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cInstitut für Physik, Humboldt-Universität zu Berlin,

D-12489 Berlin, Germany.

March 29, 2009

Abstract

We present, theoretical predictions and Monte Carlo simulations, for a simple three

matrix model that exhibits an exotic phase transition. The nature of the transition is

very different if approached from the high or low temperature side. The high temperature

phase is described by three self interacting random matrices with no background spacetime

geometry. As the system cools there is a phase transition in which a classical two-sphere

condenses to form the background geometry. The transition has an entropy jump or latent

heat, yet the specific heat diverges as the transition is approached from low temperatures.

We find no divergence or evidence of critical fluctuations when the transition is approached

from the high temperature phase. At sufficiently low temperatures the system is described

by small fluctuations, on a background classical two-sphere, of a U(1) gauge field coupled

to a massive scalar field. The critical temperature is pushed upwards as the scalar field

mass is increased. Once the geometrical phase is well established the specific heat takes

the value 1 with the gauge and scalar fields each contributing 1/2.
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1 Introduction

All the fundamental laws of physics are now understood in geometrical terms. The classical

geometry that plays a fundamental role in our formulation of these laws has been vastly extended

in noncommutative geometry [1]. However, we still have very little insight into the origins of

spacetime geometry itself. This situation has been undergoing a significant evolution in recent

years and it now seems possible to understand geometry as an emergent concept. The notion

of geometry as an emergent concept is not new, see for example [2] for an inspiring discussion

and [3, 4] for some recent ideas. We examine such a phenomenon in the context of a simple

three matrix model [5–7].

Matrix models with a background noncommutative geometry have received attention as an

alternative setting for the regularization of field theories [8–11] and as the configurations of D0

branes in string theory [12,13]. In the model studied here, the situation is quite different. It has

no background geometry in the high temperature phase and the geometry itself emerges as the

system cools, much as a Bose condensate or superfluid emerges as a collective phenomenon at

low temperatures. The simplicity of the model we study here allows for a detailed examination

of such an exotic transition. We suspect the characteristic features of the transition may be

generic to this novel phenomenon.

In this article we study both theoretically and numerically a three matrix model with global

SO(3) symmetry whose energy functional or Euclidean action functional (see eq. (3.6)) is a

single trace of a quartic polynomial in the matrices Da. The model contains three parameters,

the inverse temperature β = α̃4 = g−2, and parameters m and µ which provide coefficients for

the quartic and quadratic terms in the potential.

We find that as the parameters are varied the model has a phase transition with two clearly

distinct phases, one geometrical the other a matrix phase. Small fluctuations in the geometrical

phase are those of a Yang-Mills and a scalar field around a ground state corresponding to a

round two-sphere. In the matrix phase there is no background spacetime geometry and the

fluctuations are those of the matrix entries around zero. In this article we focus on the subset

of parameter space where in the large matrix limit the gauge group is Abelian.

For finite but large N , at low temperature, the model exhibits fluctuations around a fuzzy

sphere [14]. In the infinite N limit the macroscopic geometry becomes classical. As the tem-

perature is increased it undergoes a transition with latent heat so the entropy jumps, yet the

model has critical fluctuations and a divergent specific heat. As this critical coupling is ap-

proached the fuzzy sphere radius expands to a critical radius and the sphere evaporates. The

neighbourhood of the critical point exhibits all the standard symptoms of a continuous 2nd

order transition, such as large scale fluctuations, critical slowing down (of the Monte Carlo

routine) and is characterized by a specific heat exponent which we argue is α = 1/2, a value

consistent with our numerical simulations. In the high temperature (strong coupling) phase

the model is a matrix model closely related to zero dimensional Yang-Mills theory. As the

transition is approached from within this phase we find no evidence of critical fluctuations and

no divergence in the specific heat.
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In the geometrical sphere phase the gauge coupling constant is g2 = β−1 and m parameterizes

the mass of the scalar field. For small m2 we find a transition with discontinuous internal

energy U =< S > /β (so the entropy jumps across the transition [15]) while the specific heat

is divergent as the transition is approached from the low temperature fuzzy sphere phase but

finite when approached from the high temperature matrix phase. The fuzzy sphere emerges

as the low temperature ground state which as one expects is the low entropy phase and the

transition is characterized by both a latent heat and divergent fluctuations.

To our knowledge it is the first clear example of a transition where the spacetime geometry

is emergent. This transition itself is extremely unusual. We know of no other physical situation

that has a transition with these features. Standard transitions are very dependent on the

dimension of the background spacetime and when this is itself in transition an asymmetry of

the approach to criticality is not so surprising.

By studying the eigenvalues of operators in the theory we establish that, in the matrix

phase, the matrices Da are characterised by continuous eigenvalue distributions which undergo

a transition to a point spectrum characteristic of the fuzzy sphere phase as the temperature

is lowered. The point spectrum is consistent with Da = La/R where La are su(2) angular

momentum generators in the irreducible representation given by the matrix size and R is the

radius of the fuzzy sphere. The full model received an initial study in [7] while a simpler version,

invariant under translations of Da, arises naturally as the configuration of D0 branes in the

large k limit of a boundary Wess-Zumino-Novikov-Witten model [13] and has been studied

numerically in [5]. If the mass parameters of the potential are related to the matrix size, the

model becomes that introduced in [16]. The interpretation presented here is novel, as are the

results on the entropy and critical behaviour and the extension to the full model.

A short description of the results obtained in this article is given in [15]. This article is

organised as follows. In section 2 we review the fuzzy sphere and its geometry. In section 3 we

derive several theoretical predictions in the fuzzy sphere phase including the critical behaviour

of the model. In section 4 we discuss the non-perturbative phase structure (phase diagram)

and Monte Carlo numerical results for various observables. We conclude in section 5 with some

discussion and speculations.

2 The fuzzy sphere

The ordinary round unit sphere, S2, can be defined as the two dimensional surface embedded

in flat three dimensional space satisfying the equation
∑3

a=1 n2
a = 1 with ~n∈R3. One can

use the na as a nonholonomic coordinate system for the sphere. In this coordinate system

a general function can be expanded as f(~n) =
∑∞

l=0 flmYlm(~n), where Ylm are the standard

spherical harmonics. The basic derivations are provided by the SO(3) generators defined by

La = −iǫabcnb∂c and the Laplacian is L2 = LaLa with eigenvalues l(l + 1), l = 0, ...,∞.

Following Fröhlich and Gawȩdzki [25] (or Connes [1] for spin geometry) the geometry of a

Riemannian manifold can be encoded in a spectral triple. For the ordinary sphere the triple
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is (C∞(S2),H,L2) where C∞(S2) is the algebra of all functions f(~n) on the sphere and H is

the infinite dimensional Hilbert space of square integrable functions. Such a spectral triple is

precisely the data that enters the scalar field action on the manifold. So a scalar field action

which includes an appropriate Laplacian can specify the geometry.

The fuzzy sphere can be viewed as a particular deformation of the above triple which is

based on the fact that the sphere is the coadjoint orbit SU(2)/U(1) [14],

gσ3g
−1 = naσa , g∈SU(2) , ~n∈S2, (2.1)

and is therefore a symplectic manifold which can be quantized in a canonical fashion by simply

quantizing the volume form

ω = sinθdθ∧dφ =
1

2
ǫabcnadnb∧dnc. (2.2)

The result of this quantization is to replace the algebra C∞(S2) by the algebra of N×N matrices

MatN . MatN becomes the N2−dimensional Hilbert space structure HN when supplied with

inner product (f, g) = 1
N

Tr(f+g) where f, g∈MatN . The spin N−1
2

IRR of su(2) has both a

left and a right action on this this Hilbert space. For the left action the generators are La and

satisfying [La, Lb] = iǫabcLc, and
∑

a L2
a = c2 = N2−1

4
. The spherical harmonics Ylm(~n) become

the canonical su(2) polarization tensors Ŷlm and form a basis for HN . These are defined by

[La, [La, Ŷlm]] = l(l + 1)Ŷlm , [L±, Ŷlm] =
√

(l∓m)(l±m + 1)Ŷlm±1 , [L3, Ŷlm] = mŶlm. (2.3)

and satisfy

Ŷ †
lm = (−1)mŶl−m ,

1

N
TrŶl1m1

Ŷl2m2
= (−1)m1δl1l2δm1,−m2

, (2.4)

and the completeness relation
N−1
∑

l=0

l
∑

m=−l

Ŷ †
lmŶlm = 1 (2.5)

The “coordinates functions” on the fuzzy sphere S2
N are defined to be proportional to Ŷ1µ

tensors (as in the continuum) and satisfy

x2
1 + x2

2 + x2
3 = 1 , [xa, xb] =

i√
c2

ǫabcxc, where xa =
La√
c2

. (2.6)

“Fuzzy” functions on S2
N are elements of the matrix algebra while derivations are inner and

given by the generators of the adjoint action of su(2) defined by L̂aφ := [La, φ]. A natural

choice of the Laplacian on the fuzzy sphere is therefore given by the Casimir operator

L̂2 = [La, [La, ..]]. (2.7)

Thus the algebra of matrices MatN with N = L + 1 decomposes under the action of su(2) as
L
2
⊗L

2
= 0⊕1⊕2⊕..⊕L, with the first L

2
standing for the left action while the other L

2
stands

5



for the right action of su(2). It is not difficult to convince ourselves that this Laplacain has a

cut-off spectrum with eigenvalues l(l + 1) where l = 0, 1, ..., L. Given the above discussion we

see that a general fuzzy function (or element of the algebra) on S2
N can be expanded in terms

of polarization tensors as follows f =
∑L

l=0

∑l

m=−l flmŶlm. The continuum limit is given by

L−→∞. Therefore the fuzzy sphere can be described as a sequence of triples (MatN , HN , L̂2)

with a well defined limit given by the triple (C∞(S2),H,L2). The number of degrees of freedom

in the function algebra of S2
N is N2 and the noncommutativity parameter is θ = 2√

N2−1
.

