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We consider the tunneling current through a double point-contact Fabry-Pérot interferometer such as used
in recent experimental studies of the fractional quantum Hall plateau at filling fractionν = 5/2. We compare
the predictions of several different models of the state of the electrons at this plateau: the Moore-Read, anti-
Pfaffian, SU(2)2 NAF, K = 8 strong pairing, and(3, 3, 1) states. All of these predict the existence of chargee/4
quasiparticles, but the first three are non-Abelian while the last two are Abelian. We give explicit formulas for
the scaling of chargee/2 and chargee/4 quasiparticle contributions to the current as a function oftemperature,
gate voltage and distance between the two point contacts forall three models. Based on these, we analyze
several possible explanations of two phenomena reported inRefs. 1,2, namely halving of the period of the
observed resistance oscillations with rising temperatureand alternation between the same two observed periods
at low temperatures as the area of the interference loop is varied with a side gate. We conclude that the most
likely explanation is that the observed alternation is due to switching between even and odd numbers of charge
e/4 quasiparticles enclosed within the loop as a function of side gate voltage, which is a clear signature of
the presence of non-Abelian anyons. However, there are important features of the data which do not have a
simple explanation within this picture. We suggest furtherexperiments which could help rule out some possible
scenarios. We make the corresponding predictions for future tunneling and interference experiments at the other
observed second Landau level fractional quantum Hall states.

PACS numbers: 71.10.Pm, 73.43.-f, 73.43.Jn 05.30.Pr

“With luck, we might see a non-abelian interferometer
within a year.” – attributed to Kirill Shtengel, April 16, 2008
in Quantum computation: The dreamweaver’s abacus3.

I. INTRODUCTION

The observation4,5 of a fractional quantum Hall (FQH) state
at ν = 5/2 and suggestion6 that the Moore-Read Pfaffian
(MR) state7,8,9might occur at this filling fraction gave the first
real indication that non-Abelian topological phases of matter
might actually occur in Nature. The striking feature of such
new phases is that they possess quasiparticle excitations with
exotic non-Abelian braiding statistics10,11,12,13,14,15,16. This
property makes non-Abelian topological phases appealing for
their potential use as intrinsically fault-tolerant mediafor
quantum information processing17,18,19,20.

Recent experimental studies of transport through a point
contact in FQH systems atν = 5/2 gave evidence that there
are chargee/4 quasiparticles in this state21 and found that
the dependence of the current on voltage and temperature is
most consistent22 with two particular non-Abelian models:
the anti-Pfaffian (Pf) state23,24 and the SU(2)2 NAF (non-
Abelian FQH) state25,26. However, these results are not con-
clusive because the(3, 3, 1) state27, which is Abelian, also
supports chargee/4 quasiparticles. It is also roughly consis-
tent with the voltage and temperature dependence of tunnel-
ing found in Ref. 22 and, in any case, one might expect non-
universal physics to have a significant effect on the observed

dependence. Thus, there is a glaring need for experiments
which directly probe the braiding statistics of quasiparticles.

In order to probe braiding statistics in FQH systems, one
can use a double point-contact interferometer, as proposedin
Ref. 28 for Abelian states and later considered for theν = 5/2
state in Refs. 29,30,31,32. Such interferometers can play a
crucial role in properly identifying which phase a FQH stateis
in by providing information about the topologicalS-matrix33.
They are also important for the implementation of topolog-
ical quantum computation17,19 because they can be used for
the topological charge measurements necessary for readoutof
qubits30 and, through adroit manipulation, can even be used to
implement computational gates34,35. Fortunately, there have
been recent advances in realizing quantum Hall interferom-
eters at integer filling36,37 and fractional filling in the lowest
Landau level38,39. Even more recently, double point-contact
interferometers have been experimentally implemented forthe
ν = 5/2 FQH state1,2,40.

In this paper, we study the signatures of non-Abelian statis-
tics which can be seen in a double point-contact interferometer
and discuss other effects which can mimic these signatures.
We propose further experiments which can help disentangle
the effects of non-Abelian statistics from Coulomb blockade
and disorder physics.
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II. THE EXPERIMENT

In recent experiments, Willettet al.1,2 measured the current
through a double point-contact device, depicted schematically
in Fig. 1. As a function of magnetic fieldB, the longitudinal
resistanceRL of the device has prominent minima at roughly
theB values at which theν = 2, 7/3, 5/3 and5/2 quantum
Hall states occur in the bulk (near, but not at, the point con-
tacts). At the minima corresponding toν = 5/2 and7/3, the
longitudinal resistance isRL ≃ 200 − 300 Ω, while atν = 2
and5/3 it is RL < 50 Ω. There are small oscillations withB
on top of these large features, but these were not the focus of
the experiment since changing the magnetic field can change
both the flux enclosed and, possibly, the quasiparticle num-
ber, thereby making it difficult to isolate the effect of braiding
statistics. Instead, a side gate voltage is varied, as shownin
Fig. 1. As the side gate voltageVs is varied,RL oscillates
with an amplitude of roughly2 Ω.

The period of the oscillations,∆Vs, is larger atν = 5/3
and7/3 than atν = 2. This was interpreted in the follow-
ing way: it was assumed that the principle effect of varying
the side gate voltage is to change the area of the interfer-
ence loop between the two point contacts and that they are
related linearly by∆A = c∆Vs, wherec is essentially con-
stant, even between different filling fractions. Thus, the os-
cillations are hypothesized to be due to the Aharonov-Bohm
(AB) effect, which implies a period∆A = (e/e∗)Φ0/B,
wheree∗ is the charge of the tunneling quasiparticle and−e
is the electron charge, andΦ0 = hc/e is the magnetic flux
quantum. Willettet al.2 analyze their data to find that the
period atν = 5/3 and7/3, normalized by the correspond-
ing magnetic fields, is three times larger than atν = 2:
(∆A)5/3B5/3 ≈ (∆A)7/3B7/3 ≈ 3 · (∆A)2B2. Thus,
they interpret their findings as evidence thate∗/e = 1/3 at
ν = 5/3, 7/3, assuming that the oscillation period atν = 2
reflects interference of ordinary electrons. Atν = 5/2, two
types of behavior are seen at25 mK. In some regions, which
we will call type I, (∆A)I5/2B5/2 ≈ 4 · (∆A)2B2. In the re-

gions of type II,(∆A)II5/2B5/2 ≈ 2 · (∆A)2B2. At 150 mK,

only one behavior is seen:(∆A)II5/2B5/2 ≈ 2 ·(∆A)2B2. The
type of oscillations observed for a region ofVs were found to
be reproducible throughout multiple scans over the period of
7 days2. The type I oscillations in a given region sometimes
exhibited a roughlyπ phase shift from one scan to another. In
the next section, we discuss several possible explanationsfor
the occurrence of these two periods at25 mK and the disap-
pearance of one of them at higher temperatures atν = 5/2.

III. INTERPRETATIONS

A. Non-Abelian Interference

At first glance, these experimental results appear to be dra-
matically consistent with the predicted behavior of the pro-
posed non-Abelianν = 5/2 FQH states, particularly with
that of the MR,Pf, and SU(2)2 NAF states, all of which have

a non-Abelian fundamental quasihole with chargee/4. The
basic assumption is that as one changes the area of the inter-
ferometry region, one also occasionally changes the number
nq of chargee/4 quasiholes contained in the bulk within the
interference loop. (For the purposes of this counting, charge
ne/4 excitations, wheren ∈ Z, count asn fundamental quasi-
holes.) Thus, changing the area will cause the edge current to
exhibit interference behavior due to the AB effect, modulated
by occasional changes in the number of quasiparticles in the
loop and their concomitant braiding statistics. The interfer-
ence termI12 of the backscattered current due to lowest order
tunneling ofe/4 edge quasiholes is predicted to be31,32

I
(e/4)
12 ∝

{

cos
(

2π Φ
4Φ0

∓
nqπ
4 + nψπ

)

for nq even

0 for nq odd
, (1)

where the− corresponds to the MR and SU(2)2 states and the
+ to thePf state; andnψ = 0 or 1, depending on whether the
contained quasiparticles are in a collective state correspond-
ing to theI orψ fusion channel. This interference exhibits the
usual AB oscillations with period∆A = 4Φ0/B correspond-
ing toe∗/e = 1/4, but also a striking complete suppression of
this term that results from the non-Abelian braiding statistics
of the edge quasiparticle with the bulk quasiparticles when
nq is odd. Thus, as the area of the interferometry region is
changed, and bulk quasiparticles enter or exit the interference
loop, the non-Abelian states should see∆A = 4Φ0/B oscil-
lations switch on and off, as they do in going from the type I
regions to the type II regions in the experiments of Refs. 1,2.

