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We investigate domain walls between topologically ordegpkdses in two spatial dimensions and present a
simple but general framework from which their degrees afdi@n can be understood. The approach we present
exploits the results on topological symmetry breaking thathave introduced and presented elsewhere. After
summarizing the method, we work out predictions for the spet of edge excitations and for the transport
through edges in some representative examples. Theseléndibmain walls between the Abelian and non-
Abelian topological phases of Kitaev’'s honeycomb lattialed in a magnetic field, as well as recently proposed
domain walls between spin polarized and unpolarized noelab fractional quantum Hall states at different
filling fractions.

PACS numbers: 05.30.Pr,11.25.Hf.
INTRODUCTION WALLSFROM TOPOLOGICAL SYMMETRY BREAKING

Recently there has been considerable interest in planar sys One way to match two different phases on a boundary is
tems which exhibit topological phases. These phases are ch&y taking the tensor product of the two boundary CFTs. This
acterized by topological field theories (TQFTs) or corregpo  Would correspond to the situation where the two phases are
ing conformal field theories (CFTs). Itis of great interast t Separated by a strip of vacuum. To describe more general in-
have a clear understanding of the edges of such systems, alfffaces, we consider the geometry sketched in figure 1,avher
of domain walls between regions in different phases. In-fracwe started with two layers in phases | and Ill, which we let
tional quantum Hall systems, where experimental support fopartially overlap as indicated. In the middle section weehav
the existence of a variety of topological phases is strangesa two layer system. If we bring the layers close we may have
observations are almost entirely restricted to edge tmmsp Some binding between degrees of freedom in I and Ill. In par-
and proposed devices for probing the topological order reljicular, a bosonic composite of excitations from the tweelasy
on interference of tunneling currents between edded [i]. 2, 3could occur, and consequently, a condensate of such bosons
In such experiments the electron density is usually not conmay form. This condensation will lead to a different phase fo
stant throughout the sample and islands with differennijlli  the middle region, which we denote by II.
fractions form, separated by domain walls. In lattice mod-
els with several topological phases, one may similarly aedu Phase Il
phase boundaries by varying the local couplings. !

In this letter, we present a general method to determine the |

degrees of freedom of boundaries between topological ghase Phase |

and their relation to the bulk degrees of freedom, based on Condensate forms
the condensation of bosonic quasiparticles in auxiliaygtad

systems. Consider a medium in topological phase | support- h | Phase Il

ing a single island in topological phase II. A setup like thés
been considered in experiments by Camino e [8, 9] for the
case where phase | is the fractional quantum Hall state -at fill Y K

ing fractionv = 1/3 and phase Il the FQH state at= 2/5. Boundary TheoryT

We plan to give a treatment of this situation and more gener- o ] ] )
ally, of the hierarchy states described[, 11] dnd [12] i FIG. 1: Side view of two overlapping layers supporting tamptal

P . ohases | and Ill. If we bring the layers close together, a eosdte
a separate publlcatloﬂl?;]. Here, we describe how the tOpc?nay form in the overlap region leading to a phase Il. The thor

logical symmetry breaking procedure of BBBS 7] can bey, the left boundary describes excitations that can be efividto
applied in such physical settings, and follow up with two- dif pylk excitations of phase | and of phase 11, and excitatitas only
ferent examples. These involve Kitaev’s spin model on thecan propagate along the boundary. On the right boundary igasim
honeycomb lattice [17] and a domain wall between spin posituation occurs for the same theory T, now with Il replaginThe