3 Theoretical predictions

3.1 Gauge action

It has been shown in [26–29] that the differential calculus on the fuzzy sphere is three

dimensional and as a consequence, treating gauge fields as one-forms, a generic gauge field, ~A

has 3 components. Each component Aa, a = 1, 2, 3, is an element of MatN and the U(1) gauge

symmetry of the commutative sphere will become a U(N) gauge symmetry on the fuzzy sphere

with gauge transformations implemented as Aa−→UAaU
† + U [La, U

†] where U ∈ U(N). In

this approach to gauge fields on the fuzzy sphere, S2
N , it is difficult to split the vector field ~A in

a gauge-covariant fashion into a tangent gauge field and a normal scalar field. However, we can

write a gauge-covariant expression for the normal scalar field as Φ = 1
2
(xaAa+Aaxa+

A2
a√
c2

). In the

commutative limit, N → ∞, we have Aa → Aa and Φ → ϕ = naAa and the splitting into gauge

field and scalar field becomes trivial being implemented by simply writing Aa = naϕ+ aa, with

naaa = 0, where ~n is the unit vector on S2, ϕ = ~n · ~A is the normal gauge-invariant component

of ~A and ~a is the tangent gauge field.

For this formulation of gauge field theory on the fuzzy sphere the most general action (up

to quartic power in Aa) on S2
N is then

SN [A] = 1
4g2N

TrF 2
ab − 1

2g2N
ǫabcTr

[

1
2
FabAc − i

6
[Aa, Ab]Ac

]

+ 2m2

g2N
TrΦ2 + ρ

g2N
TrΦ. (3.1)

In above Tr1 = N and Fab = i[La, Ab]− i[Lb, Aa]+ ǫabcAc + i[Aa, Ab] is the covariant curvature,

and SN [0] = 0. The limit m2−→∞ gives a large mass to the scalar component and effectively

projects it out of the spectrum of small fluctuations.

The associated continuum action S∞ is then at most quadratic in the field and as a con-

sequence the theory is largely trivial, consisting of a gauge field and a scalar field that have a

mixing in their joint propagator. Indeed we can show that

S∞ =
1

4g2

∫

dΩ

4π

[

(fab)
2 − 4ǫabcfabncϕ − 2(Laϕ)2 + 4(1 + 2m2)ϕ2 + 4ρϕ

]

, (3.2)

where fab is the curvature of the tangent field aa and fab = iLaab − iLbaa + ǫabcac. As one can

immediately see this theory consists of a 2-component gauge field aa that mixes with a scalar

field ϕ, i.e. the propagator mixes the two fields. In the following we will primarily be interested

6



in the case with ρ = 0. We see also that the presence of the scalar field means that the geometry

is completely specified, in that all the ingredients of the spectral triple are supplied by this field.

In contrast a two dimensional gauge theory on its own would not be sufficient to specify the

geometry.

3.2 Matrix model

We introduce α̃4 = 1
g2 = β where β can be interpreted as an inverse temperature and we

can rewrite the above gauge action (3.1) (shifted by constants and dropping the subscript N)

in terms of Da = La + Aa as follows:

S(0)[D] =
1

4g2N
TrF 2

ab −
1

2g2N
ǫabcTr

[

1

2
FabAc −

i

6
[Aa, Ab]Ac

]

− α̃4c2

6

=
α̃4

N

[

− 1

4
Tr[Da, Db]

2 +
2i

3
ǫabcTrDaDbDc

]

. (3.3)

V [D] =
2m2

g2N
TrΦ2 +

ρ

g2N
TrΦ − m2c2

2g2
+

ρ
√

c2

2g2

=
α̃4

N

[

m2

2c2
Tr(D2

a)
2 +

(

ρ

2
√

c2
− m2

)

Tr(D2
a)

]

. (3.4)

The complete action functional is then:

S[D] ≡ S(0)[D] + V [D] = SN [A] − α̃4c2
6

− α̃4m2c2
2

+
α̃4ρ

√
c2

2
, (3.5)

and the constants are chosen so that S[0] = 0. The action takes the rather simple form

S[D] = α̃4

N
Tr

[

− 1
4
[Da, Db]

2 + 2i
3
ǫabcDaDbDc + m2

2c2
(D2

a)
2 − µD2

a

]

(3.6)

where µ = m2 − ρ

2
√

c2
. It is invariant under unitary transformations U(N) and global rotations

SO(3). Extrema of the model are given by the reducible representations of SU(2) and commut-

ing matrices. For sufficiently small ρ and with c2 = (N2 −1)/4 the classical absolute minima of

the model is given by the irreducible representation of SU(2) of dimension N . Small fluctua-

tions around this background can then be seen to have the geometrical content of a Yang-Mills

and scalar multiplet on a background fuzzy sphere as described in the previous section. As

we will see, for small enough coupling or low temperature, these configurations also give the

ground state of the fluctuating system. For very small negative values of the parameter µ, and

for m = 0 there is a local minimum at Da = 0 and a global minimum at Da ∼ La, separated by

a barrier. As µ is made more negative the difference in energy (or Euclidean action) between

the two extrema becomes less and eventually for µ = −2
9

the two minima become degenerate,

one occurring at Da = 0 while the other occurs at Da = 2
3
La and they are separated by a

barrier whose maximum occurs at Da = 1
3
La.
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In this special case (i.e. m = 0 and µ = −2
9

or equivalently ρ = 4
9

√
c2) the action takes the

form

S[D] =
α̃4

N

(

i

2
Tr[Da, Db] +

1

3
ǫabcDc

)2

. (3.7)

and we see that the configurations Da = 0 and Da = 2
3
La both give zero action, however there

is a unique configuration with Da = 0 while there is an entire SU(N) manifold of configurations

Da = 2
3
ULaU

† which are equivalent. The classical model has a first order transition at m = 0

for µ = −2
9

and the classical ground state switches from Da = φLa, where φ = (1+
√

1 + 4µ)/2,

for µ > −2/9 to Da = 0 for µ < −2/9. The quantity φ is therefore a useful order parameter

for this transition. However, one would expect fluctuations to have a significant effect on this

classical picture.

In fact both theoretical and numerical studies show that in the fluctuating theory, the fuzzy

sphere phase only exists for µ > −2/9 [30].

3.3 Quantization and Observables for small m2

The quantum version of the model is taken to be that obtained by functional integration

with respect to the gauge field. This amounts to integration over the three Hermitian matrices

Da with Dyson measure and the partition function Z is given by

Z =

∫

dDae
−S[D] = e−

3N2

4
log α4

∫

dXae
−NŜ[X] , Xa = αDa , α̃ = α

√
N

Ŝ[X] = −1

4
Tr[Xa, Xb]

2 +
2iα

3
ǫabcTrXaXbXc +

m2

2c2
Tr(X2

a)2 +

(

ρα2

2
√

c2
− m2α2

)

Tr(X2
a).

(3.8)

The latter form of the expression (in terms of Xa) allows us to take α̃ = 0 and we see that this

limit is equivalent to removing all but the leading commutator squared term. Also the quartic

term proportional to m2 survives. However if m2 and ρ are scaled appropriately with α̃ only

the Chern-Simons term ǫabcTrXaXbXc is removed.

The set of gauge equivalent configurations is parameterized by the SU(N) group manifold

which is compact, so there is no need to gauge fix and the functional integral is well defined,

being an ordinary integral over R3N2

. However, the volume of the gauge group diverges in the

limit N → ∞ and to make contact with the commutative formulation it is convenient to gauge

fix in the standard way.

