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Abstract

We analyze the set of magnetic charges carried by smooth BPS monopoles in Yang-Mills-
Higgs theory with arbitrary gauge group G spontaneously broken to a subgroup H. The
charges are restricted by a generalized Dirac quantization condition and by an inequality
due to Murray. Geometrically, the set of allowed charges is a solid cone in the coroot lattice
of G, which we call the Murray cone. We argue that magnetic charge sectors correspond to
points in the Murray cone divided by the Weyl group of H; hence magnetic charge sectors
are labelled by dominant integral weights of the dual group H∗. We define generators of the
Murray cone modulo Weyl group, and interpret the monopoles in the associated magnetic
charge sectors as basic; monopoles in sectors with decomposable charges are interpreted
as composite configurations. This interpretation is supported by the dimensionality of
the moduli spaces associated to the magnetic charges and by classical fusion properties for
smooth monopoles in particular cases. Throughout the paper we compare our findings with
corresponding results for singular monopoles recently obtained by Kapustin and Witten.
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1 Introduction

In the 1970s Goddard, Nuyts and Olive were the first to write down a rough version of what
has become one of the most celebrated dualities in high energy physics [1]. By generalizing
the Dirac quantization condition they showed that the charges of monopoles take values in
the weight lattice of the dual gauge group, now known as the GNO or Langlands dual group.
Based on this fact they came up with a bold yet attractive conjecture: monopoles transform
as representations of the dual group.
Within a year Montonen and Olive observed that the Bogomolny Prasad Sommerfield (BPS)
mass formula for dyons [2, 3] is invariant under the interchange of electric and magnetic quan-
tum numbers if the coupling constant is inverted as well [4]. This led to the dramatic conjecture
that the strong coupling regime of some suitable quantum field theory is described by a weakly
coupled theory with a similar Lagrangian but with the gauge group replaced by the GNO dual
group and the coupling constant inverted. Moreover they proposed that in the BPS limit of
a gauge theory where the gauge group is spontaneously broken to U(1) the ’t Hooft-Polyakov
solutions [5, 6] in the original theory correspond to the heavy gauge bosons of the dual theory.
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Supporting evidence for the idea of viewing the ’t Hooft-Polyakov monopoles as fundamental
particles came from Erick Weinberg’s zero-mode analysis in [7].
Soon after Montonen and Olive proposed their duality, Osborn noted that N =4 Super Yang-
Mills theory (SYM) would be a good candidate to possess the duality since BPS monopoles
fall into the same BPS supermultiplets as the elementary particles of the theory [8]. N = 2
SYM on the other hand has always been considered an unlikely candidate because the BPS
monopoles fall into BPS multiplets that do not correspond to the elementary fields of the
N = 2 Lagrangian. In particular there are no semi-classical monopole states with spin equal
to 1 so that the monopoles cannot be identified with heavy gauge bosons. Most surprisingly
however the Montonen-Olive conjecture has never been proven for N = 4 SYM whereas a
different version of the duality has explicitly been shown to occur for the N = 2 theory in
1994 by Seiberg and Witten. They started out from N =2 SYM with the SU(2) gauge group
broken down to U(1) [9] and computed the exact effective Lagrangian of the theory to find
a strong coupling phase described by SQED except that the electrons are actually magnetic
monopoles. Similar results hold for higher rank gauge groups broken down to their maximal
abelian subgroups [10, 11]. In these cases we indeed have an explicit realization of a magnetic
abelian gauge group at strong coupling.