larized and unpolarized non-Abelian fractional quanturii Ha Subset of T excitations that are strictly confined to the deft right
liquids ]_ boundaries are therefore different in general.
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This situation can be analysed with the tools we have delabeled by sectors of thHE-theory. For the bulk and boundary
veloped in[4] 5[16,17]. Let us assume we are given CFTs oof phase Il this is true by definition and for the bulk of phase
TQFTsC, and 3 describing phases | and Ill, or even just | we can use the branching rules to obtain the possible
the spectrum of topological sectasb, . . ., the fusion rules  sectors from the actual sectdis, 1). The situation is partic-
and the topological sping, = e*7"« for these phases (the ularly simple if every sector of phase | branches to a uniGue
topological sping, correspond to the fractional parts of the sector. This happens under quite general circumstances, no
conformal weighté,,). The topological sectors of the, ® C3 tably whenever the theory/; does not by itself have bosonic
theory will be labeled by pairg:?, b'/7) of labels from the™; sectors. We can now classify all boundary processes that may
andC'; theories. We can now proceed as follows. occur. For example ang -particle that is identified with a
(i) We can find out which bosonic sectors are possible in thaon confined’-particle can pass through the phase boundary
C1 ® Cs theory. Bosons always hadg, ;) = 0,0, = 1 andin unnoticed and vice versa, whilgg -particle that corresponds
the simple case of sectors with quantum dimensign,) =  toaconfined -particle cannot enter the region in phase II. On
d.dy = 1, this requirement is all that is needed. the other hand['-particles which are confined in phase Il but
(i) We assume that a condensate forms in one or more ofvhich can be obtained from@,; sector by branching can pass
the bosonic channels and use our methbd [7] to determine thisto the area in phase | after being driven out of phase Ihwit
topological spectrum and fusion rules of the condensedgphasout leaving a trace on the boundary. Hence the true boundary
We denote the residual theory By Sectors of the?; @ C3;  excitations are labeled by the confiriBesectors which do not
theory branch int@’-sectors according to branching rules of correspond taC;-sectors. For processes involving three or
the form(a’, b1y — >~ Ney I, where theN¢, , arein-  more excitations, we need to use the fusion rule¥ ofAny
teger branching multiplicities. Thus in the new phase, somgrocess allowed by these rules could in principle occur. For
sectors, or primary fields of th&, ® C5 theory that we started example, &; particle corresponding to a confinédsector
off with may branch to the same unigesector and hence ¢ could hit the phase boundary and split into a boundary ex-
will be identified, while others may split into independé@ht  citation « and a bulk excitatiord of phase Il, provided that
sectors. Typically, sectors which are related by fusiornwit ¢ € a x b according to the fusion rules @f.
the condensed boson are identified, while sectors which are The fusion rules off” are valid throughout. For instance,
invariant under fusion with the condensed boson may splitif two particles in phase | have a definite joint fusion chan-
The condensed sector itself always branches to the vacuum oél, then this should be preserved even if one of the pasticle
the T'-theory. We require that branching and fusion are comis moved into the region in phase Il. In fact, the full topo-
patible, i.e. they commute. As a result, branching conservelogical state of this multi-phase system should be characte
qguantum dimensions. ized by specifying the amplitudes for tfféfusion channels
(ii) While the T'-theory is required to have good fusion rules, obtained on successive fusions of all the quasiparticlas th
someT-sectors will not inherit well defined spin factors or are present. This yields fusion bases analogous to the stan-
conformal weights from the uncondensed theory, basically b dard fusion bases of the the topological Hilbert spaces &f sy
cause they have nontrivial braiding interaction with the-co tems described by a single TQFT. Clearly, to actually penfor
densed excitation. The corresponding excitations will pul the fusions involved, it will usually be necessary to brihg t
strings in the condensed medium and will be confined. In efgquasiparticles from the bulk of phases | and Il to the boupdar
fect, this means that they are expelled from the bulk and can There are many situations where these general ideas apply.
propagate only on the boundary of the condensed medium. In particular, coset models form a large class that can be ana
(iv) The T-sectors which do inherit well defined topological lyzed in terms of bose condensates [7]. The construction of
spins from the uncondensed theory survive in the bulk andhese models closely parallels the construction of fidure 1,
define the theory’,, which is a TQFT which describes the where phase | is &), phase, phase Il is &} phase with
fusion and braiding of excitations of phase II. the opposite chirality and in the overlap region we obtain a

We now have a clear picture of the situation before and afphase with the topological order of tife, /H;. coset, after
ter condensation. Before condensation, arbitrary exaitat condensation of all available bosons. We continue with two
of the system could be labeléd’, b'/7), with excitations in ~ concrete applications of a slightly different, but relatgoe.
phases | resp. Il labele@’, 1) and (1, b'/7) resp., where
denotes the vacuum, or topologically trivial sector. (Weyma
use this notation even where the second layer is not prgsent. KITAEV’'SHONEYCOMB AND THE TORIC CODE
After condensation, excitations in phases | and Il arelkdbe
as before, but in the overlap region, we now have phase Il, Kitaev's honeycomb modeIJ__'LﬂJ] is a model of spins living
with bulk excitations described by the unconfiriBesectors  on the sites of a honeycomb lattice and interacting through
and boundary excitations described by the confifiesectors.  nearest neighbor Ising-like interactions. The model idya