The observed reproducibility of oscillation type regions in
multiple scans2 suggests that the bulke/4 quasiparticles are
pinned and do not move on the time scale of the experiment.
The observation of the oscillations in a given type I region be-
ing shifted byπ from one scan to the next also agrees with
the expected behavior of non-Abelian states. Specifically,the
collective state of several quasiparticles, some of which are in-
side and some outside the interferometry loop, is decoheredby
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FIG. 1: A double point-contact interferometer. Edge quasiparticles
tunnel at two point-contacts with amplitudest1 andt2, respectively.
The interferometry area is changed by applying a voltageVs to a
plunger gateP that depletes the 2DEG beneath it. Quantum inter-
ference between the two paths manifests an observable signature of
the Aharonov-Bohm effect and the braiding statistics (of the edge
quasiparticle with the bulk quasiparticles in the central interferome-
try region) in the oscillation patterns of the tunneling current when
the area is changed.



3

the current of edge quasiparticles around the loop42. Hence,
depending on the bulk quasiparticles entering or exiting the
interferometry loop, the collective state of quasiparticles in-
side the interferometer may be randomized betweennψ = 0
and1 whennq is changed to an even value. (This is the same
randomization that gives rise to a non-Abelian signature inthe
switching noise43.)

There are two sources that could potentially contribute to
∆A = 2Φ0/B oscillations in the non-Abelianν = 5/2
states. The first is tunneling of the Abeliane/2 edge quasi-
particles44,45, which to lowest order gives the interference cur-
rent28

I
(e/2)
12 ∝ cos

(

2π
Φ

2Φ0
−
nqπ

2

)

. (2)

The second possibility comes from higher-order tunneling
processes where the interference path encircles the interfer-
ometry area twice. The resulting double pass interference
term in the current coming from2nd order tunneling ofe/4
edge quasiparticles is44,45

I
(e/4)
1212 ∝







cos
(

2π Φ
2Φ0

−
nqπ
2

)

for nq even

cos
(

2π Φ
2Φ0

−
nqπ
2 ± π

2

)

for nq odd
, (3)

where the+ corresponds to the MR state and the− to thePf
and SU(2)2 states. Of course, this2nd order contribution to
the tunneling current will typically have much smaller ampli-
tude, since it both incurs an additional tunneling probability
factor and doubles the distance over which coherence must
be maintained. For the interferometer of Refs. 1,2, the quasi-
particle tunneling probability at each point contact is approx-
imately5%. This estimate is based on the relation46

Rxx =
h

e2
2

5

P

5 − P
(4)

for point-contact tunneling of the half-filling edge modes at
ν = 5/2, whereP ≃ P1 + P2 here is roughly the sum of in-
dividual tunneling probabilities of the two point-contacts, and
Rxx ≃ 200 Ω in Refs. 1,2. Furthermore, there will generally
be a suppression of the interference oscillation amplitudes that
results from the loss of coherence. Roughly speaking, this
gives a suppression factorQ ≃ max(I12) / (I1 + I2). The
observed oscillations inRxx have amplitude of approximately
2 Ω, indicating a coherence suppression factorQ ≃ .01. Com-
bining these, the amplitude of double pass interference oscil-
lations is expected to be roughly.0005 times that of the lowest
order oscillation amplitude. (Under the best coherence condi-
tions,Q ≈ 1, the double pass oscillation amplitude would
still only be roughly.05 times that of the lowest order oscil-
lation amplitude.) Hence, the∆A = 2Φ0/B oscillations, for
which the amplitudes are of the same order of magnitude as
that of the∆A = 4Φ0/B oscillations, should be attributed
almost entirely to the tunneling ofe/2 edge quasiparticles.
We emphasize that the∆A = 2Φ0/B oscillations (from both
sources) have an amplitude that is independent ofnq (unlike
the∆A = 4Φ0/B oscillations), but pick up phase shifts when
nq changes.

These two sources of∆A = 2Φ0/B oscillations were
not discussed in Refs. 31,32 because it was assumed neither
would have significant contributions to the tunneling current.
For the double pass interference ofe/4 quasiparticles, this ap-
pears to be a valid assumption, since higher-order tunneling
processes are suppressed in the weak-backscattering regime.
On the other hand, for interference ofe/2 quasiparticles this
assumption was based on such quasiparticles having less rel-
evant tunneling operators than thee/4 quasiparticles. We will
see in the following that there are several ways in which this
line of reasoning can break down and permit thee/2 quasi-
particles to have a contribution to the tunneling current oscil-
lations that is comparable to that of thee/4 quasiparticles.

Combining these results, we see that tunneling of both non-
Abeliane/4 quasiparticles and Abeliane/2 quasiparticles at
the point contacts of the interferometer would produce a com-
bined backscattered current with regions of type I, exhibiting
a sum of both∆A = 4Φ0/B and ∆A = 2Φ0/B oscilla-
tions, whennq is even, and regions of type II, exhibiting only
∆A = 2Φ0/B oscillations, whennq is odd. We also note
that the bulk-edge coupling that occurs as a bulke/4 quasi-
particle approaches the edge gives the regions near transitions
between type I and II oscillations the most potential for ex-
hibiting non-linear and/or noisy behavior.

In order for interference to be observed, it is necessary that
the current-carrying excitations remain phase coherent. Even
if we neglect (irrelevant) interactions between the edge modes,
coupling to localized excitations in the bulk, and phonons,
there will still be thermal smearing of the interference pattern.
Consequently, as shown in Ref. 47 (see also Ref. 48), the am-
plitude of interference oscillation for double point-contact in-
terferometers will be exponentially suppressed in temperature
and in the average lengthL between point contacts along each
edge,I(qp)

12 ∝ e−T/T
∗(L) = e−L/Lφ(T )), where the coherence

lengthLφ(T ) and temperatureT ∗(L) of edge excitations are
given by

Lφ(T ) =
1

2πT

(

gc
vc

+
gn
vn

)−1

(5)

T ∗(L) =
1

2πL

(

gc
vc

+
gn
vn

)−1

. (6)

We can use these expressions, together with estimates of the
charge and neutral edge mode velocities from numerical stud-
ies ofν = 5/2 on a disk49 (the charged and neutral scaling ex-
ponentsgc andgn are given in TableII ), to estimate coherence
lengths and temperatures for the chargee/4 ande/2 excita-
tions in the various candidate states (the states are all thesame,
as far as the chargee/2 quasiparticle is concerned). In TableI,
we give estimates of coherence lengths atT = 25 mK and co-
herence temperatures forL = 1 µm, the approximate interfer-
ence path length in the experiments of Refs. 1,2. We note that
the observation of only type II oscillations at higher temper-
atures in Refs. 1,2 also excludes double pass interference of
e/4 quasiparticles as the explanation for∆A = 2Φ0/B oscil-
lations, whereas it fits very nicely with thee/2 quasiparticle
tunneling explanation.
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e/4 MR Pf/SU(2)
2

K=8 (3,3,1) e/2

Lφ in µm 1.4 0.5 19 0.7 4.8

T ∗ in mK 36 13 484 19 121

TABLE I: Estimated coherence lengthsLφ at T = 25 mK and co-
herence temperaturesT ∗ for L = 1 µm for the (relevant)e/4 quasi-
particles of the candidateν = 5/2 states, and thee/2 Laughlin-
type quasiparticle for all these states. We use the velocityestimates
vc ≈ 5 × 104 m/s andvn ≈ 4 × 103 m/s from numerical studies49.

B. Coulomb blockade

In the limit that the region between the two point contacts is
a nearly isolated puddle, the Coulomb charging energy of the
puddle dominates the behavior of the device. Due to its isola-
tion, the puddle must contain an integer number of electrons.
The electron number can change when the gate voltage is in-
creased by enough to allow one additional electron into the
puddle. At this point, there is a peak in the longitudinal con-
ductance (which are also peaks in the longitudinal resistance,
sinceRL ≪ RH ) since it is only at this point (or withinkBT
of it) that the charge on the puddle can fluctuate. If the den-
sity in the puddle is fixed, then the spacing between peaks as
a function of area is naively just the additional area required
to allow one more electron into the puddle:

∆A =
e

ρ0
(7)

whereρ0 is the charge density inside the dot. However, in
the case of a paired state, one would expect that it is easier to
add an electron when the electron number is odd than when
it is even since, in the latter case, it an unpaired fermionic
excitation is necessarily created. So one would expect that,
instead of evenly-spaced peaks, the interval between an odd
peak and the next even peak would be smaller than the interval
between an even peak and the next odd peak becauseVs must
also supply the energy needed to create an unpaired fermionic
excitation. Consequently, the peak spacing would alternate
between50

∆A± =
e

ρ0

(

1 ±
vn
2vc

)

, (8)

As a result of this ‘bunching’ effect, the periodicity wouldbe
the interval between two successive even peaks, i.e. twice
what one might ordinarily expect. But when there is an odd
number of chargee/4 quasiparticles in the MR orPf states,
the minimum energy to create a fermionic excitation is zero.
Thus, there is no ‘bunching’ effect in this case, and the period
is not doubled31.

