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Abstract

We review recent applications of equivariant dimensioadurction techniques to the construction of
Yang-Mills-Higgs-Dirac theories with dynamical mass gextion and exactly massless chiral fermions.

1 A brief history of dimensional reduction

The idea that the observed fundamental forces in 4-dimessian be understood in terms of the dynamics
of a simpler higher dimensional theory is now nearly 90 yeddq1]. Starting from a 5-dimensional theory
on a manifoldMs = My x S', whereM, is a curved 4-dimensional space-time and the fifth dimenision
a perfect circle with radius, and taking the 5-dimensional line element to(be< y < 27):

2
dsé) = ds%4) + (rdy + A(z))",
whereA(x) = A, (x)dz* is a 4-dimensional vector potential, the 5-dimensionaktgim action reduces to

1

1
oy e A /—g(5) R(5) d4(L' dy = /M4 A /—g(4) (R(4) — ZF2>d4x,

whereF = dA is aU(1) field strength in 4-dimensions add® = F),, F*".
If we now introduce extra matter, e.g. a scalar fiéldand perform a harmonic expansion $h

Blr,y)= Y dulz)er,

n=—oo

then the 5-dimensional kinetic term fdr gives rise to an infinite tower of massive fieldsAry, ¢, (x),
with massesn,, = 7.

A non-abelian generalisation of the Kaluza-Klein idea @séslimensional manifold\; = My x S/R,
with R C S compact Lie groups. The co-set spagéer has isometry grou and holonomy grougk.
Performing the integrafs R du. over the internal space, witly: the S-invariant measure o8/ R, leads
to Yang-Mills gauge theory in 4-dimensions with gauge gréype.g. S? ~ SU(2)/U(1), with SU(2)
isometry andU (1) holonomy, gives 4-dimensional Einstein-Yang-Mills theavith gauge groupSU(2),
see e.g. [2].

Alternatively, one can start fromtdimensional Yang-Mills theory oMM, x S/R with gauge groug-.
Forgacs and Manton [3] showed that interesting symmetrgiimg effects can occur iR c G and one
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chooses a specific embeddiRg— G. Integrating ovelS/ R then gives a Yang-Mills-Higgs system o 4,
with a gauge grougs< which is the centraliser aR in G, i.e. K C G with [R, K| = 0 (see also [4]). Upon
dimensional reduction the internal components of dkdimensional gauge fieldl play the réle of Higgs
fields in4-dimensions and a Higgs potential is generated from/tdanensional Yang-Mills action:

Alzy) — A, (x) (4-dimensional gauge fields)
Y ®,(z) (4-dimensional Higgs fields)

(herex* are co-ordinates oM, y co-ordinates or$'/ R). The full d-dimensional Yang-Mills action, with
field strengthF, reduces as

—i /M —g@ Tr(F*)d*zd™*y = vol(S/R) /M V=9 tr ( — iFQ + (D) Do - V(cb))d‘*x,

d 4
where Tr denotes trace over thédimensional gauge grou@@ and tr is over the4-dimensional gauge
group K. Furthermore the Higgs potential can bregkdynamically. In particular ifS C G, thenV (®)
breaksK spontaneously t&’, the centraliser of in G, [S, K'] = 0.

Consider again the simplest cas& ~ SU(2)/U(1), whereS = SU(2) andR = U(1). For example
if G = SU(3) then indeedS C G and in the first stegk — G: U(1) — SU(3) breakingSU(3) to
K = SU(2) x U(1). Upon reduction thé-dimensional Higgs double®,, a = 1,2, dynamically breaks
SU(2)xU(1) — K' 2 U(1), which is the centraliser & = SU(2) in G = SU(3). Going beyondSU (2)
symmetry on the co-set space, a harmonic expansion of, éongbe, a scalar field on S? ~ SU(2)/U(1),

00 l
O(,y) =Y > (@)Y,

=0 m=-1

generates a tower of higher modes,, (x), which have masse@z{fl2 = 1(1%1) in 4-dimensions.

Much of the steam was taken out of the co-set space dimensithaction programme with Witten's
proof that spinors oM x S/R cannot give a chiral theory ooV, [5].
Reviews of co-set space dimensional reduction are givesyiarid [7].