Using the fusion rules of th&'-theory, we can understand solvable and displays two types of phases: three equivalent
all the kinematics of processes that may occur when excitagapped Abelian topological phases with the same topolbgica
tions are moved toward or through the edges. The crucial inerder as thé&., toric code model and central charge- 0, and
sight here is that excitations in all parts of the system aan ba gapless phase, which becomes gapped when a Zeeman term



is added to the Hamiltonian and then displays non-Abelian THE PFAFFIAN/NASSINTERFACE
topological order described by the Ising TQFTcat= 1/2.
The Abelian phase has four sectors withx Z, fusion rules Now we turn to the interface between the Moore Read (MR)

and the Ising model has the well known three sectors labelegiaffian fractional quantum Hall state at filling = 1/2 or
1, o, w, with 1 denoting the vacuum and with nontrivial fusion 5/2 [IE] and the non-abelian Spin-sing|et (NASS) state of Ar-

rules givenbyr x o =1+4,0 x ¢ =g andy x ¢ = 1. donne and Schoutens at= 4/7 or 18/7 [16]. This was
recently considered iﬂlm]. We will again realize it as $ng
Ising Zs toric code layer—two layer boundary. We concentrate on the non-Abelia
c=1/2|1l0 |¥ c=0|1]|e|m|em parts of the the MR and NASS theories here and leave out the
hi 0% |3 hi 0/0]|0 |1/2 U(1) factors (these can be put back in at any point). Con-
d; 11v2|1 d; 11111 |1 sider a disc withC; = Ising, corresponding to MR, with

on top of that a smaller disc with’s = M (4,5). The latter

CFT is the minimal model witles = 7/10 corresponding to a

tri-critical Ising model. We give the field content of tliging

andM (4, 5) theories in tabl€s | arid Il. For the (4, 5) fusion
We wish to consider a situation with an island in the rules we refer to the literature [20].

Abelian phase surrounded by a medium in the Ising phase. To

TABLE I: Ising and toric code, spins and quantum dimensions.

achieve this, we start with a large disc in the Ising phasagph M(4,5)
I) and imagine placing a small disk on top of it, which is in a c=7/10|1e ¢ v &'
suitable phase 11l so that a bose condensate can form leaving h ol L 3 3|3 i
. . v 10 5 2 80 16
the bulk of the small disc in th&; x Z, phase (phase Il). Not d. 1 1+2¢5 1+2\/5 1|85 |3
v 2

surprisingly one should use an opposite chirality Ising etod
for the small phase Ill disc and then condense(the)) field.
This example has been worked out in detail in section X of  TABLE II: The tri-critical Ising modelM (4, 5) (Phase IlI).
[|i|]. Condensation leads to the identificatidisl) ~ (v, ¥),

(¥, 1) ~ (1,9), (0,1) ~ (0,¢) and(1,0) ~ (¥, 0), while The (¥, €¢") current is the only bosonic channel in the
the remaining field has to splito, o) = (0,0)1 + (0,0)2.  (Ising ® M(4,5)) model and we assume that it condenses.
Hence, the T-algebra hdssectors and one finds that it has As this is a simple current it is straightforward to see what
Ising x Zs fusion rules. The field¢s, 1) and(1,0) will be  happens to the various fields in the model. This is shown in
confined because they cannot be assigned a consistent-confeqple[TV. We start with3 x 6 = 18 fields. In the second row
mal weight (the corresponding identifiéging x Ising fields  we indicate howl6 of these fields become pairwise identi-
have conformal weights that differ bly/2). The unconfined fied (because they are equivalent modulo fusion \Withe”)),
fields(1,1), (,0)1, (0,0)2 and (s, 1) correspond precisely and how the other two fields split. We are thus left with the
to the fieldsl, e, m andem of theZ, x Z, given in tablell. 8 + 4 = 12 fields of the T-theory, which form an associa-
Let us now look at the wall in between the phases. Of thajve fusion algebra. A detailed analysis of the arguments fo
three unconfined fields that correspond to particle exoitati  this case shows that the fusion rules of the algebra are given
in the interior bulk, the fermioni¢y, 1) excitation can freely by T' = M(4,5) ® Zy where the nontriviaZ, element cor-
move out through the wall into the exterior region and theresponds to the either the, or the vy, field. TheT-fields
other two bulk excitations cannot. This corresponds well tothat are not confined form the residual bulk theory (phase I1)
the results oﬂ_L_1|8] where it was shown that free fermionic ex-and correspond to the fields of the NASS state of [16], as we
citations occur throughout the phase diagram. The confineghtended. Their quantum dimensions and topological spins

excitations are expelled from the interior. One, thel) ex-  are given in tablglll). The twelve fields of the full T-theory
citation can move into the exterior region, while the otliee,