In the case of the(3, 3, 1) state, bunching generically oc-
curs with either an even or odd number of quasiparticles in the
puddle. However, whennq is odd, the bunching depends on
the strength of the violation ofSz conservation (whereSz is
thez-component of the spin or, if one contemplates a bi-layer
version of this experiment, the layer pseudospin) sovn/2vc in

Eq. (8) is replaced by a different constant dependent on this
violation. If Sz is conserved (or only weakly non-conserved),
there will again be edge zero modes for oddnq and the bunch-
ing will disappear. Thus, switching between bunching and
non-bunching regions in Coulomb blockade atν = 5/2 is not
necessarily an indication of a non-Abelian state. More gen-
erally, the switching between different bunching patternsin
Coulomb blockade described in Refs. 31,50 for non-Abelian
states may similarly be mimicked by corresponding Abelian
states (see AppendixC for more details).

The strongly-pairedK = 8 state27 always exhibits bunch-
ing, now withvn/2vc in Eq. (8) replaced by a constant depen-
dent upon the finite energy cost of having an unpaired elec-
tron. If this energy cost is small, it may not appear bunched.
On the other hand, if it is large enough, it will be maximally
bunched with∆A = 2e/ρ0 corresponding to tunneling elec-
tron pairs.

C. Non-linear Area vs. Vs

The assumptions that∆A = c∆Vs with only a single value
of c across a range of filling factors and a range ofVs values
are important for the interpretation of this experiment. One
might question their validity. However, the assumption that c
is independent of the filling fraction for nearby filling fractions
is, in fact, reasonable.Vs is several volts, and the oscillation
periods are∼ 10 mV which are much higher energy scales
than the weak energy gaps and correlation effects associated
with the ν = 5/3, 7/3, 5/2 quantum Hall states. Thus, the
details of these quantum Hall states are probably unimportant
anddA/dVs is probably determined by the electric potential
due to the donor impurities and the electron density, which
are not varying significantly. However, when there are filled
Landau levels beneath the quantum Hall state of interest, their
edges can screen the side-gate voltage, presumably weakening
the dependence ofA onVs (sinceA is the area of the droplet
of the fractional state in the partially-filled Landau level). In
particular, we would expect∆A = c1∆Vs at ν = 1/3 but
∆A = c2∆Vs at ν = 7/3, with c1 > c2. However, by the
same reasoning, we expect that the relationship betweenA
andVs will be the same forν = 5/3, 7/3, 5/2 (if the ν = 5/3
edge is two filled Landau levels with a backwards propagating
ν = 1/3 edge mode).

Furthermore, it is less clear thatdA/dVs should be constant
across an appreciable range ofVs values because the density
is not constant across the device. In fact, we expectVs to vary
linearly with total charge in the central puddle. So long as the
electron density is essentially fixed, apart from a small number
of quasiparticles,Vs will vary linearly with A. However, if
there are high-density and low-density regions, then we will
have∆A = c∆Vs in some regions and∆A = c′∆Vs in the
others, withc 6= c′. (This could lead, for instance, toν = 7/3
puddles within theν = 5/2 droplet.) This would, in turn,
lead to two different regions with different oscillation periods.
However, it is difficult to see why one period would be twice
the other or why there would be two periods only atν = 5/2
and not atν = 5/3, 2, 7/3.
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One other possibility, which also depends on spatial inho-
mogeneity although still assuming a linearA vs Vs, is that
there are regions in the sample in which theK = 8 Abelian
state occurs. The rest of the state is assumed to be non-
Abelian, i.e. either the MR orPf state. Then, when aK = 8
region is at the edge of the system, varyingVs doesn’t change
the area enclosed by the edge of the non-Abelian part of the
system, which would lead toe/4 oscillations. It does cause the
total area to vary, but this only causese/2 oscillations since
these oscillations can move coherently along bothK = 8
Abelian and non-Abelian edges. Thus, the two regions cor-
respond to when the edge of the system near the side gate is a
K = 8 region or a non-Abelian region.

IV. CRITICAL ANALYSIS

The data of Refs. 1,2 are broadly consistent with the hy-
pothesis that the device is functioning as a quantum Hall edge
state interferometer. As the temperature is raised, the puta-
tive e/4 oscillations, which are observed at 30 mK, disappear
while thee/2 oscillations persist even at 150 mK. This was
anticipated in Ref. 49, where it was noted that the coherence
length will be substantially longer fore/2 quasiparticles than
for e/4 quasiparticles since the former do not involve the slow
neutral edge modes. Thus, any of the proposedν = 5/2 states
(apart from the strong-pairing state) would be broadly consis-
tent with thee/4 oscillations seen in Refs. 1,2. However, there
is no simple explanation of their absence in the type II regions
in the (3, 3, 1) state, while the MR,Pf, and SU(2)2 states all
provide a simple explanation, as described in the previous sec-
tion.

Perhaps the most serious challenge to the non-Abelian in-
terferometer hypothesis is thate/2 oscillations should always
be present whilee/4 oscillations should only be observed
when the quasiparticle number contained within the interfer-
ometry region is even. In particular,e/2 oscillations should
be present in thee/4 regions. This appears to be the case in
Fig. 2a and, perhaps to some extent, 2c but definitely not in
Fig. 2b of Ref. 2. It is possible to generate some accidental
destructive interference between the oscillations due to tun-
neling ofe/2 quasiparticles given in Eq. (2) and that of double
pass interference ofe/4 quasiparticles given in Eq. (3), since
the relative phase of these terms is not fixed. This could result
in the appearance and disappearance of type II oscillations,
however, as previously mentioned, the amplitude of oscilla-
tions in Eq. (2) are so strongly suppressed in the experiments
of Refs. 1,2 that it could not explain such behavior there.

As we describe in AppendixB, a simple model of quasipar-
ticle tunneling predicts that the amplitude fore/4 quasipar-
ticle backscattering,Γe/4, is much larger than the amplitude
for e/2 quasiparticle backscattering,Γe/2. However, the am-
plitude fore/2 oscillations in the type II regions is comparable
the amplitude fore/4 oscillations in the type I regions. It may
be that

∣

∣Γe/2
∣

∣ is ‘accidentally’ large, e.g. due to the presence
of a resonante/2 quasiparticle in the point contact. Alter-
natively, as a result of the shorter coherence length fore/4
excitations, the corresponding oscillations are more strongly

suppressed. This would require a coincidence – that thermal
smearing ofe/4 excitations compensates for the the small-
ness of the ratioΓe/2/Γe/4. However, this could be tested
by decreasing the suppression by going to lower temperatures
and by increasing the suppression by increasing the separa-
tion between the point contacts. At any rate, given thate/2
oscillations are observed in the type II regions, it would bea
problem for the non-Abelian interferometer picture if theyare
not generically seen in the type I regions.

However, it is worth noting in this context that the presence
of chargee/2 quasiparticle tunneling is not manifest in the
point contact experiments of Refs. 21,22. In the former, the
shot noise appears to indicate that only chargee/4 quasipar-
ticles tunnel at the point contact (although there is sufficient
scatter in the data that one might argue that there could be a
component due toe/2 quasiparticle, the scatter does not seem
to be asymmetric in the direction of charges larger thane/4 as
one might have expected). In the latter experiment, the bestfit
to the data is actuallye∗/e = 0.17, so including anye/2 tun-
neling leads to a worse fit to the data22. Thus, the appearance
and strength ofe/2 quasiparticle tunneling remains a mystery
in several different experiments.

A conventional Coulomb blockade picture seems inappro-
priate sinceIb . .1Itotal indicates that the system is in the
weak back-scattering limit. It is also unlikely that Coulomb
blockade could lead to two distinguishable periods since, for
vn/2vc small (as we expect it to be), the bunching will be
difficult to resolve. Numerical calculations of the edge veloc-
ities49 give vn ≃ 0.1vc, confirming this expectation. On the
other hand, we note that Coulomb blockade is capable of pro-
ducing peaks that alternate between thee/4 ande/2 periodic-
ities, with noe/2 background in thee/4 region. Thus, if the
two prior points against it were somehow incorrect, Coulomb
blockade could provide a consistent explanation of the peri-
odicity issue.