2 Equivariant dimensional reduction

2.1 General construction

Equivariant dimensional reduction is a systematic proceér including internal fluxes o6/ R (instantons
and/or monopoles aR-fields) which are ‘symmetric’ (equivariant) under8, 9]. It relies on the fact that,
with suitable restrictions o8 and R, there is a one-to-one correspondence betwienuivariant complex
vector bundles ovei,
B — My= My x S/R,
and R-equivariant bundles ovey1,,
E— M47

where S acts on the spac#1, via the trivial action onM, and by the standard left translation action on
S/R (we shall restrict ourselves to the case wherand R are compact and the embeddifig— S is
maximal). If B and E areC* vector bundles there is a commutative diagram of bundle maps

induce

J lds

4 <
restrict
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where the induction map is defined by
heR, (g)€SxE,  h-(g.e)=(gh™' he) — B.

In general the reduction gives rise to quiver gauge theatie$1,. Including spinor fields, coupling to
background equivariant fluxes, can give rise to chiral tiesoonAM,. One expects zero modes of the Dirac
operator onS/R to manifest themselves as massless chiral fermionstinbut, as we shall see, Yukawa
couplings are induced and the dimensional reduction cammgasses to some zero modes [10, 11].

2.2 A simpleexample: Complex projectiveline

Consider once again the simplest non-trivial example it~ SU(2) and R = U(1), giving a 2-

dimensional spher&? ~ SU(2)/U(1) (or projective lineCP?), and withG = U(k). Choosing an
embeddingS — G gives a decompositioty (k) — [[;~, U(k;), wherek = > k;, associated with the
m + 1-dimensional irreducible representation $if7(2). Letg € G, v € Ck andv; € C*. Then, as a
k x k matrix, g decomposes as

m+1
Vo
Bkoxko Skoxki °°  8Bkoxkm v1
g = m+1 : : : » V= : )
Skxko Skmxki ° BkmXkm
Vim

whereSU (2) acts ong as a(m + 1) x (m + 1) block matrix. Each subspaeg transforms unde¥/ (k;) C
U(k) and carries &/ (1) chargep; = m — 2i, —m < p; < m.
Introducing a complex co-ordinatgeon S? (of radiusr),

2dy
1+ yy’
we write the potential and field strength for a monopole ofgba in these co-ordinates as
_ ip(ydy — ydy) _ i, i/ _
a’p_ 2(1+yy) ) fp_4ﬁ/\/87 27‘[’ Spr_p'
TheU (k) gauge potential, a Lie algebra valued 1-farton M, now splits intok; x k; blocks
Az, y) = A(z) + aly) + () B(y) + ¥ (2)B(y),

whered = & A%, a = &7 jam—2, A'(z) is aU(k;) gauge connection oMy, and®(x) will acquire
the interpretation as a set of Higgs fields. Aga+ 1) x (m + 1) block matrix

dsty =168,  fB=

AY + am 1, (blﬁ 0 0
¢Iﬂ A+ apoly, ¢2B - 0
Awy)=| 5 L ,
0 0 0o - bmf3
0 0 0 - A™+4a_,,1;

where eachy; is ak;_1 x k; matrix transforming undel/ (k;_1)r, x U(k;)g. As a(m+1) x (m+ 1) matrix
the Higgs field is

0 ¢ 0 - 0
0 0 ¢o --- 0
=i oo
00 0 - o
o o0 o --- 0



Dimensional reduction generates a 4-dimensional Higgsrpiat,

mly 0 0
0 2
2 0 (m-21, - 0
_9 1 fa f
V(q))——trk(W : : : —[‘1),@]> ;
0 0 0 —mls,

where g is the 6-dimensional gauge coupling. The minimisation &f itiggs potential gives a vacuum
structure that depends on the monopole chapgesm — 2i.

221 Example SU3) — SU(2) xU(1) - U(1)

As a concrete example, consider the case With: SU(3) andm = 1 (fundamental ofSU(2)), so that
k = 3 andky = 2, k1 = 1. In this case there is one unit charge monopole and one amépole sector in
the internal space which give a symmetry breaking pattern

reduction dynamics
_ _

SU(3) SU((2) x U(1) U(1),
SOK = SU(2) x U(1) is broken dynamically té/(1) (for details, see [10]).

There is only one Higgs multiplet), which is a 2-component vector, and the minimunidip) is at

0 . : . . 0 .
do = <L> in a suitable gauge. Perturbing around this vacuum gives < 1 > with h real, and

2 29r T h

gr qr

the Higgs mass works out to bey, = %
The three gauge boson masses @arg+ = %mz = ﬁ while the Weinberg angle evaluates to

sin? Oy = % Clearly this is not a phenomenologically viable model flaceroweak interactions, as the
gauge boson masses and the Weinberg angle are wrong, boeitdgheless instructive.