One might wonder whether these theories could also have non-abelian phases at strong cou-
pling, that is a phase where the gauge group is broken down to a non-abelian subgroup. Both
the classical N = 4 and N = 2 pure SYM theories have a continuous space of ground states
corresponding to the vacuum expectation value of the adjoint Higgs field. A non-abelian phase
corresponds to the Higgs VEV having degenerate eigenvalues. In the N = 4 theory the super-
symmetry is sufficient to protect the classical vacuum structure even non-perturbatively [12].
So the non-abelian phases manifestly realized in the classical regime must survive at strong
coupling as well. In N = 2 theory the vacuum structure is changed in quite a subtle way by
non-perturbative effects. In those subspaces of the quantum moduli space where a non-abelian
phase might be expected there are no massless W-bosons. Instead the perturbative degrees
of freedom correspond to photons and massless monopoles carrying abelian charges. In the
best case there are some indications that a non-abelian phase may exist at strong coupling in
certain N = 2 theories with a sufficient number of hyper multiplets [13, 14].
Unfortunately and despite the importance of its results, Seiberg-Witten theory seems to ex-
clude any manifest non-abelian phase which makes it impossible to study the original GNO-
conjecture on the transformation properties of non-abelian monopoles. Quite recently how-
ever Witten and Kapustin have found extraordinary new evidence to support the non-abelian
Montonen-Olive conjecture. This evidence was constructed in an effort to show that the math-
ematical concept of the geometric Langlands correspondence arises naturally from electric-
magnetic duality in physics [15].

The starting point for Kapustin and Witten is a twisted version of N =4 gauge theory. They
identify ’t Hooft operators, which create the flux of Dirac monopoles, with Hecke operators.
The labels of these operators are given by the generalized Dirac quantization rule and can
up to a Weyl transformation be identified with dominant integral weights of the dual gauge
group. Note that a dominant integral weight is the highest weight of a unique irreducible
representation. Magnetic charges thus correspond to irreducible representations of the dual
gauge group. The moduli spaces of the singular BPS monopoles are identified with the spaces
of Hecke modifications. The operation of bringing two separated monopoles together defines a
non-trivial product of the corresponding moduli spaces. The resulting space can be stratified
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according to its singularities. Each singular subspace is again the compactified moduli space
of a monopole related to an irreducible representation in the tensor product. The multiplicity
of the BPS saturated states for each magnetic weight is found by analyzing the ground states
of the quantum mechanics on the moduli space. The number of ground states given by the
De Rham cohomology of the moduli space agrees with the dimension of the irreducible repre-
sentation labelled by the magnetic weight. Moreover Kapustin and Witten exploited existing
mathematical results on the singular cohomology of the moduli spaces to show that the prod-
ucts of ’t Hooft operators mimic the fusion rules of the dual group. The operator product
expansion (OPE) algebra of the ’t Hooft operators thereby reveals the dual representations in
which the monopoles transform.

There is an enormous amount of evidence to support the Montonen-Olive conjecture for the
ordinary N =4 SYM theory, see for example [16, 17, 18]. These results which mainly concern
the invariance of the spectrum do not leave much room to doubt that the strongly coupled
theory can be described in terms of monopoles. However, they do not say much about the
fusion rules of these monopoles. If the original GNO conjecture does indeed apply for N = 4
SYM theory with residual non-abelian gauge symmetry, smooth monopoles should have prop-
erties similar to those of the singular BPS monopoles in the Kapustin-Witten setting. By the
same token we claim that one can exploit these properties to find new evidence for the GNO
duality in spontaneously broken theories. This paper aims to set a first step in this direction
by generalizing the classical fusion rules found by Erick Weinberg for abelian BPS monopoles
[19] to the non-abelian case. Our results indicate that smooth BPS monopoles are naturally
labelled by integral dominant weights of the residual dual gauge group.

