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A theory of topological edges and domain walls
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We investigate domain walls between topologically orderedphases in two spatial dimensions and present a
simple but general framework from which their degrees of freedom can be understood. The approach we present
exploits the results on topological symmetry breaking thatwe have introduced and presented elsewhere. After
summarizing the method, we work out predictions for the spectrum of edge excitations and for the transport
through edges in some representative examples. These include domain walls between the Abelian and non-
Abelian topological phases of Kitaev’s honeycomb lattice model in a magnetic field, as well as recently proposed
domain walls between spin polarized and unpolarized non-Abelian fractional quantum Hall states at different
filling fractions.

PACS numbers: 05.30.Pr,11.25.Hf.

INTRODUCTION

Recently there has been considerable interest in planar sys-
tems which exhibit topological phases. These phases are char-
acterized by topological field theories (TQFTs) or correspond-
ing conformal field theories (CFTs). It is of great interest to
have a clear understanding of the edges of such systems, and
of domain walls between regions in different phases. In frac-
tional quantum Hall systems, where experimental support for
the existence of a variety of topological phases is strongest,
observations are almost entirely restricted to edge transport,
and proposed devices for probing the topological order rely
on interference of tunneling currents between edges [1, 2, 3].
In such experiments the electron density is usually not con-
stant throughout the sample and islands with different filling
fractions form, separated by domain walls. In lattice mod-
els with several topological phases, one may similarly induce
phase boundaries by varying the local couplings.

In this letter, we present a general method to determine the
degrees of freedom of boundaries between topological phases
and their relation to the bulk degrees of freedom, based on
the condensation of bosonic quasiparticles in auxiliary layered
systems. Consider a medium in topological phase I support-
ing a single island in topological phase II. A setup like thishas
been considered in experiments by Camino et al. [8, 9] for the
case where phase I is the fractional quantum Hall state at fill-
ing fractionν = 1/3 and phase II the FQH state atν = 2/5.
We plan to give a treatment of this situation and more gener-
ally, of the hierarchy states described in [10, 11] and [12] in
a separate publication [13]. Here, we describe how the topo-
logical symmetry breaking procedure of [4, 5, 6, 7] can be
applied in such physical settings, and follow up with two dif-
ferent examples. These involve Kitaev’s spin model on the
honeycomb lattice [17] and a domain wall between spin po-
larized and unpolarized non-Abelian fractional quantum Hall
liquids [14].

WALLS FROM TOPOLOGICAL SYMMETRY BREAKING

One way to match two different phases on a boundary is
by taking the tensor product of the two boundary CFTs. This
would correspond to the situation where the two phases are
separated by a strip of vacuum. To describe more general in-
terfaces, we consider the geometry sketched in figure 1, where
we started with two layers in phases I and III, which we let
partially overlap as indicated. In the middle section we have
a two layer system. If we bring the layers close we may have
some binding between degrees of freedom in I and III. In par-
ticular, a bosonic composite of excitations from the two layers
could occur, and consequently, a condensate of such bosons
may form. This condensation will lead to a different phase for
the middle region, which we denote by II.

Boundary Theory
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FIG. 1: Side view of two overlapping layers supporting topological
phases I and III. If we bring the layers close together, a condensate
may form in the overlap region leading to a phase II. The theory T
on the left boundary describes excitations that can be divided into
bulk excitations of phase I and of phase II, and excitations that only
can propagate along the boundary. On the right boundary a similar
situation occurs for the same theory T, now with III replacing I. The
subset of T excitations that are strictly confined to the leftand right
boundaries are therefore different in general.
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This situation can be analysed with the tools we have de-
veloped in [4, 5, 6, 7]. Let us assume we are given CFTs or
TQFTsC1 andC3 describing phases I and III, or even just
the spectrum of topological sectorsa, b, . . ., the fusion rules
and the topological spinsθa = e2iπha for these phases (the
topological spinsθa correspond to the fractional parts of the
conformal weightsha). The topological sectors of theC1⊗C3