(1,0) excitation is strictly confined to the wall. Now con- NASS — state

sider ao excitation hitting the boundary. From tlie the- c=6/5|1]04 o o3 o 1 | o | 12
ory’s fusion rules, we see thét,1) = (1,0) X (0,0); = h, N 1 1 3 111
(1,0) x (0,0)2. Hence, ther-particle can split into a bound- di 1 112\/5 %12\/5 112\/5 §+2\/5 f 12 12

ary excitation and either an or anm type toric code exci-
tation. This corresponds well with the results[19], wdher
o-like excitations were exhibited in the toric code usingesup TABLE IlI: The NASS state (Phase ).

positions ofe andm type excitations. Pushing anotheparti-

cle through the phase boundary will allow the confiied) describing the interface are listed at the top of table IV. We
excitations to annihilate, yielding eithér, 1) or (¢, 1). Ifthe  also give their quantum dimensions, which are consistetit wi
two o particles were pair created (had trivial fusion channel)the fusion rules and with the decomposition of the original
the two toric code particles that form must have fusion chansectors. It is not possible to assign unambiguous conformal
nel 1 resp.em = (¢, 1), conserving overall'-charge. weights to the confined fields, and therefore there is no con-
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sistent braid group representation for the full T-theorye W o1+, we find that if we start with &; coming from the inte-
recall (cf. B]) that this is no problem, since the full T-trg¢  rior region, it can split into @ going into the MR region and a
has only a strictly one-dimensional interpretation. o staying in the wall. But sincé x o* = o1 + o] + 11 + 12,

It is now interesting to look more closely at the propertiesit may also happen that the; excitation splits into the two
at the walls between the phases. In table IV we have explicitl wall-excitationss ando*. This scenario may also be turned
indicated the fields in the different possible interior antee  around, two strict boundary excitations may fuse into aestat
rior regions, as well as those being strictly confined to parthat is not confined. Obviously there is a myriad of possibili
ticular walls, where the latter explicitly depend on whatlwa ties and we refrain from listing them here.
we are talking about. More precisely, we give the fields that A final comment concerns the relaxation of qubits near a
extend from the wall into the exterior MR (phase I) region in wall ]. If we encode a topological qubit in the NASS phase,
the fourth row and the fields that extend from the wall into thefor example in a pair of sigma particles (which indeed span
interior NASS (phase Il) region in the fifth row, and we have a two-dimensional Hilbert space) the qubit may relax to the
to conclude that the three remaining fields can only progagatiowest energy state by transferring a neutral excitatiotméo
in the wall. Note that we also have to identify thie, field  boundary. For a pair of; fields we have the fusion rule; x
in the NASS region, with the field in the MR region, which o3 = 1 + p, while 0| x o1 =12 + 03. Each of these pairs
means that this field can propagate right through the wall.  can relax under emission ofeexcitation. Ap excitation may

It is clear that the fusion rules of the T-theory fix the convertinto one of the paifs™*, o*), (,5), or (5,3"), which
kinematically allowed channels in which particles whicl hi are all strictly confined to the interface. Alternatively way
the wall, coming from either the interior or the exterior re- havep — (¢*, o) wherec* is confined to the wall but the
gion, can split into particles in the other region plus a wall can enter in the MR region.

excitation. For instance, from the T fusion rulex ¢ = We thank Prof. K. Schoutens for useful discussions.
|

T — theory 1 o1 | oy o3 p Y1 | P2 [ 12 o G &’ o*
Corresponding sectors | (1,1) (0,5) (Le) |(1,€)]| (a,0") | (1,€")|(o,1) |(1,5) |(1,5") | (o,€)
in M(4,5) ® Ising (1, €”) (W, €) | (W, €) (,1) |(0,€") |(¥,0) | (4,5") | (0, €)
d; 1 1+2\/5 1+2\/5 1+2\/5 1+2\/5 1 11 |1 2 1+\2/5 V2 1+\2/5
PhaseI: MR 1 P o
Phase Il : NASS 1 op ol o3 p Y1 |2 |12
Confined on I /11 wall a o a*
Phase II1 : M(4,5) 1 € € €” G o
Confined on I1/11I wall o o

TABLE IV: Field content of the T-theory resulting from(@, ¢”’) condensate in th&/ (4, 5) ® Ising model and governing the kinematics of
the NASS and MR states and the domain wall between them. Tlogvfiog rows give the correspondence between T-sectorssantbrs of
the different phases and walls. One reads off that the field$ ando™ are strictly confined to the I-1l boundary. The same T-thesopld
live on a domain wall between NASS and M(4,5) phases, wheréi¢ldso ando™ would be strictly confined to the II/1ll boundary. Clearly
on an edge between the NASS phase and the vacuum, one woullidindnfined fields, 7, 5" ando™.
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