The outline of this paper is as follows. In section 2 we recapitulate the generalized Dirac
quantization condition and describe the resulting magnetic charge lattices for both singular
and smooth monopoles and their relation with the weight lattice of the dual group. In addition
we review the Murray condition which restricts the allowed charges for smooth BPS monopoles
to a cone in the magnetic charge lattice. Finally we introduce the fundamental Murray cone
which arises by modding out the residual Weyl group. In section 3 we determine the additive
structure of the Murray cone and the fundamental Murray cone. In both cases this results in
a unique set of indecomposable charges which generate the cone. For Dirac monopoles similar
sets of generating charges are introduced. We show that the generators of the fundamental
Murray cone generate a subring in the representation ring of the residual gauge group. In
the appendix we construct an algebraic object whose representation ring is identical to to this
special subring.
We claim that the decomposable charges for smooth BPS monopoles correspond to multi-
monopole configurations built up from basic monopoles associated to the generating charges.
To support this claim we study the relevant moduli spaces in section 4. By analyzing the
dimensions of these spaces it is shown that this multi-monopole picture only holds within the
fundamental Murray cone. Further evidence for these classical fusion rules is found in section
5 where we review to what extent classical monopole solutions can be patched together. We
briefly discuss similar results for singular BPS monopoles and speculate on the implications
for the semi-classical fusion rules.
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2 Magnetic charge lattices

In this section we describe and identify the magnetic charges for several classes of monopoles.
We shall start with a review for Dirac monopoles, then continue with smooth monopoles in
spontaneously broken theories. Specifically for adjoint symmetry breaking we shall explain
how the magnetic charge lattice can be understood in terms of the Langlands or GNO dual
group of either the full gauge group or the residual gauge group. This will finally culminate in
a thorough description of the set of magnetic charges for smooth BPS monopoles.

Dirac monopoles can be described as solutions of the Yang-Mills equations with the prop-
erty that they are time independent and rotationally invariant. More importantly they are
singular at a point. As a direct generalization of the Wu-Yang description of U(1) monopoles
[20], singular monopoles in Yang-Mills theory with gauge group H correspond to a connection
on an H-bundle on a sphere surrounding the singularity. The H-bundle may be topologically
non-trivial, but in addition the monopole connection equips the bundle with a holomorphic
structure. The classification of monopoles in terms of their magnetic charge then becomes
equivalent to Grothendieck’s classification of H-bundles on CP1. As a result, the magnetic
charge has topological and holomorphic components, both of which play an important role in
this paper.
A different class of monopoles is found from smooth static solutions of a Yang-Mills-Higgs
theory on R3 where the gauge group G is broken to a subgroup H. Since R3 is contractible
the G-bundle is necessarily trivial. Choosing the boundary conditions so that the total energy
is finite while the total magnetic charge is nonzero one finds that smooth monopoles behave
asymptotically as Dirac monopoles. Since the long range gauge fields correspond to the resid-
ual gauge group this gives a non-trivial H-bundle at spatial infinity. The charges of smooth
monopoles in a theory with G spontaneously broken to H are thus a subset in the magnetic
charge lattice of singular monopoles in a theory with gauge group H .
Finally one can restrict solutions to the BPS sector where the energy is minimal. This limi-
tation is natural in supersymmetric Yang-Mills theories with a broken gauge group but with
unbroken supersymmetry such that the potential vanishes identically. Smooth BPS monopoles
are solutions of the BPS equations and therefore automatically solutions of the full equations of
motion of the Yang-Mills-Higgs theory. Thus the charges of BPS monopoles are in principle a
subset of the charges of smooth monopoles. This subset is determined by the so-called Murray
condition which we shall introduce below.

2.1 Quantization condition for singular monopoles

The magnetic charge of a singular monopole is restricted by the generalized Dirac quantization
condition [21, 1]. This consistency condition can be derived from the bundle description [20].
One can work in a gauge where the magnetic field has the form

B =
G0

4πr2
r̂, (1)

with G0 an element in the Lie algebra of the gauge group H. This magnetic field corresponds
to a gauge potential given by:

A± = ±G0

4π
(1∓ cos θ) dϕ. (2)
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The indices of the gauge potential refer to the two hemispheres. On the equator where the two
patches overlap the gauge potentials are related by a gauge transformation:

A− = G−1(ϕ)
(
A+ +

i

e
d

)
G(ϕ). (3)