In the background field gauge formulation we separate the field as Xa = α̃Da + Qa. The

action is invariant under Da−→Da, Qa−→UQaU
† + U [Da, U

†].

Following the standard Faddeev-Popov procedure [31] and taking the background field con-

figuration to be Da = φLa one finds, keeping m2 fixed as the N → ∞ limit is taken, that

F = − ln Z is given by

F
N2 = 3

4
log α̃4 + α̃4

2

[

φ4

4
− φ3

3
+ m2 φ4

4
− µφ2

2

]

+ log α̃φ, (3.9)

8



with µ = m2 − ρ

2
√

c2
.

The most notable feature of this expression is that the entire fluctuation contribution is

summarized in the logarithmic term log(α̃φ). From (3.9) we see that the effective potential for

the order parameter φ is

Veff

2c2
= α̃4

[

φ4

4
− φ3

3
+ m2φ4

4
− µ

φ2

2

]

+ log φ2 (3.10)

The effective potential is not bounded below at φ = 0 due to the ln φ term. However, our

analysis assumes the existence of a fuzzy sphere ground state and so the effective potential can

only be trusted in this phase. It has a local minimum for φ positive and sufficiently large α̃ and

in this regime the fuzzy sphere configuration exists, for lower values of α̃ our numerical study

indicates that the model is indeed in a different phase.

Setting φ∂F
∂φ

= 0 (or equivalently φ∂Veff (φ)
∂φ

= 0) gives

α̃4

2

[

φ4 − φ3 + m2φ4 − µφ2

]

+ 1 = 0, (3.11)

the solution of which specifies φ. We define the average of the action, which will be one of the

principal observables of our numerical study, as

S =< S > /N2 = α̃4 d

dα̃4

(

F

N2

)

. (3.12)

Then a direct computation and use of eq. (3.11) yields

S = 3
4
− α̃4φ3

24
− α̃4µφ2

8
. (3.13)

We can also compute the expected radius of the sphere

1

R
=

< TrD2
a >

Nc2
= − 2

α̃4

dF

dµ
= φ2 (3.14)

This can also be calculated directly in perturbation theory as

1

R
= φ2 +

1

c2α̃4φ2
Tr3TrN2(

1

L2
cδab + 4m2xaxb

). (3.15)

Hence, we conclude that the expected inverse radius of the fuzzy sphere is given by

1
R

= φ2. (3.16)

Also

< Tr((D2
a)

2) >

2N3c2

=
1

α̃4

∂

∂m2

(

F

N2

)

=
φ4

8
, (3.17)
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which yields

<Tr(D2
a)2>

2N3c2
= φ4

8
. (3.18)

Scaling (Da)ij to (1−ǫ)(Da)ij in both the action and measure amounts to a simple coordinate

transformation which leaves the partition function invariant. However it also leads to the

nontrivial identity

α̃4

N
< Km >= 3N2 , Km = Tr

(

− [Da, Db]
2 + 2iǫabcDaDbDc − 2m2D2

a +
2m2

c2

(D2
a)

2

)

. (3.19)

Using this identity we can express

S =
3

4
+

α̃4

6N3
< iǫabcTrDaDbDc > − α̃4

2N3
m2 < TrD2

a > . (3.20)

or equivalently in the form

S = 1 +
α̃4

12N3
< Tr[Da, Db]

2 > − α̃4

3N3
m2 < TrD2

a > − α̃4

6N3c2
m2 < Tr(D2

a)
2 > .

(3.21)

We define the Yang-Mills and Chern-Simons actions by

4YM = −<Tr[Da,Db]
2>

2Nc2
, and 3CS = <iǫabcTrDaDbDc>

Nc2
. (3.22)

Then using the above results we find

4YM = φ4 +
8

α̃4
and 3CS = −φ3. (3.23)

In the above we have extensively used the fact that φ must satisfy (3.11) and taken ρ = 0 i.e.

µ = m2.

Another significant observable for our numerical study is the specific heat Cv defined as

Cv :=
< S2 > − < S >2

N2
=

< S >

N2
− α̃4 d

dα̃4

(

< S >

N2

)

. (3.24)

A direct calculation yields

Cv = 3
4

+ α̃5φ

32
(φ + 2m2) dφ

dα̃
. (3.25)

Finally one can recover perturbation theory in the coupling g2 = 1/α̃4 by expanding in 1/α̃4.

In particular the one-loop predictions are obtained by using the solution of (3.11) expanded to

first order which is α̃−→∞ given by

φ = 1 − 2

1 + 2m2

1

α̃4
+ O(

1

α̃8
). (3.26)

In the next section we will look at the solution of (3.11) in more detail and the consequences

for the transition.
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3.4 Phase Transitions

Let us now examine the predictions for the quantum transition as determined by F given

in (3.9) or the effective potential (3.10) which we repeat here for convenience

Veff

2c2
= α̃4

[

φ4

4
− φ3

3
+ m2 φ4

4
− µφ2

2

]

+ log φ̃2. (3.27)

But first let us review the classical case. The only difference between the full quantum potential

(3.10) and the corresponding classical potential is the quantum induced logarithm of φ, which

as we will see plays a crucial role. The extrema of the classical potential occur at

φ̄ = (1 + m2)φ =

{

0,
1 −

√
1 + 4t

2
,

1 +
√

1 + 4t

2

}

. (3.28)

where t = µ(1 + m2). The first and last expressions are local minima and the middle one is

the maximum of the barrier between them. For µ positive the global minimum is the third

expression, i.e. the largest value of φ. When written in terms of φ̄ we see the potential takes the

same form as that for m = 0 and we can read off that if µ is sent negative then this minimum

becomes degenerate with that at φ = 0 at t = µ(1 +m2) = −2
9

and the maximum height of the

barrier is given by α̃4

324(1+m2)3
. When µ = m2 the minimum is clearly φ = 1, i.e Da = La for all

m and this is separated from the local minimum at φ = 0 by a barrier. The classical transition

therefore has the same character as that of the m = 0 model and the transition is 1st order and

occurs only when ρ is tuned to a critical value.

Let us now consider the effect of the fluctuation induced logarithm of φ. The potential is

plotted in figure 1 for different values of α̃ and µ = m2 = 20. The condition V
′

eff(φ) = 0 gives

us extrema of the model. For large enough α̃ (or low enough temperature) and large enough

m and µ it admits four real solutions two for positive φ and two for negative φ. The largest of

the positive φ solutions can be identified with the least free energy and therefore the ground

state of the system in this phase of the theory. It will determine the actual radius of the sphere.

The second positive solution is the local maximum (figure 1) of Veff(φ) and will determine the

height of the barrier in the effective potential. As the coupling is decreased (or the temperature

increased) these two solutions merge and the barrier disappears. This is the critical point of

the model and it has no classical counterpart since, in the classical case, the barrier between

the two minima never disappears. For smaller couplings than this critical coupling α̃∗ the fuzzy

sphere solution Da = φLa no longer exists and the effective potential cannot be relied on. This

is in accord with our numerical simulations which indicate that as the matrix size is increased

the radius as defined in (3.14) appears to go to zero.

The condition when the barrier disappears is

V
′′

eff =
α̃4

2

[

3φ2 − 2φ + 3m2φ2 − µ
]

− 1

φ2
= 0. (3.29)
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Solving both (3.11) and (3.29) yields 4(1 + m2)φ2
∗ − 3φ∗ − 2µ = 0 and therefore the critical

values

φ̄∗ = 3
8
(1 +

√

1 + 32t
9

). (3.30)

g2
∗ = 1

α̃4
∗

= φ2
∗
(φ∗+2µ)

8
. (3.31)

where as defined earlier φ̄∗ = φ/(1 + m2) and t = µ(1 + m2). Setting both m2 = 0 and µ = 0

yields

φ∗ = 3
4

, α̃4
∗ = (8

3
)3. (3.32)

while setting m = 0 alone leads to no significant simplification and we still have φ∗ = φ̄∗ with

t = µ.

If we take µ negative as in the discussion of the last section we see that g∗ goes to zero at

t = −1/4 and the critical coupling α̃∗ is sent to infinity and therefore for t < −1
4

the model has

no fuzzy sphere phase. This case arises when

ρ > 2
√

c2(m
2 +

1

4(1 + m2)
). (3.33)

However, in the region −1
4

< µ < −2
9

the action (3.6) is completely positive. It is therefore not

sufficient to consider only the configuration Da = φLa, but rather all SU(2) representations

must be considered. Furthermore for large α̃ the ground state will be dominated by those

representations with the smallest Casimir. This means that there is no fuzzy sphere solution

for µ < −2
9
. A result that we also observe in simulations and in agreement with the result

of [30]. We therefore see that the classical transition described above is significantly affected

by fluctuations and in particular the fuzzy sphere phase dissapears when ρ is increased to the

special value of
4
√

c2
9

.