Furthermore, Coulomb blockade could be easily ruled out
by measuring its temperature dependence and its dependence
on asymmetry between the tunneling amplitudes at the two
point contacts. In particular, the Coulomb blockade peak
widths are expected to scale linearly with temperature51.
However, a more general view of Coulomb blockade has
emerged37 (see, also Ref. 41), according to which Coulomb
blockade (CB) can be distinguished from Aharonov-Bohm
(AB) interference byinter alia the dependence of∆Vs on
B (it should be inversely proportional for AB and indepen-
dent for CB). This more general view of Coulomb blockade
is probably better described as ‘Coulomb dominated’ since
it corresponds to a regime in which the charging energy of
the puddle between the point contacts is the dominant en-
ergy scale. It doesnot rule out a simple interpretation of the
backscattered current according to Eq.1.

At any rate, by this criterion as well, the data appears to be
more consistent with AB interference since(∆Vs)5/3B5/3 ≈
(∆Vs)7/3B7/3 ≈ 3 · (∆Vs)2B2. However, it is worth keeping
in mind that we do not know precisely how the area of the
droplet changes withVs or withB; knowing this would enable
us to cement an interpretation of the experiment.

Similarly, the possibility that the existence of two periodic-
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ities signals different regions with different electron densities
and, therefore, two different possible relations∆A = c∆Vs
and∆A = c′∆Vs could be ruled in or out through a more
detailed knowledge of the electron density in the sample.

V. ADDITIONAL PROPOSALS AND NON-TRIVIAL
CHECKS

As beautiful as the non-Abelian anyon explanation of the
results of Ref. 1,2 may be, it is clear from the preceding analy-
sis that there are some significant gaps which need to be closed
through further measurements.

If it is, indeed, the case thatRL is due to the weak backscat-
tering ofe/4 quasiparticles at the constrictions, then both the
non-oscillatory and oscillatory parts of the current should have
non-trivial temperature and voltage dependences. Modeling
the edge in the simplest way (i.e. fully equilibrated neutral
modes and no edge reconstruction) using the “natural” con-
formal field theory inherited from the bulk, one can perform a
more detailed analysis of the tunneling edge current23,24,46,52,
along the lines of that carried out in Refs. 28,53 for Abelian
states.

The non-oscillatory part of the backscattered current – the
sum of the contributions from each point contact indepen-
dently – will behave as the power laws:

I
(qp)
b ∝

{

T 2g−2 V for smalleV ≪ kBT

V 2g−1 for smalleV ≫ kBT
, (9)

whereg = gc+gn is the tunneling exponent combining charge
and neutral (Abelian and non-Abelian) sectors of the quasi-
particles’ tunneling operator [see Eqs. (C9) and (C11) for the
definitions]. The tunneling operator is relevant forg < 1,
and quasiparticles with smallerg are more relevant, and are
thus expected to dominate the tunneling current in the weak
backscattering limit.

From TableII , we see that thee/4 backscattering opera-
tor is a relevant perturbation of the edge effective theory for
all of the candidate states. Thus, the effective tunneling am-
plitude(s) will decrease as the temperature is raised, asT−3/2,
T−5/4, orT−1 in the MR,(3, 3, 1), andPf states, respectively.
Charge-e/2 backscattering is also relevant in all of the candi-
date states. Becausee/2 excitations haveg = 1/2 and are
entirely in the charge sector, their lowest order, single point-
contact tunneling current contribution is the same in all ofthe
candidate states and can be given explicitly as

I
(e/2)
b =

e

2

∣

∣Γe/2
∣

∣

2 2π

vc
tanh

(

eV

4T

)

(10)

Thus, in the linear response regime, the effective tunneling
amplitude fore/2 backscattering decreases asT−1. For the
MR and Abelian states, charge-e/4 backscattering is more rel-
evant than charge-e/2backscattering, so it is expected to dom-
inate at lower temperatures. For thePf and SU(2)2 NAF, e/4
ande/2 backscattering are equally relevant (withg = 1/2).

Turning now to the oscillatory current, we note that for
eV ≪ vn/2L, where2L is the interference path length, it has

ν = 5

2
e∗ n-A? θ gc gn g

MR: e/4 yes eiπ/4 1/8 1/8 1/4

e/2 no eiπ/2 1/2 0 1/2

Pf: e/4 yes e−iπ/4 1/8 3/8 1/2

e/2 no eiπ/2 1/2 0 1/2

SU(2)
2
: e/4 yes eiπ/2 1/8 3/8 1/2

e/2 no eiπ/2 1/2 0 1/2

K=8: e/4 no eiπ/8 1/8 0 1/8

e/2 no eiπ/2 1/2 0 1/2

(3,3,1): e/4 no ei3π/8 1/8 1/4 3/8

e/2 no eiπ/2 1/2 0 1/2

TABLE II: Relevant quasiparticle excitations of model FQH states at
ν = 5/2. Here we list their values of chargee∗; whether they are
non-Abelian; their topological twist factorθ; and their charge and
neutral scaling exponentsgc, gn, andg. The MR,Pf, and SU(2)2
NAF states are non-Abelian, while the K=8 (strong pairing) and
(3,3,1) states are Abelian. All of these have Abeliane/2 Laughlin-
type quasiparticles.

the same voltage dependence as the non-oscillatory current.
For larger voltages, it becomes apparent that there are oscilla-
tions with a period∼ 4πvn/L, but these are much larger volt-
ages than are probed in the experiments of Refs. 1,2 We note
that these oscillations can be turned around and interpreted
as oscillations as a function ofL, which changes when the
interferometry area is changed (i.e. when the side gate volt-
age is changed). However, these oscillations have periodicity
4πv/e∗V , wherev represents several characteristic velocities,
which are all dominated by the slowest edge mode velocity
(which is expected to bevn). SinceV ≃ 10−8 V, these will
only give rise to envelopes with periods much longer than that
of the oscillations observed in the experiment.

The temperature dependence of the oscillatory current in-
cludes a power-law prefactor of the form in Eq. (9) in addition
to the exponential suppressione−T/T

∗(L) = e−L/Lφ(T ) which
we discussed earlier. Thus, the relative suppression of thee/4
contribution, compared to thee/2 contribution, must be due
entirely to the shorter coherence length in thePf case but could
be due to a combination of effects in the MR or(3, 3, 1) case.

To make the case for interference stronger, it would be help-
ful to disentangle the effects of the temperature dependence of
the coherence length from the temperature dependence of the
effective tunneling amplitude. One way to do this would be
to carefully study the bias voltage dependence of the current
backscattered by the interferometer of Ref. 2 at some fixedVs
in the low-T limit. If the behavior is similar to that observed
in Ref. 22 (and, especially, if it is the behavior expected for
one of the possibleν = 5/2 states), then this is a strong in-
dication thatRL is due to the weak backscattering of charge
e/4 quasiparticles. Another useful way to do this would be to
turn on the point-contacts one at a time and study their tunnel-
ing behavior individually. This would help determine which
state occurs in the point-contact region; it is important that it
is at the same filling fraction as the rest of the bulk. Further-



7

more, it would allow one to determine the relative tunneling
amplitudes ofe/4 ande/2 quasiparticles and confirm that the
experiment is not in the CB regime.

It is important to verify that the oscillation periodicities be-
have as expected. In addition to confirming the dominance
of ∆A = 4Φ0/B and ∆A = 2Φ0/B oscillations in the
Fourier spectrum, one should examine the spectrum in the
different regions more carefully. Specifically, by using win-
dowing techniques in the Fourier analysis of the data, one
should check that the type I regions have both∆A = 4Φ0/B
and∆A = 2Φ0/B oscillations, that the type II regions have
only ∆A = 2Φ0/B oscillations, and that the amplitude of
∆A = 2Φ0/B oscillations are roughly the same in the type I
and II regions. It is also useful to know the relative oscillations
amplitudes of the two frequencies in the type I regions.

Once this is done, it is still important to establish that the
periodicities withVs thereby obtained correspond directly to
periodicities withA. One way to attempt to do this would be
to vary bothVs andB at ν = 2 and to use the periodicity
in B to determine the area for several different values ofVs.
One could, in this way, check that the assumed constantc in
∆A = c∆Vs is really constant. Such a measurement would
also determine whether the oscillation pattern corresponds to
AB interference or Coulomb blockade, as in Ref. 37. One
could also check that the oscillations are due to AB interfer-
ence by turning down or off one of the point contacts (and then
the other) and repeating the experiment, which should cause
the oscillations to disappear. This will further exclude reso-
nances at a single point contact as the source of oscillations
and will give a better value of the tunneling amplitude for a
single point contact.