theory will be labeled by pairs(aI , bIII) of labels from theC1

andC3 theories. We can now proceed as follows.
(i) We can find out which bosonic sectors are possible in the
C1⊗C3 theory. Bosons always haveθ(a,b) ≡ θaθb = 1 and in
the simple case of sectors with quantum dimensiond(a,b) ≡

dadb = 1, this requirement is all that is needed.
(ii) We assume that a condensate forms in one or more of
the bosonic channels and use our method [7] to determine the
topological spectrum and fusion rules of the condensed phase.
We denote the residual theory byT . Sectors of theC1 ⊗ C3

theory branch intoT -sectors according to branching rules of
the form(aI , bIII) →

∑
cN

c
(a,b)c

T , where theN c
(a,b) are in-

teger branching multiplicities. Thus in the new phase, some
sectors, or primary fields of theC1⊗C3 theory that we started
off with may branch to the same uniqueT -sector and hence
will be identified, while others may split into independentT -
sectors. Typically, sectors which are related by fusion with
the condensed boson are identified, while sectors which are
invariant under fusion with the condensed boson may split.
The condensed sector itself always branches to the vacuum of
theT -theory. We require that branching and fusion are com-
patible, i.e. they commute. As a result, branching conserves
quantum dimensions.
(iii) While the T -theory is required to have good fusion rules,
someT -sectors will not inherit well defined spin factors or
conformal weights from the uncondensed theory, basically be-
cause they have nontrivial braiding interaction with the con-
densed excitation. The corresponding excitations will pull
strings in the condensed medium and will be confined. In ef-
fect, this means that they are expelled from the bulk and can
propagate only on the boundary of the condensed medium.
(iv) The T -sectors which do inherit well defined topological
spins from the uncondensed theory survive in the bulk and
define the theoryC2, which is a TQFT which describes the
fusion and braiding of excitations of phase II.

We now have a clear picture of the situation before and af-
ter condensation. Before condensation, arbitrary excitations
of the system could be labeled(aI , bIII), with excitations in
phases I resp. III labeled(aI , 1) and(1, bIII) resp., where1
denotes the vacuum, or topologically trivial sector. (We may
use this notation even where the second layer is not present.)
After condensation, excitations in phases I and III are labeled
as before, but in the overlap region, we now have phase II,
with bulk excitations described by the unconfinedT -sectors
and boundary excitations described by the confinedT -sectors.

Using the fusion rules of theT -theory, we can understand
all the kinematics of processes that may occur when excita-
tions are moved toward or through the edges. The crucial in-
sight here is that excitations in all parts of the system can be

labeled by sectors of theT -theory. For the bulk and boundary
of phase II this is true by definition and for the bulk of phase
I we can use the branching rules to obtain the possibleT -
sectors from the actual sectors(aI , 1). The situation is partic-
ularly simple if every sector of phase I branches to a uniqueT -
sector. This happens under quite general circumstances, no-
tably whenever the theoryC1 does not by itself have bosonic
sectors. We can now classify all boundary processes that may
occur. For example anyC1-particle that is identified with a
non confinedT -particle can pass through the phase boundary
unnoticed and vice versa, while aC1-particle that corresponds
to a confinedT -particle cannot enter the region in phase II. On
the other hand,T -particles which are confined in phase II but
which can be obtained from aC1 sector by branching can pass
into the area in phase I after being driven out of phase II, with-
out leaving a trace on the boundary. Hence the true boundary
excitations are labeled by the confinedT -sectors which do not
correspond toC1-sectors. For processes involving three or
more excitations, we need to use the fusion rules ofT . Any
process allowed by these rules could in principle occur. For
example, aC1 particle corresponding to a confinedT -sector
c could hit the phase boundary and split into a boundary ex-
citation a and a bulk excitationb of phase II, provided that
c ∈ a× b according to the fusion rules ofT .