One can check

G(ϕ) = exp
(
ie

2π
G0ϕ

)
. (4)

One obtains similar transition functions for associated vector bundles by substituting appro-
priate matrices representing G0. All such transition functions must be single valued. In the
Dirac picture this means that under parallel transport around the equator electrically charged
fields should not detect the Dirac string. Consequently we find for each representation the
condition:

G(2π) = exp (ieG0) = I, (5)

where I is the unit matrix. To cast this condition in slightly more familiar form we note
that there is a gauge transformation that maps the magnetic field and hence also G0 to a
Cartan subalgebra (CSA) of H. Thus without loss of generality we can take G0 to be a linear
combination of the generators (Ha) of the CSA in the Cartan-Weyl basis:

G0 =
4π
e

∑
a

ga ·Ha ≡
4π
e
g ·H. (6)

The generalized Dirac quantization condition can now be formulated as follows:

2λ · g ∈ Z, (7)

for all charges λ in the weight lattice Λ(H) of H.

We thus see that the magnetic weight lattice Λ∗(H) defined by the Dirac quantization con-
dition is dual to the electric weight lattice Λ(H). Consider for example the case where H is
semi-simple as well as simply connected so that the weight lattice Λ(H) is generated by the
fundamental weights {λi}. Then Λ∗(H) is generated by the simple coroots {α∗i = αi/α

2
i } which

satisfy:

2α∗i · λj =
2αi · λj
α2
i

= δij . (8)

As originally observed by Goddard, Nuyts and Olive the magnetic weight lattice can be iden-
tified with the weight lattice of the GNO dual group H∗. For example if we take H = SU(n)
and define the roots of SU(n) such that α2 = 1, we see that Λ∗(SU(n)) corresponds to the
root lattice of SU(n). The root lattice of SU(n) on the other hand is precisely the weight
lattice of SU(n)/Zn. In the general simple case Λ∗(H) resulting from the Dirac quantization
condition is the weight lattice Λ(H∗) of the GNO dual group H∗ whose weight lattice is the
dual weight lattice of H and whose roots are identified with the coroots of H [1]. In addition
the center and the fundamental group of H∗ are isomorphic to respectively the fundamental
group and the center of H. Note that for all practical purposes the root system of H∗ can be
identified with the root system of H where the long and short roots are interchanged.

We shall not repeat the proof of the duality of the center and the fundamental group, but
we will sketch the proof of the fact that the root lattice of H∗ is always contained in the
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magnetic weight lattice. Finally we sketch the generalization to any connected compact Lie
group.
If H is not simply-connected we have H = H̃/Z where H̃ is the universal cover of H and
Z ⊂ Z(H̃) a subgroup in the center of H̃. Since Λ(H) ⊂ Λ(H̃) with Z = Λ(H̃)/Λ(H) the
Dirac quantization condition (7) applied on H is less restrictive than the condition for H̃.
Moreover one can check [1]:

Λ∗(H)/Λ∗(H̃) = Λ(H̃)/Λ(H). (9)

This implies that the coroot lattice Λ∗(H̃) of H is always contained in the magnetic weight
lattice Λ∗(H) of H and in particular that any coroot α∗ = α/α2 with α a root H, is contained
in Λ∗(H).
Without much effort this property can be shown to hold for any compact, connected Lie group.
Any such group H say of rank r can be expressed as:

H =
U(1)s ×K

Z
, (10)

where K is a semi-simple and simply connected Lie group of rank r − s. The CSA of H is
spanned by {Ha : a = 1, . . . , r} where Ha with a ≤ s are the generators of the U(1) subgroups
and {Hb : s < b ≤ r} span the CSA of K. Any weight of H can be expressed as λ = (λ1, λ2)
where λ1 is a weight of U(1)s and λ2 is a weight of K. Finally one finds that a magnetic charge
G0 defined by

G0 =
4π
e
α∗j ·H, (11)

where αj is any of the r − s simple roots of H, satisfies the quantization condition.