A more ambitious approach to measuring the area within
the interference loop, which could simultaneously tackle
the even more fundamental problem of determining directly
whether thee/4 and e/2 regions correspond to even/odd
quasiparticle numbers, would be to image the 2DEG in the in-
terferometer using a scanning single electron transistor (SET),
as in Ref. 54. In this earlier experiment, a scanning SET was
used to image the compressibility of the electron liquid at
ν = 1, 1/3, 2/3. By measuring the compressibility, it should
be possible to determine where the edge of the Hall fluid is in
the droplet and, hence, the area of the interferometry region.
It should also be possible to find the localized states near the
Fermi energy wheree/4 quasiparticles could be trapped. By
imaging the chargee/4 quasiparticles, one might even be able
to see these localized quasiparticles enter or leave the inter-
ference loop asVs is varied, and hence allow the most direct
verification of the non-Abelian interferometer interpretation.

A more crude, but also more easily implementable way to
further strengthen the correlation between which oscillation
type is observed and the localization of excitations in the bulk
is to independently vary two or more plunger gates of the in-
terferometer. By refining the ability to control how the inter-
ferometry area is changed beyond a single plunger variable,
the changes between oscillation types can be more strongly
associated with a particular area. If a region of one plunger’s
gate voltage exhibits type I oscillations, but then, after chang-
ing a separate plunger’s position, the same voltage range inthe

first plunger exhibits type II oscillations, this would demon-
strate that a particular oscillation type is not associatedwith
that particular voltage range of the first plunger, but rather
that an ability to change between oscillation types is associ-
ated with a localized quantity in the area added or removed
by the second plunger. This would greatly strengthen the evi-
dence for non-Abelian braiding statistics.

We note, as a consistency check on the data of Ref. 2 that
one can use the area periodicity of the AB oscillations to
estimate the density of bulke/4 quasiparticles from the ob-
served switching between type I and II regions to beρe/4 ≈

50 µm−2. This translates to∼ 10 chargee/4 quasiparticles
in the interference loop. There could also bee/2 quasiparti-
cles in the bulk that enter or exit the interference loop when
the area is changed (or pairs ofe/4 quasiparticles that enter
or exit nearly simultaneously). Since these would not switch
the oscillations between type I and II, but do cause changes
in the phase of oscillations, we could attribute (though per-
haps less reliably) phase disruptions observed within one type
region to ane/2 quasiparticle crossing the interferometry re-
gion. Using this to similarly estimate the density of bulke/2
quasiparticles givesρe/2 ≈ 50 µm−2, or roughly the same
number as chargee/4 quasiparticles in the interference loop.
Depending on how seriously one takes thee/2 contribution,
this gives approximately0.5− 1.5% depletion of the electron
density in the bulk, which is the reported density variationin
the device1,2. With a scanning SET setup, it may be possi-
ble to find the∼ 10 chargee/4 quasiparticles that are nec-
essary for the non-Abelian interferometer interpretationand
observe them entering or exiting the interference loop. Local-
ized e/2 quasiparticles or, equivalently, closely-spaced pairs
of e/4 quasiparticles should also be observable.

VI. DISCUSSION

A double point-contact interferometer may also be used to
test whether the quantum Hall states atν = 7/3, 12/5, 8/3,
and 14/5 are non-Abelian. These filling fractions all have
compelling Abelian alternatives which almost certainly oc-
cur at their corresponding lowest Landau level counterparts.
While numerical studies strongly support the MR andPf states
at ν = 5/249,55,56,57,58,59,60,61,62and the (particle-hole conju-
gate) Laughlin state atν = 14/563,64, they are far less conclu-
sive forν = 7/3, 12/5, and8/364,65,66,67, where several candi-
dates seem plausible, including ones that are non-Abelian.It
is clearly important to also test these FQH states experimen-
tally, so we discuss the signatures of plausible candidatesin
AppendixA. The signatures of non-Abelian statistics in these
states will again be dramatic, though not quite as much as for
the MR,Pf, or SU(2)2 NAF states.

We close this discussion by assuming, for a moment, that
the experiments of Refs. 1,2 are, in fact, performing inter-
ferometry on theν = 5/2 state of the sort envisioned in
Refs. 28,29,30,31,32 and are detecting non-Abelian quasipar-
ticles. What forecast would these results give for topological
quantum computation17,18,19,20? Certainly, it would be encour-
aging that a non-Abelian topological state, thesine qua non
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for topological quantum computing, would be found. One po-
tential source of concern is the appearance of some seemingly
unpredictable phases slips, which would make it difficult to
distinguish the two states of a topological qubit, which differ
by aπ phase shift in their interference patterns. If, however,
further investigation shows that they areπ phase slips, then
they may be attributable to pairs ofe/4 quasiparticles entering
the loop at nearly the same time. Finally, the apparent stabil-
ity of thee/4 ande/2 regions implies that thermally-activated
chargee/4 quasiparticles do not move in and out of the inter-
ferometry region over the time scales of this experiment. In-
deed, these regions are stable on a time scale of a week, which
would imply a topological qubit error rateΓ/∆ ≤ 10−15.

“With luck, we might see a topological qubit within a year.”
– attributed to Kirill Shtengel, January 9, 200968.
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APPENDIX A: OTHER SECOND LANDAU LEVEL STATES

In this section, we consider the other observed FQH states
in the second Landau level69,70, i.e. ν = 7/3, 12/5, 8/3,
and14/5. We provide the data of their prominent candidate
descriptions that will be useful for interpreting tunneling and
interference experiments, similar to earlier in this paper.

As described earlier, the interference term of the tunneling
current combines: (1) the AB effect, (2) the braiding statistics
with encircled quasiparticles, and (3) the edge physics. The
AB effect simply contributes a phaseeie

∗Φ/~c = ei2πe
∗Φ/eΦ0

when the quasiparticle of chargee∗ encircles fluxΦ. The
physics describing propagation of excitations on the edge
gives rise to a temperature, bias voltage, and interferencepath
length dependence of the tunneling edge current28,47,53that we
denote asF (T, V, L). The details of this edge physics can
generally be complicated, but the most significant aspect is
the coherence length and temperature, which is given as be-
fore in Eqs. (5,6), with the appropriate scaling exponents for
excitations of a given state (which are given in the tables).

For the lowest order tunneling interference process, the
braiding statistics contributes the factor33

Mab =
SabS00

S0aS0b
, (A1)

whereSab is the topologicalS-matrix, anda and b are the
topological charges of the tunneling edge excitation and the
encircled bulk quasiparticle excitations, respectively.These

combine to give the lowest order interference contributionto
the tunneling current (in the asymptotic limit where the state
of the bulk quasiparticles is projected onto a definite valueof
b)

I
(qp)
12 ∝ Re

{

ei2π
e∗Φ
eΦ0 M∗

ab F (T, V, L)
}

. (A2)

If either a or b is an Abelian charge,Mab is simply a phase.
More generally, whena andb are both non-Abelian charges,
Mab is a complex number with|Mab| ≤ 1. This leads to the
potential for a suppression of the interference term [Eq. (A2)]
resulting from non-Abelian braiding statistics, similar to the
non-Abelianν = 5/2 states.

For the non-Abelian FQH states considered here, the braid-
ing statistics are essentially given by the SU(2)k theories71,
up to Abelian phase factors. These theories have topological
chargesj = 0, 1/2, 1, . . . , k/2 and

Mj1j2 =
sin

(

(2j1+1)(2j2+1)π
k+2

)

sin
(

π
k+2

)

sin
(

(2j1+1)π
k+2

)

sin
(

(2j2+1)π
k+2

) . (A3)

Thek = 2, 3, and4 cases are the most pertinent to our discus-
sion, so we write them out explicitly:

M (2) =







1 1 1

1 0 −1

1 −1 1






, (A4)

M (3) =











1 1 1 1

1 φ−2 −φ−2 −1

1 −φ−2 −φ−2 1

1 −1 1 −1











, (A5)

whereφ = 1+
√

5
2 is the Golden ratio, and

M (4) =

















1 1 1 1 1

1 1√
3

0 −1√
3

−1

1 0 1
2 0 1

1 −1√
3

0 1√
3

−1

1 −1 1 −1 1

















. (A6)

The braiding statistics of the MR,Pf, and SU(2)2 NAF
ν = 5/2 states are all derived from SU(2)2. The non-Abelian
quasiparticles in these states carry SU(2)2 charge1/2. It fol-
lows that an odd number cluster of such quasiparticles will
also carry a collective SU(2)2 charge of1/2, while an even
number cluster will carry either0 or 1. Thus, looking at the
(j = 1/2) middle column of Eq. (A4), we see exactly the
source of the behavior described in Eq. (1).