The other limit of interest is the limit µ = m2−→∞. In this case

φ∗ = 1√
2

, α̃4
∗ = 8

m2 . (3.34)

This means that the phase transition is located at a smaller value of the coupling constant α̃ as

m is increased. In other words the region where the fuzzy sphere is stable is extended to lower

values of the coupling or higher temperatures. These results agree nicely with numerical data.

As we cross the critical value of α̃, a rather exotic phase transition occurs where the geom-

etry disappears as the temperature is increased. The fuzzy sphere phase has the background

geometry of a two dimensional spherical non-commutative manifold which macroscopically be-

comes a standard commutative sphere for N → ∞. The fluctuations are then of a U(1) gauge

theory which mixes with a scalar field on this background. In the high temperature phase,

which we call a matrix phase, the order parameter φ is not well defined and the fluctuations are

around diagonal matrices so the model is a pure matrix one corresponding to a zero dimensional

Yang-Mills theory in the large N limit. The fuzzy sphere phase occurs for α̃ > α̃∗ while the

matrix phase occurs for α̃ < α̃∗.
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3.5 Predictions from the effective potential

Since φ = 0 is not a solution of equation (3.11) the extremal equation can be rearranged

and when expressed in terms of φ̄ takes the form

P (φ̄) ≡ φ̄4 − φ̄3 − tφ̄2 +
2

a4
= 0. (3.35)

where a4 = α̃4/(1 + m2)3. By the substitution φ̄ = (1 − 4x)φ̃ + x, P (φ̄) can be brought to the

form of a

φ̃4 − φ̃3 − λφ̃ +
2

β̃4
= 0. (3.36)

The new parameters λ and β̃ are given by

λ =
x

(1 − 4x)3

[

x +
4t

3

]

, (3.37)

2

β̃4
=

1

(1 − 4x)4

[

2(1 + m2)3

α̃4
− 1

4

(

x +
m2(1 + m2)

3

)(

x +
5m2(1 + m2)

3

)]

, (3.38)

and the shift x must take one of the two values

x −→ x± =
1

4
(1 ±

√

1 +
8t

3
). (3.39)

We choose x = x− since x−(0) = 0 and so this case allows us to easily recover the case with

µ = m2 = 0 and for m2−→0 we get

x− = −m2

3
+ O(m4) , λ = O(m4) ,

2

β̃4
=

2

α̃4
(1 − 7

3
m2 + O(m4)) (3.40)

The two positive solutions of (3.35), φ̄±, for general values of m2 and µ are then given by

(1 + m2)φ± =
1

4

[

1 + (1 − 4x)
√

1 + δ±(1 − 4x)

√

2 − δ +
2√

1 + δ
(1 + 8λ)

]

δ = 4W
1

3

[(

1 +
√

1 − V

)
1

3

+

(

1 −
√

1 − V

)
1

3

]

V =
1

W 2

(

8

3β̃4
− λ

3

)3

, W =
1

β̃4
+

λ2

2
. (3.41)

We rewrite the above solution (3.41) as follows, (collecting definitions here for completeness)

t = µ(m2 + 1) , a4 =
α̃4

(1 + m2)3

q = 1 +
8t

3
− a4t3

27
, p = q2 − (8

3
+ a4t2

9
)3

a4
. (3.42)
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Then we can show that

(1 − 4x)3(1 + 8λ) = 1 + 4t , W =
q

(1 + 8t
3
)3a4

, V = 1 − p

q2
. (3.43)

and

δ =
4d

1 + 8t
3

, d = a− 4

3

(

(

q +
√

p
)

1

3 +
(

q −√
p
)

1

3

)

. (3.44)

Substituting one finds the relatively simple form

φ̄± = (1 + m2)φ± = 1
4

+ 1
2

√

1
4

+ 2t
3

+ d ± 1
2

√

1
2

+ 4t
3
− d + 1+4t

4
√

1

4
+ 2t

3
+d

. (3.45)

For completeness the remaining two solutions of the quartic P (φ̄) = 0 are given by

φ̄n
± = (1 + m2)φn

± = 1
4
− 1

2

√

1
4

+ 2t
3

+ d ± 1
2

√

1
2

+ 4t
3
− d − 1+4t

4
√

1

4
+ 2t

3
+d

. (3.46)

At the critical point a = ac, p becomes zero and the two solutions φ̄+ and φ̄− are equal.

In the fuzzy sphere phase the ground state of the system is given by φ+ and the barrier

maximum is at φ−. The minimum φ+ together with the powers φ2
+, φ3

+ and φ4
+ are plotted in

figures 2 and 3 for m2 = 0 and 200.

In the specific heat we will need the derivative of the minimum with respect to α̃. This is

given by

dφ̄−

dα̃
=

1

4

dd

dα̃

[

− 1 + 4t

8

1
√

1
2

+ 4t
3
− d + 1+4t

4
√

1

4
+ 2t

3
+d

1

(1
4

+ 2t
3

+ d)
3

2

− 1
√

1
2

+ 4t
3
− d + 1+4t

4
√

1

4
+ 2t

3
+d

+
1

√

1
4

+ 2t
3

+ d

]

. (3.47)

dd

dα̃
= −4(1 + m2)3a

8

3

3α̃5

[

1 +
8t

3
+

(1 + 8t
3
)q

√
p

− 4(8
3

+ t2a4

9
)2

a4√p

]

1

(q +
√

p)
2

3

− 4(1 + m2)3a
8

3

3α̃5

[

1 +
8t

3
− (1 + 8t

3
)q

√
p

+
4(8

3
+ t2a4

9
)2

a4
√

p

]

1

(q −√
p)

2

3

. (3.48)

3.6 Critical behaviour

For µ = m2 = 0 we have x = x− = 0 and λ = 0 and the solution

φ+ = φ̃+ = φ̄+ =
1

4

[

1 +
√

1 + δ +

√

2 − δ +
2√

1 + δ

]

δ =
4

α̃
4

3

[(

1 +

√

1 − α̃4
∗

α̃4

)
1

3

+

(

1 −
√

1 − α̃4
∗

α̃4

)
1

3

]

α̃4
∗ = (

8

3
)3. (3.49)
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Expanding near the critical point we have δ = 3− 16
3
ǫ+O(ǫ2) and we obtain thus the expression

φ = 1
4

[

3 +
√

6ǫ − 4ǫ
3

+ O(ǫ
3

2 )

]

, ǫ = α̃−α̃∗

α̃∗
. (3.50)

Substituting into (3.13) near the critical point we obtain the expression for the scaled average

action

S = 5
12

− 1

3
1
8 2

5
8

√
α̃ − α̃∗ − 7

3
5
4 2

5
4

(α̃ − α̃∗) + O((α̃ − α̃∗)
3

2 ) , (3.51)

and the specific heat is then given by

Cv = 29
36

+ 1

2
11
8 3

7
8

1√
α̃−α̃∗

+ O((α̃ − α̃∗)
1

2 ). (3.52)

This gives a divergent specific heat with critical exponent

α = 1
2

. (3.53)

If instead we consider µ = 0 but m 6= 0 so that t = 0 then the above expressions remain

essentially the same provided we substitute a for α̃. The critical behaviour remains the same

for this case with the critical inverse temperature

βc = α̃4
∗ = (

8

3
)3(1 + m2)3 , (3.54)

so that increasing m2 with µ = 0 sends the critical temperature lower and so the region of

stability of the fuzzy sphere solution is reduced.

3.7 The generic case

At the critical point the coupling a takes the value a∗ and the order parameter φ takes

the value φ∗. At this critical point the two solutions φ+ and φ− merge. This is more easily

determined by requiring the additional equation

2(1 + m2)3

α̃4
φ2d2Veff

dφ2
= Q(φ̄) ≡ 3φ̄4 − 2φ̄3 − tφ̄2 − 2

a4
= 0. (3.55)

Putting the two equations P (φ̄) = 0 and Q(φ̄) = 0 together we obtain

P (φ̄) + Q(φ̄) = 4φ̄4 − 3φ̄3 − 2tφ̄2 = φ̄
dP (φ̄)

dφ̄
. (3.56)

In other words dP (φ̄)

dφ̄
= 0 at the critical point. Expanding around the critical

φ̄ = φ̄∗ + σ. (3.57)
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and using P (φ̄∗) = P
′

(φ̄∗) = 0 we obtain

P (φ̄) = σ4 + (4φ̄∗ − 1)σ3 +
3φ̄∗ + 4t

2
σ2 +

2

a4
− 2

a4
∗

= 0. (3.58)

For small σ, treating σ4 and σ3 perturbatively we get

σ =

√

2

3φ̄∗ + 4t

(

2

a4
∗
− 2

a4

)

− (4φ̄∗ − 1)

(3φ̄∗ + 4t)2

(

1

a4
∗
− 1

a4

)

+ ...