H H∗

SU(nm)/Zm SU(nm)/Zn
Sp(2n) SO(2n+ 1)

Spin(2n+ 1) Sp(2n)/Z2

Spin(2n) SO(2n)/Z2

SO(2n) SO(2n)
G2 G2

F4 F4

E6 E6/Z3

E7 E7/Z2

E8 E8

Table 1: Langlands or GNO dual pairs for simple Lie groups.

In this section we have identified the magnetic charge lattice of singular monopoles with the
weight lattice of the dual group H∗ of the gauge group H. In table 1 and 2 some examples are
given of GNO dual pairs of Lie groups. Table 1 is complete up to some dual pairs related to
Spin(4n) that are obtained by modding out non-diagonal Z2 subgroups of the center Z2×Z2.
The GNO dual groups for these cases can be found in [1]. In section 2.3 we shall briefly explain
how the dual pairing in table 2 is determined.
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H H∗

(U(1)× SU(n))/Zn (U(1)× SU(n))/Zn
U(1)× Sp(2n) U(1)× SO(2n+ 1)

(U(1)× Spin(2n+ 1))/Z2 (U(1)× Sp(2n))/Z2

(U(1)× Spin(2n))Z2 (U(1)× SO(2n))/Z2

Table 2: Examples of Langlands or GNO dual pairs for some compact Lie groups.

The magnetic charge lattice contains an important subset which we shall need later on: even if
one restricts G0 to the CSA there is some gauge freedom left which corresponds to the action
of the Weyl group. Modding out this Weyl action gives a set of equivalence classes of magnetic
charges which are naturally labelled by dominant integral weights in the weight lattice of H∗.

2.2 Quantization condition for smooth monopoles

Yang-Mills-Higgs theories have solutions that behave at spatial infinity as singular Dirac
monopoles but which are nonetheless completely smooth at the origin. This is possible if
one starts out with a compact, connected, semi-simple gauge group G which is spontaneously
broken to a subgroup H. Since all the fields are smooth, the gauge field defines a connection
of a principal G-bundle over space which we take to be R3. The Higgs field is a section of a
the adjoint bundle. As R3 is contractible the principal G-bundle is automatically trivial, so Φ
is simply a Lie-algebra valued function. We would like to impose boundary conditions for the
Higgs field Φ and the magnetic field B at spatial infinity which ensure that the total energy
carried by a solution of the Yang-Mills-Higgs equations is finite. To our knowledge the question
of which conditions are necessary and sufficient has not been answered in general. Below we
review some standard arguments, many of them summarized in [22].

We assume an energy functional for static fields of the usual form

E[Φ, A] =
∫

1
2
|DkΦ|2 +

1
2
|Bk|2 + V (Φ) d3x, (12)

where Dk = ∂k − ieAk is the covariant derivative with respect to the G-connection A, and
the magnetic field is given by −ieBk = −1

2 ieεklmFlm = 1
2εklm[Dl, Dm]. The potential V is a

G-invariant function on the Lie algebra of G whose minimum is attained for non-vanishing
value of |Φ|; the set of minima is called the vacuum manifold. The variational equations for
this functional are

εklmDlBm = ie[Φ, DkΦ], DkDkΦ =
∂V

∂Φ
. (13)

In order to ensure that solutions of these equations have finite energy we require the fields Φ
and Bi to have the following asymptotic form for large r:

Φ = φ(r̂) +
f(r̂)
4πr

+O
(
r−(1+δ)

)
r � 1

B =
G(r̂)
4πr2

r̂ + O
(
r−(2+δ)

)
r � 1.