1. ν = 7/3

For theν = 7/3 FQH plateau, the leading candidates are
the Laughlin (L) state72, two types of Bonderson-Slingerland
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ν = 7

3
e∗ n-A? θ gc gn g

L1/3: e/3 no eiπ/3 1/3 0 1/3

BS2/3: e/3 yes e−i7π/24 1/3 5/8 23/24

e/3 no eiπ/3 1/3 0 1/3

BSψ
1/3: e/3 yes ei5π/24 1/3 3/8 17/24

e/3 no eiπ/3 1/3 0 1/3

RRk=4: e/6 yes e−iπ/6 1/12 1/4 1/3

e/3 no eiπ/3 1/3 0 1/3

e/2 yes eiπ/2 3/4 1/4 1

TABLE III: Relevant quasiparticle excitations of model FQHstates
at ν = 7/3. Here we list their values of chargee∗; whether they are
non-Abelian; their topological twist factorθ; and their charge and
neutral scaling exponentsgc, gn, andg. TheBS, BSψ, andRRk=4

states are non-Abelian, while the L state is Abelian. All of these have
Abeliane/3 Laughlin-type quasiparticles. (Note: Thee/2 excitation
for RR is marginal, but we include it for the sake of representingthe
possibility ofe/2 charge.)

(BS) states73, and a4-clustered Read-Rezayi (RR) state65.
(The bar indicates particle-hole conjugation.) The BS states
considered here are hierarchically constructed over the MR
andPf states, so have similar non-Abelian statistics derived
from Eq. (A4) using the fact that the non-Abelian quasipar-
ticles carry SU(2)2 charge1/2. The RRk=4 state is related
to SU(2)4, and so has more complicated non-Abelian statis-
tics, derived from Eq. (A6). Its fundamentale/6 quasiparti-
cles carry SU(2)4 charge1/2.

We see in TableIII that all of these states have ane/3 ex-
citation with smallest scaling exponentg = 1/3, and so one
expects these to dominate the tunneling. TheRRk=4 state also
hase/6 excitations withg = 1/3, which should give a compa-
rable contribution to the tunneling current. The experiments
of Ref. 21, which observes onlye/3 tunneling, appear to ex-
clude theRRk=4 state, and agree with the L1/3, BS2/3, and

BSψ1/3 states. In fact, since the relevant excitations of these
three states all havee/3, and furthermore, the most relevant
tunnelers are all Abelian, it will likely be difficult to distin-
guish between L1/3, BS2/3, and BSψ1/3 using tunneling and
interferometry experiments. Thermal transport experiments
are probably the best hope of distinguishing between these.

2. ν = 12/5

For theν = 12/5 FQH plateau, the leading candidates
are the Haldane-Halperin (HH) state74,75, two types of BS
states73, and a3-clustered RR state65. These BS states again
have non-Abelian statistics derived from Eq. (A4) using the
fact that the non-Abelian quasiparticles carry SU(2)2 charge
1/2. The RRk=3 state is related to SU(2)3, and so has non-
Abelian statistics derived from Eq. (A5). Its fundamentale/5
quasiparticles carry SU(2)3 charge1/2.

We see in TableIV that all of these states have an Abelian

ν = 12

5
e∗ n-A? θ gc gn g

HH2/5: e/5 no ei3π/5 1/5 2/5 3/5

2e/5 no ei2π/5 2/5 0 2/5

BS2/5: e/5 yes ei9π/40 1/10 1/8 9/40

e/5 no e−i2π/5 1/10 1/2 3/5

2e/5 no ei2π/5 2/5 0 2/5

BS
ψ
3/5: e/5 yes e−i11π/40 1/10 3/8 19/40

e/5 no e−i2π/5 1/10 1/2 3/5

2e/5 no ei2π/5 2/5 0 2/5

RRk=3: e/5 yes e−iπ/5 1/10 3/10 2/5

2e/5 no ei2π/5 2/5 0 2/5

TABLE IV: Relevant quasiparticle excitations of model FQH states
atν = 12/5. Here we list their values of chargee∗; whether they are
non-Abelian; their topological twist factorθ; and their charge and

neutral scaling exponentsgc, gn, andg. The BS,BS
ψ

, andRRk=3

states are non-Abelian, while the HH state is Abelian. All ofthese
have Abelian2e/5 Laughlin-type quasiparticles; all of these except
RR have a relevant Abeliane/5 quasiparticle.

2e/5 excitation with scaling exponentg = 2/5, so there
should always be a background of such excitations in tunnel-

ing. The HH2/5, BS2/5, andBS
ψ

3/5 states all have an Abelian
e/5 excitation withg = 3/5, so there should be a weaker
background of these excitation in the tunneling. The smallest
scaling exponent for the BS2/5 state belongs to non-Abelian
e/5 excitation, which is therefore expected to dominate the

tunneling in this state. TheBS
ψ

3/5 state has a non-Abeliane/5
excitation which has slightly less relevant tunneling operator
than the2e/5 excitation. TheRRk=3 state has a non-Abelian
e/5 excitation with the same scaling exponentg = 2/5 as the
2e/5 excitation, so they should have roughly equal contribu-
tion to tunneling.

In interferometry experiments, the BS2/5, BS
ψ

3/5, and
RRk=3 states will all exhibite/5 oscillations that will some-
times be suppressed. However, there are important distinc-
tions within this behavior that can distinguish between them.
In particular, the BS states will exhibit an even-odd effect
similar to Eq. (1), always returning to suppression fornq0
odd, wherenq0 is the number of non-Abeliane/5 fundamen-
tal quasiparticles. On the other hand, the RR state can ex-
hibit both suppression and full amplitude oscillations forall
values ofnq, and it has a probability of switching between
them when a given quasiparticle is taken in and out of the in-
terferometry region. Furthermore, when the oscillations are
suppressed for the BS state, the smaller amplitudee/5 oscil-
lations will be due to tunneling of the Abeliane/5 excitations
(which will always be present), because the non-Abelian ex-
citation will have fully suppressed interference. The relative
contribution to the tunneling of these excitations is not a fixed
amount, and will change dependent on temperature and volt-
age (i.e. they have different scaling). In contrast to this,the
suppression that would be observed in the RR state is due en-
tirely to the braiding statistics of the non-Abeliane/5 excita-
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ν = 8

3
e∗ n-A? θ gc gn g

L1/3: e/3 no e−iπ/3 1/3 1/3 2/3

2e/3 no ei2π/3 2/3 0 2/3

BS2/3: e/3 yes ei7π/24 1/6 1/8 7/24

e/3 no ei2π/3 1/3 1/3 2/3

2e/3 no ei2π/3 2/3 0 2/3

BS
ψ
1/3: e/3 yes e−i5π/24 1/6 3/8 13/24

e/3 no ei2π/3 1/6 1/2 2/3

2e/3 no ei2π/3 2/3 0 2/3

RRk=4: e/6 yes eiπ/6 1/24 1/8 1/6

e/3 yes eiπ/3 1/6 1/6 1/3

e/2 yes eiπ/2 3/8 1/8 1/2

2e/3 no ei2π/3 2/3 0 2/3

TABLE V: Relevant quasiparticle excitations of model FQH states at
ν = 8/3. Here we list their values of chargee∗; whether they are
non-Abelian; their topological twist factorθ; and their charge and

neutral scaling exponentsgc, gn, andg. The BS,BS
ψ

, and RRk=4

states are non-Abelian, while theL state is Abelian. All of these
have Abelian2e/3 Laughlin-type quasiparticles; all of these except
RR have a relevant Abeliane/3 quasiparticle.

tion, and the suppressed oscillation amplitude should always
be a constant factor ofφ−2 ≈ 0.38 smaller than the full oscil-
lation amplitude.

3. ν = 8/3

The candidates forν = 8/3 FQH plateau are, of course,
similar to theν = 7/3 candidates, since the filling fractions
are particle-hole dual. We stress, however, that the physically
observed states at these filling fractions need not be particle-
hole dual to each other, since physical effects, such as Lan-
dau level mixing, will tend to break particle-hole symme-
try at these fillings. The leading candidates are the Laugh-
lin state72, two types of BS states73, and a4-clustered RR
state65. These BS states again have non-Abelian statistics de-
rived from Eq. (A4) using the fact that the non-Abelian quasi-
particles carry SU(2)2 charge1/2. The RRk=4 state again
is related to SU(2)4, with non-Abelian statistics derived from
Eq. (A6) and fundamentale/6 quasiparticles carrying SU(2)4
charge1/2.