=
4

a
5

2

∗

1
√

3φ̄∗ + 4t

√
a − a∗ −

(16φ̄∗ − 1)

a5
∗(3φ̄∗ + 4t)2

(a − a∗) + ... (3.59)

Hence

φ̄ = φ̄∗ + 4

a
5
2
∗

1√
3φ̄∗+4t

√
a − a∗ + ... (3.60)

or equivalently to leading order we have

φ = φ∗ + 4

α̃
5
2
∗

1√
3φ∗+4µ

√
α̃ − α̃∗ + ... (3.61)

The average action S near the critical point can be computed using this expression of φ in

equation (3.13). The result is that

S = S∗ − a4
c

φ̄∗(φ̄∗ + 2t)
√

3φ̄∗ + 4t

√

a − ac

ac

+ ... (3.62)

Where

S∗ =
3

4
− (φ̄∗ + 3t)

3(φ̄∗ + 2t)
(3.63)

which interpolates between S∗ = 5
12

for t = 0 and S∗ = 1
4

for large t.

In order to compute the specific heat we need the derivative

dφ

dα̃
=

2

α̃
5

2∗

1√
3φ∗ + 4µ

1√
α̃ − α̃∗

+ ... (3.64)

The divergent term in the specific heat is still given by a square root singularity. From (3.25)

we get

Cv = CB
v + φ∗(φ∗+2µ)

16
√

3φ∗+4µ

α̃
5
2
∗√

α̃−α̃∗

+ ... (3.65)

where the background constant contribution to the specific heat CB
v is given by

CB
v =

3

4
+

(3 + 4t)φ̄∗ + 2t

8(3φ̄ + 4t)2
(3.66)
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If we set µ = 0 in (3.61) and (3.65) we recover (3.50) and (3.52). Let us recall that the critical

value α̃∗ can be given by the formula

α̃4
∗ =

8

φ2
∗(φ∗ + 2µ)

. (3.67)

Then (3.65) can be put in the form

Cv = CB
v + 1

8

q

1+
α̃4
∗

φ3
∗

16

√
α̃∗√

α̃−α̃∗

+ ... (3.68)

The prediction here is that the critical exponent of the specific heat for this model is given

precisely by

α =
1

2
(3.69)

Specializing to the case µ = m2 we see the coefficient of the singularity for any small m2 (i.e

the amplitude) is

c(m2) =

√
α̃∗

8
√

1 + α̃4
∗
φ3
∗

16

. (3.70)

If we extrapolate these results to large m2 where we know that φ∗ −→ 1/
√

2 and α̃4
∗ −→ 8/m2

we get

Cv = 3
4

+ 1
32

√
2m2

+ 1

2
21
8 m

1
4

1√
α̃−α̃∗

+ ... (3.71)

The coefficient of the singularity and the critical value α̃∗ become very small and vanish when

m2 −→ ∞. For comparative purposes we can compute the ratio

c(m2)

c(0)
=

[

1

8

(3

2

)7 1

m2

]
1

8

. (3.72)

For m2 = 200 we get the ratio c(200)/c(0) = 0.57 which is not yet very small. As we will see

below our data (see figure 12) in the critical region for large m is not precise enough to confirm

or rule out the presence of a singularity.

4 Numerical results

Let us now turn to the numerical simulations. A fully nonperturbative study of this model

is done in [7, 15]. For the model with m2 = 0 see also [5, 17]. In Monte Carlo simulations we

use the Metropolis algorithm and the action (3.5) with N in the range N = 8 to 104 and m2 in

the range m2 = 0 to 1000. The errors were estimated using the binning-jackknife method. We

measure the radius of the sphere R (the order parameter) defined by Nc2/R =< TrD2
a >, the

average value of the action < S > and the specific heat Cv = <(S−<S>)2>

N2 as functions of α̃ for

different values of N and m2. We also measure the eigenvalue distributions of several operators.
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Figure 1: The effective potential for m2 = 20. The minimum corresponds with the fuzzy sphere

solution, as we lower the coupling constant the minimum disappears and the fuzzy sphere

collapses.
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Figure 2: The functions φ, φ2, −φ3 and φ4 for m2 = 0. φ corresponds with φ+; the minimum

of the effective potential (eq.3.27).
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Figure 3: The functions φ, φ2, −φ3 and φ4 for m2 = 200.

4.1 The theory with m2 = 0

For m2 = 0 we observe that the expectation values S, YM, CS (defined above) are all

discontinuous at α̃s = 2.1±0.1 (figure 4). This is where the transition occurs. Indeed this agrees

with the theoretical value α̃∗ = 2.087. The theory also predicts the behaviour of these actions

in the fuzzy sphere phase. There clearly exists a latent heat and hence we are dealing with a

1st order transition which terminates at some value of m2. The radius is also discontinuous

at the critical point (figure 5) whereas the specific heat is discontinuous and divergent (figure

6). Near the critical point we compute a divergent specific heat with critical exponent α = 1/2

(equation (3.52)). The fit for data fixing α = 0.5 gives the critical value α̃c = 2.125 ± 0.007

again with good agreement with the theory. From the matrix side the specific heat seems to be

a constant equal to 0.75 and therefore the critical exponent is zero. The inverse radius in the

matrix phase goes through a minimum and then rise quickly and sharply to infinity.

fuzzy sphere (α̃ > α̃∗ ) matrix phase (α̃ < α̃∗)

R = 1 R = 0

Cv = 1 Cv = 0.75
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Figure 4: The observables CS, Y M and <S>
N2 for m2 = 0 as a function of the coupling constant

for different matrix sizes N . The solid line corresponds to the theoretical prediction using the

local minimum (3.45) of the effective potential.
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Figure 6: The specific heat for m2 = 0 as a function of the coupling constant for N =

16, 24, 32,48. The curve corresponds with the theoretical prediction given by eq. (3.25) for

m2 = 0.

4.2 The action, radius and specific heat for m2 6= 0

For small values of m2 we determine the critical value α̃s as the point of discontinuity in

S, YM, CS, Tr(D2
a)

2 and the radius TrD2
a. This is where the divergence in Cv occurs. For

example for m2 = 0.75 the action looks continuous but its parts are all discontinuous with a

jump. The radius is also discontinuous with a jump. The specific heat is still divergent in this

case (figure 7). This is still 1st order.

For m2 = 55 the action and its parts become continuous. We find in particular that the

Chern-Simons and the radius are becoming continuous around m2 = 40 − 50. These are the

two operators which are associated with the geometry. The specific heat seems now to be

continuous (figure 8). This looks like a 3rd order transition.

4.3 The limit m2 −→ ∞ and specific heat

In this case we measure the critical value α̃s as follows. We observe that different actions

< S > which correspond to different values of N (for some fixed value of m2) intersect at some

value of the coupling constant α̃ which we define α̃s (figure 9). This is the critical point. For

example we find for m2 = 200 the result α̃s = 0.4± 0.1. The theoretical value is α̃∗ = 0.44. For

large m2 the theoretical critical value α̃∗ is given by equation (3.34). The measured value α̃s

tends to be smaller than this predicted value.

The quantities S, YM, CS, 〈Tr(D2
a)

2〉 and the radius are all continuous across the tran-

sition point in this regime (figure 10). We observe that near the critical point the numerical

results approach the theoretical curves as we increase N . We also checked the Ward identities
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Figure 7: Different observables for m2 = 0.75 plotted against α̃ for different matrix sizes. Again

the solid lines represent the theoretical predictions using the local minimum of the effective

potential.
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Figure 8: Different observables for m2 = 55 as functions of the coupling constant for different

matrix sizes.

23



-300

-250

-200

-150

-100

-50

 0

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

<
S

>
/N

2

α∼

N=16
N=24
N=32
N=64

N=104
exact

-60000

-50000

-40000

-30000

-20000

-10000

 0

 10000

 20000

 30000

 0  0.2  0.4  0.6  0.8  1

<
S

>

α∼

N=16
N=24
N=32
N=64

N=104

Figure 9: The observables <S>
N2 (left) and < S > (right) for m2 = 200 plotted as functions of α̃

for N = 16, 24, 32, 64, 104. The value of α̃ at which the curves < S > for different values of N

cross is defined as α̃s.

(3.19),(3.20) and (3.21) (figure 11).

The specific heat in the fuzzy sphere phase is constant equal to 1, it starts to decrease at

α̃max, goes through a minimum at α̃min and then goes up again to the value 0.75 when α̃ −→ 0

(figure 12). The values α̃max,min decrease with N while the minimum value of Cv increases.