The fusion rules ofT are valid throughout. For instance,
if two particles in phase I have a definite joint fusion chan-
nel, then this should be preserved even if one of the particles
is moved into the region in phase II. In fact, the full topo-
logical state of this multi-phase system should be character-
ized by specifying the amplitudes for theT -fusion channels
obtained on successive fusions of all the quasiparticles that
are present. This yields fusion bases analogous to the stan-
dard fusion bases of the the topological Hilbert spaces of sys-
tems described by a single TQFT. Clearly, to actually perform
the fusions involved, it will usually be necessary to bring the
quasiparticles from the bulk of phases I and II to the boundary.

There are many situations where these general ideas apply.
In particular, coset models form a large class that can be ana-
lyzed in terms of bose condensates [7]. The construction of
these models closely parallels the construction of figure 1,
where phase I is aGk phase, phase III is aHk′ phase with
the opposite chirality and in the overlap region we obtain a
phase with the topological order of theGk/Hk′ coset, after
condensation of all available bosons. We continue with two
concrete applications of a slightly different, but relatedtype.

KITAEV’S HONEYCOMB AND THE TORIC CODE

Kitaev’s honeycomb model [17] is a model of spins living
on the sites of a honeycomb lattice and interacting through
nearest neighbor Ising-like interactions. The model is exactly
solvable and displays two types of phases: three equivalent
gapped Abelian topological phases with the same topological
order as theZ2 toric code model and central chargec = 0, and
a gapless phase, which becomes gapped when a Zeeman term
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is added to the Hamiltonian and then displays non-Abelian
topological order described by the Ising TQFT atc = 1/2.
The Abelian phase has four sectors withZ2 ×Z2 fusion rules
and the Ising model has the well known three sectors labeled
1, σ, ψ, with 1 denoting the vacuum and with nontrivial fusion
rules given byσ × σ = 1 + ψ, σ × ψ = σ andψ × ψ = 1.

Ising

c = 1/2 1 σ ψ

hi 0 1

16

1

2

di 1
√

2 1

Z2 toric code

c = 0 1 e m em

hi 0 0 0 1/2

di 1 1 1 1

TABLE I: Ising and toric code, spins and quantum dimensions.

We wish to consider a situation with an island in the
Abelian phase surrounded by a medium in the Ising phase. To
achieve this, we start with a large disc in the Ising phase (phase
I) and imagine placing a small disk on top of it, which is in a
suitable phase III so that a bose condensate can form leaving
the bulk of the small disc in theZ2 ×Z2 phase (phase II). Not
surprisingly one should use an opposite chirality Ising model
for the small phase III disc and then condense the(ψ, ψ) field.
This example has been worked out in detail in section X of
[7]. Condensation leads to the identifications(1, 1) ∼ (ψ, ψ),
(ψ, 1) ∼ (1, ψ), (σ, 1) ∼ (σ, ψ) and(1, σ) ∼ (ψ, σ), while
the remaining field has to split:(σ, σ) = (σ, σ)1 + (σ, σ)2.
Hence, the T-algebra has6 sectors and one finds that it has
Ising × Z2 fusion rules. The fields(σ, 1) and(1, σ) will be
confined because they cannot be assigned a consistent confor-
mal weight (the corresponding identifiedIsing×Ising fields
have conformal weights that differ by1/2). The unconfined
fields (1, 1), (σ, σ)1, (σ, σ)2 and(ψ, 1) correspond precisely
to the fields1, e,m andem of theZ2 × Z2 given in table I.