We see in TableV that all of these states have an Abelian
2e/3 excitation with scaling exponentg = 2/3, so there
should always be a background of such excitations in tun-

neling. TheL1/3, BS2/3, andBS
ψ

1/3 states all have ane/3
excitation also withg = 2/3, so these two excitations are
expected to have roughly equal contribution to the tunneling
in these theories. However, the smallest scaling exponent for

the BS2/3 andBS
ψ

1/3 states belong to non-Abeliane/3 excita-
tions, which are therefore expected to dominate the tunneling
in these states. The smallest scaling exponent for the RRk=4

state belongs to the non-Abeliane/6 excitation, which should

ν = 14

5
e∗ n-A? θ gc gn g

L1/5: e/5 no e−iπ/5 1/20 1/4 3/10

3e/5 no eiπ/5 9/20 1/4 7/10

4e/5 no ei4π/5 4/5 0 4/5

BS4/5: e/5 no ei4π/5 1/20 3/4 4/5

2e/5 yes ei13π/40 1/5 1/8 13/40

4e/5 no ei4π/5 4/5 0 4/5

TABLE VI: Relevant quasiparticle excitations of model FQH states
at ν = 14/5. Here we list their values of chargee∗; whether they
are non-Abelian; their topological twist factorθ; and their charge
and neutral scaling exponentsgc, gn, andg. The BS state is non-
Abelian, while theL state is Abelian. Both of these have Abelian
4e/5 Laughlin-type quasiparticles.

thus dominate tunneling. There are additional relevant tun-
nelers for RRk=4 that are non-Abelian with different statistics
than the fundamental quasiparticle, namely thee/3 ande/2
excitations which carry SU(2)4 charges1 and 3/2, respec-
tively. The experiments of Ref. 21, which observes onlye/3
tunneling, appear to exclude the RRk=4 state and best agree

with the BS2/3 andBS
ψ

1/3 states.

4. ν = 14/5

The ν = 14/5 FQH plateau is most likely the standard
(particle-hole conjugate) Laughlin state72, but we include this
filling fraction for completeness, and list a BS state73 as an
(unlikely) alternative candidate. This BS state again has non-
Abelian statistics derived from Eq. (A4) using the fact that the
non-Abelian quasiparticles carry SU(2)2 charge1/2.

We see in TableVI that both of these states have Abelian
e/5 and4e/5 excitations with relevant scaling exponents, so
there should always be a background of such excitations in
tunneling. Thee/5 excitation is the most relevant tunneler
for theL1/5 state. For the BS4/5 state, the non-Abelian2e/5
excitation has the most relevant tunneling.

We also mention that a BS type hierarchy could be built
over the SU(2)2 NAF state to produce candidates for all the
filling fractions listed above73. The relevant data could be read
off the above tables for the non-Abelian quasiparticle excita-
tions in the BS states by simply adding1/4 to gn andg, and
multiplying the twist factors byeiπ/4.

APPENDIX B: CHARGE e/4 AND e/2 BACKSCATTERING
MATRIX ELEMENTS

When they are small, the tunneling amplitudesΓe/4 and
Γe/2 are the matrix elements for the transfer of charge from
one edge of a Hall device to the other. For simplicity and con-
creteness, let us suppose that the device is a Hall bar with
a single constriction. Then, the transfer of chargeq from
one edge to the other entails a momentum change∆kx ∼
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(q/e)∆y/ℓ20, where thex-direction is along the Hall bar.
(This is seen most easily in Landau gauge, as we discuss be-
low in the context of specific trial wavefunctions.) However,
in order to cause a momentum change of∆kx, the potential
due to the gates must have weight at this wavevector, i.e. the
matrix element is determined by the variation of the potential
on a length scale∆x ∼ 1/∆kx ∼ (e/q) ℓ20/∆y. Hence, in
order to transfer chargeq from one edge to the other, we need
the potential to vary on a length scale∆x satisfying

∆x · ∆y ∼ (e/q) ℓ20 (B1)

If the constriction were much smaller than this, then we would
expect that the potential would have comparable weight at
the wavevector necessary for chargee/4 transfer,∆kx ∼
∆y/4ℓ20, and at the larger wavevector necessary for chargee/2
transfer,∆kx ∼ ∆y/2ℓ20. Otherwise, we expect the weight to
fall of rapidly with wavevector, and forΓe/4 ≫ Γe/2.

This can be made a little more precise by considering, for
the sake of concreteness, the MR Pfaffian state. We work in
Landau gauge on a cylinder76:

Ψ0 = S(Z1, . . . , Zn) Pf

(

1

Zi − Zj

)

∏

i>j

(Zi − Zj)
2 e

P

i
y2

i /2ℓ
2
0

(B2)
where Zi = ei(xi+iyi)/r, xi and yi are the coordinates
around and along the cylinder, respectively, andr is the ra-
dius of the cylinder. S(Z1, . . . , Zn) is a symmetric poly-
nomial which deforms the shape of the Hall droplet from a
rotationally-symmetric band around the cylinder to one with
a constriction. For instance, we could takeS(Z1, . . . , Zn) =
∏

i (Zi − ζ1)
p
(Zi − ζ2)

p whereζ1 andζ2 are pointsoutside
the droplet with the samex-coordinate. The precise form of
S(Z1, . . . , Zn) is not important at the present level of discus-
sion, but we will assume that it is a polynomial of degreeq
which is less than2Ne. Then, the wavefunction

Ψ1/4 = S(Z1, . . . , Zn) Pf

(

Zi + Zj
Zi − Zj

)

×

∏

i>j

(Zi − Zj)
2
e

P

i
y2

i /2ℓ
2
0 (B3)

has chargee/4 transferred from one edge to the other, while

Ψ1/2 = S(Z1, . . . , Zn)
∏

i

Zi×

Pf

(

1

Zi − Zj

)

∏

i>j

(Zi − Zj)
2
e

P

i
y2

i /2ℓ
2
0 (B4)

has chargee/2 transferred from one edge to the other.
The tunneling matrix elementsΓe/4 andΓe/2 for charge-

e/4 ande/2 quasiparticles, respectively, are

Γe/4 =
〈

Ψ1/4

∣

∣V̂
∣

∣Ψ0

〉

, Γe/2 =
〈

Ψ1/2

∣

∣V̂
∣

∣Ψ0

〉

(B5)

where

V̂ =

∫

dx dy V (x, y)
∑

i

δ(2)(z − zi) (B6)

andV (x, y) is the potential due to the gates which define the
point contact.

While we would need a detailed knowledge ofV (x, y) and
of the precise shape of the Hall droplet in order to determine
Γe/4 andΓe/2 quantitatively, we can make a few qualitative
remarks which echo our earlier observations. First, let us ig-
noreS(Z1, . . . , Zn). Then,Ψ0,Ψ1/4,Ψ1/2 are eigenstates
of angular momentum around the cylinder with eigenvalues
M = M0,M0 + N/2,M0 + N . Thus, the tunneling ma-
trix elementsΓe/4 and Γe/2 are controlled byṼ (kx, y) for
kx = N/2r and kx = N/r, respectively. These will be
comparable if the scale∆x over which the potential varies
in thex-direction is smaller than1/kx ∼ r/N . But the dis-
tance between the two edges∆y is ∆y ∼ ℓ20N/r. Hence,
we need∆x · ∆y ∼ ℓ20 in order for the two tunneling ma-
trix elements to be comparable. Otherwise, both are deter-
mined by the tails of the (Fourier transform of the) poten-
tial and Γe/4 ≫ Γe/2. The presence of the constrictions,
which is reflected inS(Z1, . . . , Zn) means that the wavefunc-
tions are no longer angular momentum eigenstates. Instead,
Ψ0 has non-zero amplitude for a range of angular momenta
M0 < M < M0 +m while Ψ1/4 has non-zero amplitude for
a rangeM0 + N/2 < M < M0 + N/2 + m, and similarly
for Ψ1/2. Here,m is determined byS(Z1, . . . , Zn); the min-
imum distance between the two edges at the constriction is
∆y ∼ ℓ20(N − m)/r. Thus, the tunneling matrix elements
Γe/4 and Γe/2 are controlled bykx = (N − 2m)/2r and
kx = (N −m)/r. Hence, we obtain the same requirement as
above, but with∆y now understood as the distance between
the two edges at their point of closest approach.

APPENDIX C: COULOMB BLOCKADE FOR GENERAL
FQH STATES

Coulomb blockade occurs when a puddle of the Hall fluid
is almost completely pinched-off so that it is isolated fromthe
rest of the Hall fluid, with only the possibility of electronstun-
neling between this puddle and the other regions of Hall fluid.
Electron tunneling is resonant when the energies are degener-
ate for two different values ofNe, the number of electrons in
the pinched-off puddle.