222 Example SU(3k’) — SU (k')

As a second example take = SU (k). Letm = 2 (adjoint of SU(2)) and chooséy = k1 = ko = K/, SO
thatk = 3k’. There are now three sectors in the internal space, oneehaogmonopole, its anti-monopole,
and a trivial sector. The symmetry breaking scheme in thse @&

9 dynamics
_

SU(3K') “ SU(K) x U(1) SU(K)diag-

There are two Higgs multipletgy, andg,, both of which are: x k& matrices. The Higgs potential is

V(@) = g*tris((61761)% — d1Tp1daldo + (9272)?) — L tr g, (¢17 o1 + dalgn),

2r2

and we expand; around the vacuum as

i(3—1)

i = 2gr

1. + h;,
with h; = hl,i=1,2.
Diagonalising the Higgs mass matrix produces two distiigmrwaluesm% =3, L. Thereard? -1
; 1 2 ; 2 3 i e i
gauge bosons with massy;, = 52, k' — 1 with mg;,, = 577, while two Z-bosons acquire masses, =
oz andm?, = 5.



2.2.3 Quiver diagrams

This construction generates quiver gauge theoriedon Writing the Lie algebra o5U(2) in the form
[J3, J+| = £2J4, the Higgs fields give rise to a chain of bundle maps

0 — By, X, B 2 ... 2y g o %n,op. .
—.—
®, P, O

The isometry grouU (2) is rather special in that there is only one raising and onetow operator, so the
quiver diagram is always a chain. Higher rank isometry arildri@my groups generate more complicated
quiver diagrams in general.

2.3 A more general example: Complex projective plane

As a more general example considg8P? ~ SU(3)/U(2) (for details see [9] and [11]). Label the irre-
ducible representations 6%/ (3) by {I,1}, corresponding to the Young tableau

l

M
l

Denote irreducible representations ®/(2) x U(1) by (n,m), with n = 2I (isospin) andm =
(hypercharge). Then under the embeddin@) — SU(3), the irreducible representations decompose as
{1,1} — @(n,m) := W, 7, wherelV, ; represents the set of &l (2) x U(1) irreducible representations in
{1,1}. For example}¥/; o has two elements3 — 2; @ 1_o.

The root diagram focU (3) is

E

Eapay Eoq,

For any given irreducible representatifii}, E,, andE,, +, map between elements of, ; 7 With different
isospin and can be decomposed into components that indfeas®spin and components that decrease it:

EOQ = E;g + E(;27 EOCI+042 = E:M_1+C|{2 + E_

a1tag?

with
EZ :(n,m) — (n£1,m+3), E*

aytasg

:(n,m) — (n+1,m+ 3).

Choosing a basis of orthonormal 1-forms f8P? which is compatible with the complex structur#,,

32, ', 3, define the Lie-algebra valued 1-formi,,, together with their complex conjugates, via the
relations

gt =0'EL,,, +EL = > B,

(n,m)EWl’Z

There is then a Higgs fields;:, ,, associated with eaghy;,,.
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2.3.1 Example: Adjoint representation

For example, the adjoint representatios [ = 1 of SU(3) decomposes as

K K ™ n
Wia={(1,3) & (1,-3) & (2,0) ® (0,0) },

where the differensU (2) x U (1) representations are also indicated by their usual pagiyysics notation.
Choosing the gauge group to be

G = U(k‘) — U(k‘Lg) X U(kﬁl,fg) X U(k‘zo) X U(ko,o),

with k = 2ky 3 + 2k1,—3 + 3ka,0 + ko0, there are four Higgs fields mapping between #ié(2) x U(1)
representations and the quiver diagram assumes the form

For illustrative purposes, we further specialise to theedas = ki3 = koo = koo = k. Then
dimensional reduction givek = U (k')*,

U8k — U(K)?,

and¢;t,, arek’ x k' complex matrices acted on by sofi& (k') x SU (k) subgroup. The symmetry is
further reduced by dynamical symmetry breaking

SU(8K') — SU(K)* x U(1)? — SU(K) diag

and the Higgs potential minimised by
(bi 0 _ @Ui

o 2gr ™

whereUy, U3, Uy, Up_ 5 are four unitary matrices satisfying one extra condition
UQ_,OUlJf?, = UO—’,—OUl_,—?)' 1)
2.3.2 Quiver diagrams

For a generabU (3) irreducible representatior/, [}, the quiver diagram is
(,-(21+))) (1+1,11)

y Y y y / y

Y \ \ \ 4 4

(o,Z(T—I;) (11+21)