(14)
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Here δ > 0 is some constant and φ(r̂), f(r̂), and G(r̂) are smooth functions on S2 taking values
in the Lie algebra of the gauge group G which have to satisfy various conditions.
First of all, the function φ has to take values in the vacuum manifold of the potential V . It
is thus a smooth map from the two-sphere to that vacuum manifold. The homotopy class of
that map defines the monopole’s topological charge [22]. Since the vacuum manifold can be
identified with the coset space G/H the topological charge takes value in π2(G/H). Secondly,
writing ∇ for the induced exterior covariant derivative tangent to the two-sphere “at infinity”
it is easy to check that

∇φ = 0, ∇f = 0 (15)

are necessary conditions for the integral defining the energy (12) to converge. The first of these
equations implies

[φ(r̂), G(r̂)] = 0. (16)

The quickest way to to see this is to note that the curvature on the two-sphere at infinity is

F∞ = ∗(G(r̂)
4πr2

dr) =
G(r̂)
4π

sin θdθ ∧ dϕ. (17)

Since [∇,∇] = −ieF∞, it follows that ∇φ = 0 implies [F∞, φ] = 0. Finally we also require
that

∇G = 0. (18)

and that
[φ(r̂), f(r̂)] = 0. (19)

The condition (18) is crucial for what follows, and seems to be satisfied for all known finite
energy solutions [22]. The condition (19) is required so that the first of the equations (13) is
satisfied to lowest order when the expansion (14) is inserted. In general there will be additional
requirements on the functions φ and f that depend on the precise form of the potential V in
(12). Since we do not specify V we will not discuss these further.

The above conditions can be much simplified by changing gauge. The equations (15) and
(18) imply that for each of the Lie-algebra valued functions φ, f and G the values at any two
points on the two-sphere at infinity are conjugate to one another (the required conjugating
element being the parallel transport along the path connecting the points). We can therefore
pick a point r̂0, say the north pole, and gauge transform φ into Φ0 = φ(r̂0), f into Φ1 = f(r̂0)
and G into G0 = G(r̂0). However, since S2 is not contractible, we will, in general, not be able to
do this smoothly everywhere on the two-sphere at infinity. If, instead, we cover the two-sphere
with two contractible patches which overlap on the equator, then there are smooth gauge
transformations g+ and g− defined, respectively, on the northern and southern hemisphere, so
that the following equations hold where they are defined:

φ(r̂) = g−1
± (r̂)Φ0g±(r̂) (20)

f(r̂) = g−1
± (r̂)Φ1g±(r̂) (21)

G(r̂) = g−1
± (r̂)G0g±(r̂). (22)

After applying these gauge transformation, our bundle is defined in two patches, with transition
function G = g+g

−1
− defined near the equator. This transition function leaves Φ0 invariant, and

hence lies in the subgroup H of G which stabilizes Φ0. This, by definition, is the residual or
unbroken gauge group referred to in the opening paragraph of this section. It follows from (16),
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that [Φ0, G0] = 0, so that G0 lies in the Lie algebra of H. Similarly, (19) implies that Φ1 lies
in the Lie algebra of H. After applying the local gauge transformations (20), the asymptotic
form of the fields is

Φ = Φ0 +
Φ1

4πr
+O

(
r−(1+δ)

)
B =

G0

4πr2
r̂ + O

(
r−(2+δ)

)
.

(23)

Note that “the Higgs field at infinity” is now constant, taking the value Φ0 everywhere. In
particular, it therefore belongs to the trivial homotopy class of maps from the two-sphere to
the vacuum manifold. The topological charges originally encoded in the map φ can no longer
be computed from the Higgs field. Instead they are now encoded in transition function G.
Since, in the new gauge, the magnetic field at large r is that of a Dirac monopole with gauge
group H we can relate the transition function to the magnetic charge as before:

G(ϕ) = exp
(
ie

2π
G0ϕ

)
(24)

We thus obtain a quantization condition for the magnetic charge of smooth monopoles, fol-
lowing the same arguments as in the singular case. For each representation of H the gauge
transformation must be single valued if one goes around the equator, so that

2λ · g ∈ Z, (25)

for all charges λ in the weight lattice of H.