As we mentioned earlier, several authors37,41,77 have em-
phasized that a device can be ‘Coulomb-dominated’ even
when it is not strictly-speaking in the Coulomb blockade
regime, meaning that the Coulomb energy of the puddle can
be the dominant energy even when the puddle is far from be-
ing pinched off from the rest of the Hall fluid. In the Coulomb-
dominated regime, the number of electrons in the puddle is
determined by the condition that they exactly neutralize the
positively charged background. As the side-gate voltage is
varied (or a back-gate voltage), the charge of the neutraliz-
ing background varies. The relationship between the two (the
‘lever arm’37,77) is not expected to depend on the magnetic
field, so the period in side-gate voltage is expected to be inde-
pendent of the field in this regime (unlike what is observed in
the experiments of Refs. 1,2).

In this appendix, however, we focus on the Coulomb block-



12

ade regime of a nearly pinched-off puddle – which, as we have
argued, is not likely to govern the experiments of Refs. 1,2.
The bulk of the pinched-off puddle will have some definite to-
tal collective topological chargea, determined byNe together
with the bulk quasiparticle excitations in the puddle. If the
bulk quasiparticles are all Abelian, then this uniquely specifies
a, i.e. a = Neae ×

∏

j aj wherej indexes the bulk quasipar-
ticles (whereae is the topological charge of an electron and
aj the topological charge of thejth bulk quasiparticle). When
the bulk quasiparticles are non-Abelian, there can be multiple
fusion channels, and so we writea ∈ Neae ×

∏

j aj to indi-
cate thata is one of the allowed fusion channels of the elec-
trons plus quasiparticles. The entire puddle must have triv-
ial total topological charge0, so, to compensate for the bulk
topological chargea, the edge of the puddle carries the conju-
gate topological chargēa. This topological charge determines
which sectors of edge excitations are allowed to occur, and
hence the energy spectrum of the edge excitations. Thus, the
pattern of tunneling resonance peaks is determined entirely by
the ground-state energyE (Ne, B,A, aj , a) of the puddle50,
which depends on the number of electronsNe in the puddle,
the background magnetic fieldB, the puddle areaA, and the
collective topological chargea of the bulk.

The edge of a quantum Hall fluid can be described using
CFT. For a pure CFT on a circle of lengthL, the energy of a
mth level descendent of the primary fieldϕ is 2πv

L (hϕ +m),
wherev is the velocity andhϕ is the conformal scaling dimen-
sion ofϕ. For a quantum Hall system, there can be multiple
edge modes, and the topological chargeā on the edge deter-
mines which primary field̄a(i) of theith mode is present. For
this analysis, we are interested in the ground-state energies,
and can ignore descendents (letm = 0). Some of the edge
modes may couple to other quantities that break their confor-
mal symmetry. We can thus write the energy as the sum over
effective energies from the edge modes

E (Ne, B,A, aj , a) =
∑

i

2πvi
L

h̃a(i) (C1)

whereL is the length of the puddle’s perimeter,vi is the ve-
locity of theith mode, and̃ha(i) is the effective scaling dimen-
sion of theith edge mode. The effective scaling dimensions
includes any modification of these modes that arise when the
CFT couples to other quantities. When there is no modifica-
tion of an edge mode, one simply hash̃a(i) = ha(i) , the con-
formal scaling dimension ofa(i). For example, we include
the electrostatic area dependence in the energy of the charge
mode (denotedc) by writing50:

h̃a(c) =

(

√

ha(c) −

√

ν

2

B (A−A0)

Φ0

)2

(C2)

=
ν

2

(

a(c) −
B (A−A0)

Φ0

)2

, (C3)

whereA0 is the area of the puddle with just enough quasiholes
fewer than the given configuration in order to havea(c) =
0 (see Refs. 50,78 for more clarifying details). This can be

written somewhat more transparently as

h̃a(c) =
ν

2

(

N q
φ + S −Nφ

)2

(C4)

N q
φ =

Ne
ν

+
∑

j

a
(c)
j (C5)

Nφ =
BA

Φ0
, (C6)

whereN q
φ is the quantized number of fluxes ascribed to the

electrons (which havea(c)
e = 1/ν flux per electron) and bulk

quasiparticles (thejth quasiparticle havinga(c)
j fluxes),S is

a finite shift, andNφ is the actual number of magnetic fluxes
through the puddle. In this form, the energy is seen to be
due to the discrepancy between the actual number of fluxes
through the puddle and the flux quantization condition. From
this, we can see that without the inclusion of neutral modes
the spacing between resonance peaks would simply be∆A =
e/ρ0, the area that a single electron occupies.

The charge sector CFT scaling dimension of an excitation
with electric chargee∗ is given by

ha(c) =
ν

2

[

a(c)
]2

=
1

2ν

(

e∗

e

)2

. (C7)

If there is an array of Abelian U(1) sectors with couplingK-
matrix, it is useful to separate them into the charge and neu-
tral modes. This can be done by directly diagonalizing the
K-matrix, or at the level of the flux vector, where for an exci-
tation with U(1)K flux vector

−→
l one can write53

a(c) =
e∗

νe
=
t̂c ·K

−1 ·
−→
l

t̂c ·K−1 · t̂c
(C8)

ha(c) =

[

a(c)
]2

2
t̂c ·K

−1 · t̂c (C9)

−→
l n =

−→
l − a(c)t̂c (C10)

ha(n) =
1

2

∣

∣

∣

−→
l n ·K−1 ·

−→
l n

∣

∣

∣
, (C11)

wheret̂c is the “charge vector” of the correspondingK-matrix
(andt̂c ·K−1 ·

−→
l n = 0). (Note: these equations can also be

used for electrons by treating them as excitations withe∗ = e,
rather than their actual charge−e.) In these terms, the charge
sector’s scaling exponent isgc = 2hc and the U(1) sectors’
contribution to the neutral sector scaling exponent isgn =
2hn.

From this, we get that the spacing between two peaks, say
the resonances betweenNe = N andNe = N ± 1, will be

∆AN =
e

ρ0



1 +
∑

i6=c

ν̃vi
vc

(

h̃
(aN+1)
i + h̃

(aN−1)
i − 2h̃

(aN )
i

)





(C12)
(assuming that̃hi do not depend onA for i 6= c), where the
fractional part of the filling is denoted̃ν ≡ ν − ⌊ν⌋. This
general, yet simple equation allows one to easily predict the
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spacings for a candidate state just by knowing the conformal
dimensions of the corresponding CFT’s primary fields, and
how the edge modes couple to other quantities.

When there are non-trivial electrically neutral excitations
in FQH state, there will generally be tunneling of such exci-
tations between the edge and bulk quasiparticles that will not
change the bulk energy, but may lower the edge energy. (Note:
this can occur for Abelian states.) If the area of the puddle is
changed slowly compared to the tunneling rate of such neutral
excitations, the spacing between consecutive resonance peaks
will be modified because the topological charge on the edge
(and in the bulk) will change as a result of the tunneling event.
The resulting spacing when such bulk-edge relaxation occurs
will be78

∆A′
N =

e

ρ0



1 +
∑

i6=c

ν̃vi
vc

(

h̃
(aN−1)
i − h̃

(aN )
i

+h̃
(a′N+1)

i − h̃
(a′N )
i

)



 , (C13)

where the primed topological charges are the ones that re-
sult from the unprimed ones when relaxation has occurred be-
tween theNe = N − 1, N resonance and theNe = N,N + 1
resonance (or vice-versa if the area is being varied in the other

direction). When the area of the puddle is changed quickly
compared to the neutral excitation bulk-edge tunneling rate,
the spacing will simply look like Eq. (C12). For intermedi-
ate time scales, the spacing between consecutive resonance
peaks will be given by some smearing between Eqs. (C12)
and (C13).

When there are multiple flavors of electrons (e.g. in bilayer
or unpolarized FQH systems), one generalizes the above dis-
cussion in the obvious way. Specifically, each electron flavor
may have a different topological charge assigned to it, and
tunneling a particular electron flavor may be energeticallyfa-
vored in a given configuration, so this must be taken into ac-
count when determining the spacing of resonance peaks.

From Eqs. (C12) and (C13), it is clear that states with
dramatically different braiding statistics can nonetheless give
rise to Coulomb blockade patterns that are experimentally
indistinguishable, even assuming one has good enough ex-
perimental resolution to overcome the challenges introduced
by the likely small values ofvi/vc and the thermal smear-
ing of resonance peaks. The only requirement for indis-
tinguishability is that the conformal scaling dimensions be
such that they produce similar relative spacings between res-
onance peaks. Hence, in contrast to interference experiments,
Coulomb blockade lacks the ability to unambiguously identify
the presence of non-Abelian statistics in a FQH state.
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