The total number of Higgs matrices (blue links)2i8 + I + I, while the number of gauge groups (green
dots) is(l + 1)(I + 1). If k,,., = k" are all equal, then all Higgs fields aké x k' matrices and/(®) is
minimised by those Higgs fields all proportional to unitargtnices, with constraints of the form (1) on the
unitary matrices around any plaquette. Interpreting thggslifields as &U (k') lattice gauge field on the
quiver lattice, the constraints are satisfied by demandiagrivial gauge configuration on the quiver lattice.
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3 Fermionsand Yukawa couplings

3.1 Twisted Dirac operatorson S?

To study how dimensionally reduced fermions and Yukawa loge emerge in these models, we first
consider the simplest non-trivial example$¥. Represent the Dirac operator for a fermion with unit charge
in the presence of a magnetic monopoleS3rof chargep by ﬂ)g%). Mathematically, this is the Dirac operator
twisted with thep-th tensor power of the tautological line bundlg12].

For a givenp, the eigenspinors will be denoted Ry,.; and have eigenvalues

1 . 1+p o 1—p
o4 - F - F
Hjp r\/<‘7+ 5 ><]+ 5 >

ﬂ)g)z)Xj,p;l(y) = WipXjpit(¥)-

so that

For p even the quantum numbgris half-integral while for odd it is integral: in both caseg > ‘MT“
and the degeneracy 25 + 1, labelled byl = 0,1, ...,2j. The eigenspinors can be decomposed into their
positive and negative chirality components

Xipl = ( X;Tp;l )
7,050 — - ?
inyp;l

where the sign corresponds to the sign of the eigenvalue.
In addition, for the special valug= “’”TA whenp # 0, there argp| zero modes: fop > 1 there arep
negative chirality modes, which we denote by

Xpirs r=0,1,...,p—1,
while for p < —1 there argp| positive chirality modes,
X;—;r? r=0,1,...,|p| = 1.
For a given monopole charge, the index of the Dirac operator i
Index(ﬂ)(spg)) = —p.

The Dirac operator onMg splits up into the direct sum of 4-dimensional and 2-dimemai Dirac
operators
Dy = Dy @12 + 75 @ Dgo.

At first sight zero modes of the Dirac operator $hmight be expected to manifest themselves as massless
fermions for the Dirac operator af,, but we shall see below that this is not always the case.
After dimensional reduction a fermion oW, e.g. in the fundamental &f (k), will decompose as

U (x y))
U(x,y) = _
w0 =y
where thet signs refer to the5? chirality, not 4-dimensional or 6-dimensional chiralitjhdeedV itself

could be either Dirac or Weyl in 6-dimensions. In the equamatr dimensional reduction framework only
zero modes oi$? are compatible witt6U (2) symmetry:j > ‘MT_l correspond to higher harmonics which



do not have this symmetry and correspond to 4-dimensionalié@s with masses of ordér. Focusing on
zero modes, the 6-dimensional fermioh$ decompose as

U(z,y) = O Upr(@)xa(y), TH =0 (pi21)
il—1 -
\I{Jr(x,y) = EB‘TPJO pi;r(x)X;)ri;r(y)a v =0 (pl é _1)7

wherei,., () andy,,.. () are either Dirac spinors in 4-dimensionsyis Dirac in 6-dimensions, or Weyl
spinors of opposite chirality, i is Weyl in 6-dimensions.

Not all of the 4-dimensional fermions,,... () andy,,.. () are massless however [10]. The 6-dimensional
Dirac operator involves the 6-dimensional gauge field, Wihncludes the Higgs field after dimensional re-
duction, and these induce 4-dimensional Yukawa coupliali@ying for the possibility of generating mass
terms for 4-dimensional fermions through dynamical synmniteaking. If, and only ifyn is odd there is
a4-dimensional Yukawa coupling Iinkin@l to ¢_; through

g -
2 )V —9@) <Z5TmT+11/1—1 5 U da + hec.
4

For the example in §2.2.15U(3) — SU(2) x U(1) — U(1), we hadky = 2, k1 = 1, andm = 1. In
this casey); transforms ag; underSU(2) x U(1), v—1 asl_o, and¢ = ¢; as2;. These 4-dimensional
fermions pick up a mas% via the Higgs vacuum expectation value, which is of the sandercas the
masses of the higher harmonic fermions arising from non-e&genvalues of the Dirac operator A and
therefore should be removed from consideration if we aramagg) higher harmonics are too heavy to be
relevant to the physics at low energies.

3.2 Spinc structures on CP?

The issue of fermions o@P? is complicated because there is a topological obstructidhe existence of
a spin structure: due to the fact that the second Stieffeltv#h class is non-vanishing [13] there is a global
obstruction to defining spinors ddP” for evenn.