Let us now look at the wall in between the phases. Of the
three unconfined fields that correspond to particle excitations
in the interior bulk, the fermionic(ψ, 1) excitation can freely
move out through the wall into the exterior region and the
other two bulk excitations cannot. This corresponds well to
the results of [18] where it was shown that free fermionic ex-
citations occur throughout the phase diagram. The confined
excitations are expelled from the interior. One, the(σ, 1) ex-
citation can move into the exterior region, while the other,the
(1, σ) excitation is strictly confined to the wall. Now con-
sider aσ excitation hitting the boundary. From theT the-
ory’s fusion rules, we see that(σ, 1) = (1, σ) × (σ, σ)1 =
(1, σ) × (σ, σ)2. Hence, theσ-particle can split into a bound-
ary excitation and either ane or anm type toric code exci-
tation. This corresponds well with the results of [19], where
σ-like excitations were exhibited in the toric code using super-
positions ofe andm type excitations. Pushing anotherσ parti-
cle through the phase boundary will allow the confined(1, σ)
excitations to annihilate, yielding either(1, 1) or (ψ, 1). If the
two σ particles were pair created (had trivial fusion channel),
the two toric code particles that form must have fusion chan-
nel1 resp.em ≡ (ψ, 1), conserving overallT -charge.

THE PFAFFIAN/NASS INTERFACE

Now we turn to the interface between the Moore Read (MR)
Pfaffian fractional quantum Hall state at fillingν = 1/2 or
5/2 [15] and the non-abelian spin-singlet (NASS) state of Ar-
donne and Schoutens atν = 4/7 or 18/7 [16]. This was
recently considered in [14]. We will again realize it as single
layer–two layer boundary. We concentrate on the non-Abelian
parts of the the MR and NASS theories here and leave out the
U(1) factors (these can be put back in at any point). Con-
sider a disc withC1 = Ising, corresponding to MR, with
on top of that a smaller disc withC3 = M(4, 5). The latter
CFT is the minimal model withc = 7/10 corresponding to a
tri-critical Ising model. We give the field content of theIsing
andM(4, 5) theories in tables I and II. For theM(4, 5) fusion
rules we refer to the literature [20].

M(4, 5)

c = 7/10 1 ǫ ǫ′ ǫ′′ σ̄ σ̄′

hi 0 1

10

3

5

3

2

3

80

7

16

di 1 1+
√

5

2

1+
√

5

2
1 1+

√
5√

2

√
2

TABLE II: The tri-critical Ising modelM(4, 5) (Phase III).

The (ψ, ǫ′′) current is the only bosonic channel in the
(Ising ⊗M(4, 5)) model and we assume that it condenses.
As this is a simple current it is straightforward to see what
happens to the various fields in the model. This is shown in
table IV. We start with3 × 6 = 18 fields. In the second row
we indicate how16 of these fields become pairwise identi-
fied (because they are equivalent modulo fusion with(ψ, ǫ′′)),
and how the other two fields split. We are thus left with the
8 + 4 = 12 fields of the T-theory, which form an associa-
tive fusion algebra. A detailed analysis of the arguments for
this case shows that the fusion rules of the algebra are given
by T = M(4, 5) ⊗ Z2 where the nontrivialZ2 element cor-
responds to the either theψ1 or theψ2 field. TheT -fields
that are not confined form the residual bulk theory (phase II)
and correspond to the fields of the NASS state of [16], as we
intended. Their quantum dimensions and topological spins
are given in table III). The twelve fields of the full T-theory

NASS − state

c = 6/5 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

hi 0 1

10

1

10

1

10

3

5

1

2

1

2

1

2

di 1 1+
√

5

2

1+
√

5

2

1+
√

5

2

1+
√

5

2
1 1 1

TABLE III: The NASS state (Phase II).

describing the interface are listed at the top of table IV. We
also give their quantum dimensions, which are consistent with
the fusion rules and with the decomposition of the original
sectors. It is not possible to assign unambiguous conformal
weights to the confined fields, and therefore there is no con-
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sistent braid group representation for the full T-theory. We
recall (cf. [6]) that this is no problem, since the full T-theory
has only a strictly one-dimensional interpretation.