Extrapolating the α̃max and α̃min to N = ∞ (figure 13) we obtain our estimate for the critical

coupling α̃c which agree with α̃s within errors. The matrix-to-S2
N phase transition looks then

3rd order. However it could be that for large N the specific heat becomes discontinuous at the

critical point with a jump, i.e the transition is discontinuous with 2nd order fluctuations.

Thus it seems that the specific heat in the regime of large values of m2 is such that i)

α̃max,min approach α̃s in the limit N −→ ∞ and ii) that the specific heat becomes constant in

the matrix phase and equal to Cv = 0.75. There remains the question of whether or not the

specific heat has critical fluctuations at the critical point for large m2.

The theory still predicts a transition (equation (3.65)) with critical fluctuations and a di-

vergence in the specific heat with a critical exponent α = 1/2 and with a very small amplitude

(the coefficient of the square root singularity). There is possibly some evidence for this even for

m2 = 100 but none for m2 = 200. To resolve this question we need to go very near the critical

point and simulate with bigger N .

4.4 The phase diagram

Our phase diagram in terms of the parameters α̃ and m2 which we have studied is given in

figure 14. We have identified two different phases of the matrix model (3.5). In the geometrical

or fuzzy sphere phase we have a U(1) gauge theory on S2
N ; the geometry of the sphere and the

structure of the U(1) gauge group are stable under quantum fluctuations so the theory in the

continuum limit is an ordinary U(1) on the sphere. In the matrix phase the fuzzy sphere vacuum

collapses under quantum fluctuations and there is no underlying sphere in the continuum large
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Figure 10: Other observables for m2 = 200 as functions of the coupling constant for N =

16, 24, 32, 64. The solid lines correspond to the theoretical predictions. We observe that the

data tend to approach the theoretical prediction as N is increased.
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N limit. In this phase the model should be described by a pure matrix model without any

background spacetime geometry. The transition in the Ehrenfest classification would be labeled

a first order transition, but this classification is not very helpful. The transition described here

is a very exotic one with both a latent heat and a divergent specific heat. We know of no

other example of such a transition. As we follow this line of transitions the entropy jump

or equivalently the latent heat becomes zero at around m2 ∼ 40 and remains zero for larger

m2. Our theoretical analysis indicates that there is still a divergent specific heat, however our

numerical simulations are not fine enough to determine whether this is so or not.

For large m2 the transition (we expect) still has a divergent specific heat as the transition

is approached from the fuzzy sphere side. This is the conclusion of our theoretical analysis and

our numerical results are consistent with this. But our numerical results are not conclusive. It

may also be that the transition is even in Ehernfest’s classification a 3rd order, where there

is a jump in the specific heat with no divergence. We could not determine the nature of the

transition in the large m regime with any confidence from the numerical data. In all cases

the fuzzy sphere-to-matrix theory transitions are from a one-cut phase (the matrix phase) to a

point or discrete spectrum in the geometrical (fuzzy sphere) phase.

The specific heat in the fuzzy sphere phase takes the value 1 where the gauge field can only

contribute the amount 1/2. This can be understood as follows. The high temperature limit

of the specific heat for any matrix model is governed by the largest term and must go like

Ntotal/degree where Ntotal is the total number of degrees of freedom and degree is the degree

of the polynomial. This gives the limiting high temperature limit of the specific heat be 3
4

for

all values of the parameters. In the simple model with m = 0 and µ = 0 this value is achieved

from the transition point onwards.

For the full model in the large m2 regime the effect of the potential V should be dominant.

This can be seen by remarking that in the strong-coupling limit m2−→∞, α̃−→0 keeping fixed

α̃4m2 the action S reduces to V . Note that if we consider V alone with a measure given by
∫

[dΦ
′

]

(with Φ
′

=
√

D2
a) instead of

∫

[dDa] then we will get the usual quartic potential dynamics with

a well known 3rd order transition. Here when we consider the model given by the potential

V with the measure
∫

[dDa] we obtain the specific heat given in figure 15. In the region of

parameters corresponding to the matrix phase the specific heat shows in this case a structure

similar to that of the full model S. However in the region of parameters corresponding to the

fuzzy sphere phase the specific heat is given now by Cv = 1/2. Thus the field Φ contributes only

the amount 1/2 to Cv. Indeed from the eigenvalue distribution of the operator Φ computed in

the fuzzy sphere phase it is shown explicitly that Φ has Gaussian fluctuations. The behaviour

of Cv in the full model S is thus a non-trivial mixture of the behaviours in S0 (first order

transition) and V (3rd order transition) considered separately.

Given that the behaviour of the full model can be described as a non-trivial mixture of the

model S0 and the potential we expect that the effect of adding the potential to the model is

to shift the transition temperature and provide a non-trivial background specific heat. The

divergence of the specific heat arises from the interplay of the two terms in S0, i.e. between

the the Chern-Simons and Yang-Mills terms. Given that this competition leads to a divergence
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Figure 14: The phase diagram shows the curve separating the geometrical and matrix phases

of the model (3.6) with µ = m2. The critical curve is given by eq.(3.31) and describes (at

least for small values of m2) a line of exotic transition with a jump in the entropy yet with

divergent critical fluctuations and a divergent specific heat with critical exponent α = 0.5, when

approached from the fuzzy sphere side. The points which lay off the critical line in the middle

mass region might suggest the existence of a multicritical point.

of the specific heat it should eventually emerge from the background sufficiently close to the

transition.

4.5 The eigenvalue distributions for large m2

4.5.1 The low temperature phase (fuzzy sphere)

Numerically we can check that the normal scalar field and the tangent gauge field decouple

from each other in the “fuzzy sphere phase” in the limit m2−→∞ by computing the eigenvalues

of the operators D2
a and D3. See figure 16. The fit for the distribution of eigenvalues of D2

a − c2

is given by the Wigner semi-circle law

ρ(x) =
2

a2
effπ

√

a2
eff − x2. (4.1)

This distribution is consistent with the effective Gaussian potential

V sphe
eff =

2

a2
eff

Tr(D2
a − c2)

2 , a2
eff =

4c2N

m2α̃4
eff

. (4.2)

We find numerically
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N a2
eff a2

24 1.4632 ± 0.0016 0.1104

32 3.8206 ± 0.0068 0.2619

48 13.9886 ± 0.0110 0.8844

The parameter a is the theoretical prediction given by a2 = 4c2N/m2α̃4 which goes like N3.

The effective parameter a2
eff is found to behave as

a2
eff = (3.7645 ± 0.6557) × 10−5 × N3.3170±0.0492. (4.3)

This means that the renormalized value α̃eff of the gauge coupling constant is slowly decreasing

with N . Equivalently the parameter aeff yields a small correction to the classical potential V

which is linear in Φ. Indeed we can show that

Z =

∫

dDae
− 2

a2
eff

Tr(D2
a−c2)2

= eC0

∫

dDae
− 2

a2
Tr(D2

a−c2)2− 4c2
a

( 1

a
− 1

aeff
)Tr(D2

a−c2)

C0 = −2Nc2
2

(

1

a
− 1

aeff

)2

− 3

2
N2 log

a

aeff
. (4.4)

This shows explicitly that having aeff 6= a means that there is an extra linear term in φ added

to the classical potential.

In the fuzzy sphere phase the field configurations Da are thus given by (or are close to)

representations of SU(2) of spin s = N−1
2

as we can clearly see on figure 16. Indeed the eigen-

values of D3 for α̃ = 5 and m2 = 200 are found to lie within the range −N−1
2

, · · · , 0, · · · , N−1
2

as expected for N = 24 and N = 32. The eigenvalues of the commutator −i[D1, D2] are also

found to lie in the range −N−1
2

, · · · , 0, · · · , N−1
2

(figure 17).
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Figure 16: The eigenvalue distribution of D2
a − c2 (left) for N = 24, 32, 48 and D3 (right) for

N = 24, N = 32 and N = 48 in the fuzzy sphere phase with m2 = 200 and α̃ = 5. The fit for

D2
a − c2 corresponds with the Wigner semi-circle law (4.1).
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m2 = 200 and α̃ = 5 .
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4.5.2 The high temperature phase (matrix phase)

The distribution of the eigenvalues of D2
a suffers a distortion as soon as the system un-

dergoes the matrix-to-sphere transition and deviations from the Wigner semi-circle eigenvalue

distribution (4.1) become large as we lower the coupling constant α̃. See figures 18 and 19.

