−w2)2/r4)ν1−12τ(w2−1)w′/r4w̃1]F1, dr/dρ
∗ = Nσ/(1+12τNw′2/(r2(1+

6τ(1 − w2)2/r4)))1/2 and ν1(r) = F2Ψ + F3Ψ
′. The potential Uodd and the functions Fi have

complicated expressions depending on the equilibrium functions m, σ, w and V , with F1 > 0.
For nodeless solutions, Uodd and Fi are regular in the entire range −∞ < ρ∗ < ∞.

For both equations (12) and (14), the potential vanishes near the horizon and at infinity.
Then standard results [11] imply that there are no negative eigenvalues for Ω2 (and hence no
unstable modes) if the potentials Ueven and Uodd are everywhere positive.

Our results indicate that this is indeed the case for some of the solutions with κ > 1/2, see
e.g. the inlet in Fig. 1. Interestingly, approaching the extremality appears to imply generically
positive values for the potentials in (12), (14).

Therefore we conclude that, in contrast to all other known d = 4 asymptotically flat hairy
black holes with non-Abelian gauge fields only [4], at least some of our solutions here are linearly
stable.

Further remarks.– We close with some remarks on the generality of the results in this
work. First, we remark that the F 2 and F 4 terms in (2) are the pieces which also enter the
Lagrangian of the non-Abelian Born-Infeld theory [12] describing the low energy dynamics of
D−branes. Although the equations of motion of that model coupled with gravity are more
complicated and do not admit the RN black hole as a solution, it is natural to expect that the
picture we have found here will share some similarities with the results in that case.

Non-Abelian fields featuring both the F 2 and F 4 terms appear also in the higher loop cor-
rections to the action of the d = 10 heterotic string [13]. However, a generalization in that
framework of the solutions considered here is not an easy task, due to the occurrence there of
a variety of other fields. Previous work in this direction [5] indicates that the solutions with a
standard F 2 term only, share the basic features of the EYM black holes in [10], in particular
being unstable. It appears however, that inclusion of higher order gauge field curvature terms
could lead to a very different situation (for example, we have found rather similar results to
those discussed above, for a generalization of (2) with an extra dilaton field, a Gauss-Bonnet
term and gauge group SO(5)). Thus we expect the following picture to be generic: the F 4

term introduces a supplementary interaction between electric and magnetic fields, which, for
some range of the parameters, implies a tachyonic mass for the vacuum perturbations of the
non-Abelian magnetic fields around the Abelian solutions. Then the Abelian gauge symmetry
is spontaneously broken near a black hole horizon for some critical value of the charge to mass
ratio, with the appearance of a condensate of magnetic non-Abelian gauge fields there. The
possible relevance of these aspects in providing analogies to phenomena observed in condensed
matter physics is yet to be explored.
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