It is now interesting to look more closely at the properties
at the walls between the phases. In table IV we have explicitly
indicated the fields in the different possible interior and exte-
rior regions, as well as those being strictly confined to par-
ticular walls, where the latter explicitly depend on what wall
we are talking about. More precisely, we give the fields that
extend from the wall into the exterior MR (phase I) region in
the fourth row and the fields that extend from the wall into the
interior NASS (phase II) region in the fifth row, and we have
to conclude that the three remaining fields can only propagate
in the wall. Note that we also have to identify theψ12 field
in the NASS region, with theψ field in the MR region, which
means that this field can propagate right through the wall.

It is clear that the fusion rules of the T-theory fix the
kinematically allowed channels in which particles which hit
the wall, coming from either the interior or the exterior re-
gion, can split into particles in the other region plus a wall-
excitation. For instance, from the T fusion ruleσ × σ̄ =

σ↑+σ↓, we find that if we start with aσ↑ coming from the inte-
rior region, it can split into aσ going into the MR region and a
σ̄ staying in the wall. But sincēσ× σ∗ = σ↑ + σ↓ +ψ1 +ψ2,
it may also happen that theσ↑ excitation splits into the two
wall-excitationsσ̄ andσ∗. This scenario may also be turned
around, two strict boundary excitations may fuse into a state
that is not confined. Obviously there is a myriad of possibili-
ties and we refrain from listing them here.

A final comment concerns the relaxation of qubits near a
wall [21]. If we encode a topological qubit in the NASS phase,
for example in a pair of sigma particles (which indeed span
a two-dimensional Hilbert space) the qubit may relax to the
lowest energy state by transferring a neutral excitation tothe
boundary. For a pair ofσ3 fields we have the fusion ruleσ3 ×

σ3 = 1 + ρ, while σ↓ × σ↑ = ψ12 + σ3. Each of these pairs
can relax under emission of aρ excitation. Aρ excitation may
convert into one of the pairs(σ∗, σ∗), (σ̄, σ̄), or (σ̄, σ̄′), which
are all strictly confined to the interface. Alternatively wemay
haveρ → (σ∗, σ) whereσ∗ is confined to the wall but theσ
can enter in the MR region.

We thank Prof. K. Schoutens for useful discussions.

T − theory 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12 σ σ̄ σ̄′ σ∗

Corresponding sectors (1, 1) (σ, σ̄) (1, ǫ) (1, ǫ′) (σ, σ̄′) (1, ǫ′′) (σ, 1) (1, σ̄) (1, σ̄′) (σ, ǫ)

in M(4, 5) ⊗ Ising (ψ, ǫ′′) (ψ, ǫ′) (ψ, ǫ) (ψ, 1) (σ, ǫ′′) (ψ, σ̄) (ψ, σ̄′) (σ, ǫ′)

di 1 1+
√

5

2

1+
√

5

2

1+
√

5

2

1+
√

5

2
1 1 1

√
2 1+

√
5√

2

√
2 1+

√
5√

2

Phase I : MR 1 ψ σ

Phase II : NASS 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

Confined on I/II wall σ̄ σ̄′ σ∗

Phase III : M(4, 5) 1 ǫ ǫ′ ǫ′′ σ̄ σ̄′

Confined on II/III wall σ σ∗

TABLE IV: Field content of the T-theory resulting from a(ψ, ǫ′′) condensate in theM(4, 5) ⊗ Ising model and governing the kinematics of
the NASS and MR states and the domain wall between them. The following rows give the correspondence between T-sectors andsectors of
the different phases and walls. One reads off that the fieldsσ̄, σ̄′ andσ∗ are strictly confined to the I-II boundary. The same T-theorywould
live on a domain wall between NASS and M(4,5) phases, where the fieldsσ andσ∗ would be strictly confined to the II/III boundary. Clearly
on an edge between the NASS phase and the vacuum, one would findthe confined fieldsσ, σ̄, σ̄′ andσ∗.
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