In this phase the distribution for D3 is symmetric around zero and the fit is given by the

one-cut solution

ρ(x) =
16

c(c + 4b)

1

2π

(

x2 + b
)
√

c − x2. (4.5)

By rotational invariance the eigenvalues of the other two matrices D1 and D2 must be similarly

distributed. This means in particular that the model as a whole behaves in the “matrix phase”

as a system of 3 decoupled 1-matrix models given by the effective potentials (i fixed)

V matr
eff =

(

2N

c
− 3c

a2
eff

)

TrD2
i +

2

a2
eff

TrD4
i , a2

eff ≡ c2

2N
+

2cb

N
=

4c2N

m2α̃4
eff

. (4.6)

We find numerically that

N b c

24 1047.23 ± 15.97 633.655 ± 0.7516

32 2392.16 ± 65.09 1074.07 ± 1.8680

48 10350.9 ± 236.70 2185.85 ± 1.7130

Again the theoretical prediction for a2 goes like N3 whereas the effective parameter a2
eff is found

to behave as

a2
eff = (0.6147 ± 0.3059) × N3.6580±0.1553. (4.7)

By going through the same argument which lead to equation (4.4) we can show that V matr
eff

is equivalent to the addition of an extra linear correction in Φ (which depends on c and b or

equivalently c and a2
eff) to the classical potential

− 4c2

a2
TrD2

i +
2

a2
TrD4

i . (4.8)

The result (4.6) accounts for the value Cv = 0.75 of the specific heat. Indeed for effective

potentials of the form (4.6) each matrix Di contributes the amount 0.25 .

A final remark is to note that the eigenvalue distributions for D2
a − c2 in figure 16 and D3 in

figure 19 clearly depend on N . It would be desirable to find the proper scaling of the parameters

for which the distributions are N -independent. This is also related with the predictions of the

effective parameters and the corresponding effective potentials written in (4.2) and (4.6).
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Figure 18: The eigenvalue distributions for D2
a, D3 and −i[D1, D2] in the matrix phase for

α̃ = 0.60 and m2 = 200.
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Figure 19: The eigenvalue distributions for D2
a for N = 24 and D3 and −i[D1, D2] for N =

24, 32, 48 in the matrix phase with α̃ = 0.2 and m2 = 200. The dashed line corresponds with

the fit (4.5) which is the the eigenvalue distribution in the regime of one-cut solution.
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4.6 Emergent geometry

The sequence of eigenvalue distributions for α̃ = 0.2, 0.6, 1, 1.5, 2 and 4 for m2 = 200 and

N = 24 (figure 20) show clearly that a geometrical phase is emerging as the coupling is increased

or equivalently as the temperature is reduced. The geometry that emerges here is that of the

fuzzy sphere. This geometry becomes the classical sphere as N is sent to infinity. This is the

geometry of the sphere emerging from a pure matrix model and is in our opinion a very simple

demonstration of a novel concept and opens up the possibility of discussing emergent geometry

in a dynamical and statistical mechanical setting. We see clearly that as α̃ is increased from a

value deep in the matrix phase to a value well into the fuzzy sphere phase that D3 goes, from a

random matrix with a continuous eigenvalue distribution centered around 0, to a matrix whose

eigenvalues are sharply concentrated on the eigenvalues of the rotation generator L3. This is

also true for the matrices D1 and D2 which go over to L1 and L2 respectively in the fuzzy

sphere phase. This can be seen explicitly in figure 17 since the commutator [D1, D2] is found

to be well approximated by the matrix iL3.

4.7 The model with only pure potential term

The model is given by the potential

V [D] =
α̃4m2

N
Tr

{

− D2
a +

1

2c2

(D2
a)

2
}

(4.9)

The configurations which minimize this potential are matrices which satisfy D2
a = c2. We plot

(figure 21) the eigenvalue distributions of the matrices D3 and D2
a for N = 24, m2 = 200 and

α̃ = 0.4, 0.6, 1.4. The distributions of D2
a seem to behave in the same way as the distributions

of D2
a computed in the full model for all values of α̃. The distributions of D3 are similar to the

corresponding distributions of D3 computed in the full model only in the region of the matrix

phase where they are found to fit to the one-cut solution (4.5). In the region of the fuzzy

sphere phase the distributions of D3 tend to split into two cuts. However they never achieve

this splitting completely due to the mixing terms TrD2
1D

2
2, TrD2

1D
2
3 and TrD2

2D
2
3. These terms

cannot be neglected for values of the coupling α̃ where the model is in the fuzzy sphere phase.

4.8 The Chern-Simons+potential model

In this final section we present the eigenvalue distributions for the model in which we set

the Yang-Mills term to zero. The action reduces to

S[D] =
1

g2N
Tr

[

i

3
ǫabc[Da, Db]Dc +

m2

2c2

(D2
a − c2)

2

]

. (4.10)

The equations of motion are

iǫabc[Db, Dc] − 2m2Da +
m2

c2
{D2

c , Da} = 0. (4.11)

33



 0

 0.005

 0.01

 0.015

 0.02

 0.025

-30 -20 -10  0  10  20  30

ei
ge

nv
al

ue
s 

di
st

rib
ut

io
n 

of
  D

3

eigenvalues

N=24  α∼  = 0.20  m2 =200

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-15 -10 -5  0  5  10  15
ei

ge
nv

al
ue

s 
di

st
rib

ut
io

n 
of

  D
3

eigenvalues

N=24  α∼  = 0.60  m2 = 200

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-15 -10 -5  0  5  10  15

ei
ge

nv
al

ue
s 

di
st

rib
ut

io
n 

of
  D

3

eigenvalues

N=24  α∼  = 1.00  m2 = 200

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-15 -10 -5  0  5  10  15

ei
ge

nv
al

ue
s 

di
st

rib
ut

io
n 

of
  D

3

eigenvalues

N=24  α∼  = 1.50  m2 = 200

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-15 -10 -5  0  5  10  15

ei
ge

nv
al

ue
s 

di
st

rib
ut

io
n 

of
  D

3

eigenvalues

N=24  α∼  = 2.00  m2 = 200  N=24

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-15 -10 -5  0  5  10  15

ei
ge

nv
al

ue
s 

di
st

rib
ut

io
n 

of
  D

3

eigenvalues

N=24  α∼  = 4.00  m2 = 200

Figure 20: The model undergoes a transition from the matrix phase with no underlying geom-

etry to a geometrical phase as the coupling constant α̃4 = 1
T

is increased (or the temperature

lowered). The geometry which emerges in this model is the geometry of the sphere.
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Figure 21: The eigenvalue distributions of D2
a and D3 for the pure potential term. Deep inside

the nonperturbative regime (small α̃ or large temperature) the distribution for D3 is in the

one-cut solution (4.5) whereas for large α̃ (or low temperature) the eigenvalue distribution for

D2
a is given by the Wigner semi-circle law.

The possible solutions are the commuting matrices and reducible representations of SU(2).

We measure the eigenvalue distributions of the matrix D3 for different values of α̃. The

distributions of D3 in the region of the matrix phase can be fit to the one-cut solution (4.5).

In the region of the fuzzy sphere phase the distributions of D3 split into two well separated
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Figure 22: The eigenvalue distributions of D3 for the Chern-Simons + Potential model for

different values of the coupling α̃ for N = 24 and m2 = 200. In this case, the system undergoes

a transition from the one-cut regime to the two-cut regime as the coupling (or temperature) is

increased (lowered).

cuts. See figure 22. This model exhibits therefore the behaviour of a typical quartic one-matrix

model. The value of the coupling α̃ where the transition from the one-cut phase to the two-cut

phase happens coincides with the maximum of the specific heat. From the numerical results

we can also see that in the regime of large α̃ the preferred configurations are given by

Da = 2λ
σa

2
⊗ 1N

2

. (4.12)

λ is fixed by the requirement D2
a = c2, i.e 3λ2 = c2 and σa are the Pauli matrices. Indeed the

eigenvalue distributions of the matrices D2
a, DaDbDaDb, DaDbDbDa and iǫabcDaDbDc for large

α̃ are found (figure 23) to be given by the Wigner semi circle laws

ρ(x) =
2

a2π

√

a2 − (x − x0)2. (4.13)

The centers x0 are given by the theoretical values

D2
a = 3λ21N

DaDbDaDb = −3λ41N

DaDbDbDa = 9λ41N

iǫabcDaDbDc = −6λ31N . (4.14)

For instance in figure 23 we can see from the eigenvalue distribution of D3 with N = 24, α̃ = 4

and m2 = 200 that the preferred configurations are given by (4.12) with λ = ±(7.16 ± 0.25)

whereas the predicted value is λ = ±6.9567. We also remark that the eigenvalue distributions

of D2
a and the other operators have the same structure as in the full model in its matrix phase.
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Figure 23: The eigenvalue distributions of D3, D2
a, DaDbDaDb, DaDbDbDa, iǫabcDaDbDc for

the Chern-Simons+potential model. The solid lines correspond to the Wigner semicircle laws

with centers given by eqs.(4.14).