Nevertheless fermions can be defined by coupling them to pwes and/or instantons (spistruc-
tures). The full spectrum of the twisted Dirac operator ispbicated but for equivariant dimensional
reduction we only need the zero modes. For fermions coupéingn equivariant monopole of magnetic
chargem and an equivariant instanton of topological chargehe index of the Dirac operator ofiP?
is [11]

Index(D™™) = é(n +1) (m? = (n+1)?%).
The fact that this is not an integer 4f and m have the same parity, i.e. they are either both even or
both odd (e.g.n = m = 0), is related to the lack of spin structure @P2. Under the embedding
SU((2) x U(1) — SU(3), {I,I} — ®(n,m) =: W, 7, n andm always have the same parity, so any
equivariant monopole/instanton background arising froenémbedding will not admit global spinors. We
therefore allow for a further twist with a monopole of chaige Z + % (2¢ odd) and the index for this
twisted gauge field configuration is

Index(D{"™) = é(n +1) ((m+2¢)* = (n+1)?).

We shall denote the positive and negative chirality zero esoaf this operator, with a given fixed by
X;mq andy,, ,,, , respectively (for notational clarity the degeneracy isindtcated).

3.21 Fundamental representation
For{l,1} = {1,0} we have{1,0} — (1,1) & (0,—2), and choosing for example= —1 results in

Index(]D(ff/)z) =1, Index(]D(f;;)) =1



For example, the case= 3k’ with k1 1 = ko2 = k' gives a singlé’ x k' Higgs matrix and the symmetry
reduction scheme
SU(BK') — SU(K') x SU(K') x U(1) — SU(K').

With 2¢ = —1, X(T,fz,f%(y) andxﬁ,f%(y) are the only zero modes giving the equivariant decompasitio

- (wo,z(x)xaiz,;(y)) |

J1,1(:6)xil 1 ()

T2

whereyy _o(z) and{/ﬁ,l(m) are either 4-dimensional Dirac spinors 61y, if ¥ is Dirac in 8-dimensions,
or chiral spinors of opposite chirality in 4-dimensions,difis chiral in 8-dimensions. The induced 4-
dimensional Yukawa couplings generate a mass term for 8pgsers given by

V2

r

(%,72% P11+ TEJ% Yo,~2)-
A different choice ofy leads to a different conclusion. Takig = 3 results in
Index(ﬂ)(l’l)) =3, Index(ﬂ)(O’Q)) =0.

3/2 3/2

There is no analogue afy —»(z) in this case and Yukawa couplings cannot generate a massretm
dimensions.

3.2.2 Adjoint representation
Starting from the adjoint representation
{,I} ={1,1} — (2,0) & (1,3) ® (1,—3) ® (0,0),
consider the symmetry breaking scheme
SU(8K') — SU(K)* x U(1)® — SU(K).
Choosing, for example; = —% gives

Index(lD(Q’O)) = 0, Index(ﬂ)(l’?’)) = —1,

—3/2 —3/2
Index(]Dgézg’)) = 8, Index(]DSOé(})z) = 1.

In this case Yukawa couplings generate a mass coupling thednsional spinoré;ng(:c) andi o(x), but
the 8 flavours); _3(x) remain massless.

4 Conclusions

We have shown that equivariant dimensional reduction wihrgple gauge grougr gives the following:

e Gauge symmetry reductiof — K with only one gauge coupling in 4-dimensions, everkifis
semi-simple.

e Further dynamical symmetry breakirdg — K’ where the vacuum and symmetry breaking patterns,
including Higgs and gauge boson masses and Weinberg anglebe deduced uniquely from group
theory and induced representation theory.



¢ In certain cases the vacuum configuration is related to gdygamics on the quiver lattice: the Higgs
vacuum corresponds to zero flux on the quiver lattice.

e When fermions are included, chiral theories with famili@seege naturally from non-trivial fluxes
onS/R.

e Chiral fermions onM; do not allow direct mass terms, but Yukawa couplings can4jidanensional
masses to some of the resulting fermions/efy. Yukawa couplings can even give masses to some,
but not all, zero modes.

The gauge and fermion structure of equivariant dimensipmatiuced field theories is clearly very rich.
Standard model type Yukawa couplings, with different dhies belonging to different irreducible repre-
sentations of the gauge group, arise quite naturally in tbdats presented here, but an exhaustive analysis
of all possibilities would be an ambitious programme anda@s to be tackled.
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