5 Conclusion and outlook

We have studied the simple three matrix model with Euclidean action functional (3.6) for

general values of its parameters β = α̃4 and m but focused on a small range of the possible
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values of the parameter µ.

We find the model to have two clearly distinct phases. In the high temperature regime (i.e.

small α̃) the model has a disordered phase. In this phase the eigenvalues distribution of an

individual matrix is well approximated by the one-cut distribution of a hermitian matrix model

with quartic potential. We call this phase the matrix phase of the model.

At low temperature the model has an ordered phase. The order is unusual in that it

describes the condensation of a background geometry as a collective order of the matrix degrees

of freedom. We call this the geometrical or fuzzy sphere phase, since for finite matrix size the

ground state is described by a fuzzy sphere which is a quantized version of the classical sphere.

In the large matrix size limit the sphere becomes classical but at a microscopic level the geometry

always has a noncommutative character as can be seen from the spectrum of the “coordinate

functions” which are proportional to the su(2) generator L3 in the irreducible representation

of dimension given by the matrix size.

In the geometrical phase small fluctuations are those of a U(1) gauge field and a neutral

scalar field fluctuating on a round two sphere. The two fields have non-trivial mixing at the

quadratic level but are otherwise not interacting. In this phase, with µ = m2, the parameter m2

parameterizes the mass of the scalar fluctuation, otherwise for µ = m2 − ρ/N , the parameter ρ

provides a constant external current for the scalar field.

For m = µ = 0 the transition between the two phases is found to be discontinuous. There

is a jump in the internal energy (expectation of the Euclidean action) and from a theoretical

analysis (valid in the fuzzy sphere phase) we find the entropy drops by 1/9 per degree of

freedom [15] as one crosses from the high temperature matrix phase to the geometrical one.

Our theoretical results also predict that: For all m and µ > −2
9
, the model has divergent critical

fluctuations in the specific heat characterised by the critical exponent α = 1/2. The critical

regime narrows as the critical temperature decreases and the transition temperature is sent to

zero at µ = −1
4

and so there is no geometrical phase beyond this point.

Our numerical simulations are in excellent agreement with these theoretical predictions and

we find the critical fluctuations are only present in the fuzzy sphere phase so that the transition

has an asymmetrical character. We know of no other physical setting that exhibits transitions of

the type presented here and further numerical and theoretical study are needed. However, the

thermodynamic properties of the transition are similar to those found in the 6−vertex model

and the dimer model [33, 34].

We focus simulations on µ = m2 and observe that the discontinuity in the entropy (or

the latent heat) decreases as m2 is increased with the jump vanishing for sufficiently large m.

We have not been able to determine with precision where the transition becomes continuous,

however the jump in the entropy becomes too small to measure beyond m2 ∼ 40. Also, the

predicted critical fluctuations are not seen in the numerical results for large m2.

The data for the critical point coupling, from our different methods of estimating it, separate

in the parameter range where the latent heat disappears indicating a possible multi-critical

point or richer structure. For larger values of m2 = µ we have not been able to resolve the

nature of the transition. The numerical evidence shows the structure of a 3rd order transition,
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a behaviour typical of many matrix models, however, the fact that α̃s, the crossing point of

the average action curves for different N , still reliably predicts the transition line, suggests the

transition is continuous with asymmetric critical fluctuations, consistent with the theoretical

analysis.

Our conclusion is that the full model has the qualitative features of the model with m =

µ = 0 (model S0 of eq. (3.3)) and that the effect of the potential is to shift the transition

temperature and provide a non-trivial background specific heat. The divergence of the specific

heat arises from the interplay of the Chern-Simons and Yang-Mills terms. Given that this

competition leads to a divergent specific heat, we expect, sufficiently close to the transition,

to see the effect of this competition emerge and the specific heat to eventually rise above the

background provided by the potential and diverge as the critical point.

The model of emergent geometry described here, though reminiscent of the random matrix

approach to two dimensional gravity [4] is in fact very different. The manner in which spacetime

emerges is also different from that envisaged in string pictures where continuous eigenvalue

distributions [3] or a Liouville mode [23] give rise to extra dimensions. It is closely connected

to the D0 brane scenario described in [12] and the m = 0 version is a dimensionally reduced

version of a boundary WZNW models in the large k limit [13]. A two matrix model where

the large N limit describes a hemispherical geometry was studied in [32]. It is not difficult

to invent higher dimensional models with essentially similar phenomenology to that presented

here (see [19], [21] and [20]). For example any complex projective space CPN can emerge from

pure matrix dynamics by choosing similar matrix models with appropriate potentials [19].

In summary, we have found an exotic transition in a simple three matrix model. The

nature of the transition is very different if approached from high or low temperatures. The high

temperature phase is described by three decoupled random matrices with self interaction so

there is no background spacetime geometry. As the system cools a geometrical phase condenses

and at sufficiently low temperatures the system is described by small fluctuations of a U(1)

gauge field coupled to a massive scalar field. The critical temperature is pushed upwards as the

scalar field mass is increased. Once the geometrical phase is well established the specific heat

takes the value 1 with the gauge and scalar fields each contributing 1/2.

We believe that this scenario gives an appealing picture of how a geometrical phase might

emerge as the system cools and suggests a very novel scenario for the emergence of geometry in

the early universe. In such a scenario the temperature can be viewed as an effect of other degrees

of freedom present in a more realistic model but not directly participating in the transition we

describe. In the model described in detail above, both the geometry and the fields are emergent

dynamical concepts as the system cools. Once the geometry is well established the background

scalar decouples from the rest of the physics and is always massive. If a realistic cosmological

model the can be found, such decoupled matter should provide a natural candidate for dark

matter.
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[25] J. Fröhlich and K. Gawȩdzki, Conformal Field Theory and Geometry of Strings, Lectures

given at Mathematical Quantum Theory Conference, Vancouver, Canada, 4-8 Aug 1993.

Published in Vancouver 1993, Proceedings, Mathematical quantum theory, Vol. 1 57-97,

[arXiv:hep-th/9310187].

[26] H. Grosse and J. Madore, “A Noncommutative version of the Schwinger model,” Phys.

Lett. B 283 (1992) 218.

[27] U. Carow-Watamura and S. Watamura, “Differential calculus on fuzzy sphere and scalar

field,” Int. J. Mod. Phys. A 13 (1998) 3235 [arXiv:q-alg/9710034].

[28] U. Carow-Watamura and S. Watamura, “Noncommutative geometry and gauge theory on

fuzzy sphere,” Commun. Math. Phys. 212 (2000) 395 [arXiv:hep-th/9801195].

[29] H. Grosse, J. Madore and H. Steinacker, “Field theory on the q-deformed fuzzy sphere. I,”

J. Geom. Phys. 38 (2001) 308 [arXiv:hep-th/0005273].

[30] T. Azuma, S. Bal and J. Nishimura, Phys. Rev. D 72 (2005) 066005

[arXiv:hep-th/0504217].

[31] L.D. Faddeev and V.N. Popov, Phys.Lett.25B,29 (1967).

[32] D. E. Berenstein, M. Hanada and S. A. Hartnoll, JHEP 0902 (2009) 010 [arXiv:0805.4658

[hep-th]].

41

http://arXiv.org/abs/hep-th/0307075
http://arXiv.org/abs/hep-th/0410263
http://arXiv.org/abs/hep-th/0701041
http://arXiv.org/abs/hep-th/0701160
http://arXiv.org/abs/0704.3183
http://arXiv.org/abs/0708.2426
http://arXiv.org/abs/hep-th/9306153
http://arXiv.org/abs/hep-th/9912072
http://arXiv.org/abs/hep-th/9310187
http://arXiv.org/abs/q-alg/9710034
http://arXiv.org/abs/hep-th/9801195
http://arXiv.org/abs/hep-th/0005273
http://arXiv.org/abs/hep-th/0504217
http://arXiv.org/abs/0805.4658


[33] C. Nash and D. O’Connor, J. Phys. A 42 (2009) 012002 [arXiv:0809.2960 [hep-th]].

[34] E.H.Lieb, Phys.Rev.Lett.73,2158 (1994).

42

http://arXiv.org/abs/0809.2960

	Introduction
	The fuzzy sphere
	Theoretical predictions
	Gauge action
	Matrix model
	Quantization and Observables for small m2
	Phase Transitions
	Predictions from the effective potential
	Critical behaviour 
	The generic case

	Numerical results
	The theory with m2=0
	The action, radius and specific heat for m2=0
	The limit m2-3mu and specific heat
	The phase diagram
	The eigenvalue distributions for large m2
	The low temperature phase (fuzzy sphere)
	The high temperature phase (matrix phase)

	Emergent geometry
	The model with only pure potential term
	The Chern-Simons+potential model

	Conclusion and outlook