One observes that the magnetic charge lattice of smooth monopoles lies in the weight lat-
tice of the GNO dual group H∗. There is, however, another consistency condition [21]. Note
that a single valued gauge transformation on the equator defines a closed curve in H as well
as in G, starting and ending at the unit element. Since the original G-bundle is trivial, this
closed curve has to be contractible in G. Therefore the monopole’s topological charge is la-
belled by an element in π1(H) which maps to a trivial element in π1(G). This is consistent
with our earlier remark that the topological charge is an element of π2(G/H) because of the
isomorphism π2(G/H) ' ker(π1(H)→ π1(G)).

To find the appropriate charge lattice we use the fact that a loop in G is trivial if and only
if its lift to the universal covering group G̃ is also a loop (closed path). This implies that for
smooth monopoles the quantization condition should not be evaluated in the group H itself
but instead in the group H̃ ⊂ G̃ defined by the Higgs VEV Φ0. Consequently equation (25)
must not only hold for all representations of H but in fact for all representations of H̃. Note
that if G is simply connected then H̃ = H. In the next section we shall work this topological
condition out in more detail.

2.3 Quantization condition for smooth BPS monopoles

In this paper we will mainly focus on BPS monopoles in spontaneously broken theories. We
shall therefore work out some results of the previous section in somewhat more detail for the
BPS case. We shall also give an explicit description of the magnetic charge lattice. In addition
we introduce terminology that is conveniently used in the remainder of this paper.
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By BPS monopoles we mean static, finite energy solutions of the BPS equations

Bi = DiΦ (26)

in a Yang-Mills-Higgs theory with a compact, connected, semi-simple gauge group G. The
equations (26) imply the second order equations (13). In order to obtain finite energy solutions
we again impose the boundary conditions (14). As in the previous section we can gauge
transform these into the form (23). There are some differences with the non-BPS case. The
potential V in (12) vanishes in the BPS limit, so does not furnish any conditions on the
functions φ and f . On the other hand, by substituting (23) in the BPS equation and solving
order by order one finds that f = −G, or, equivalently, Φ1 = −G0. As before we have
[Φ0, G0] = 0, so in the BPS case we automatically have [Φ0,Φ1] = 0. From now on we shall
thus define a BPS monopole to be a smooth solution of the BPS equations satisfying the
boundary condition (14) with Φ1 = −G0. After applying the local gauge transformations
discussed in the previous section, these boundary conditions are equivalent to

Φ = Φ0 −
G0

4πr
+O

(
r−(1+δ)

)
B =

G0

4πr2
r̂ + O

(
r−(2+δ)

)
,

(27)

where Φ0 and G0 are commuting elements in the Lie algebra of G. These boundary conditions
are sufficient to guarantee that the energy of the BPS monopole is finite. It is in general not
known what the necessary boundary conditions are to obtain a finite energy configuration. It
is expected though [23, 24], and true for G = SU(2) [25], that the boundary conditions above
follow from the finite energy condition and the BPS equation.

Before we give an explicit description of the magnetic charge lattice let us summarize some
properties of the residual gauge group. Since [Φ0, G0] = 0 there is a gauge transformation that
maps Φ0 and G0 to our chosen CSA of G. Without loss of generality we can thus express Φ0

and G0 in terms of the generators (Ha) of that CSA:

Φ0 = µ ·H

G0 =
4π
e
g ·H.

(28)

The residual gauge group is generated by generators L in the Lie algebra of G satisfying
[L,Φ0] = 0. Since generators in the CSA by definition commute with the Higgs VEV the
residual group H contains at least the maximal torus U(1)r ⊂ G. For generic values of
the Higgs VEV this is the complete residual gauge symmetry. If the Higgs VEV is perpen-
dicular to a root α the residual gauge group becomes non-abelian. This follows from the
action of the corresponding ladder operator Eα in the Cartan-Weyl basis on the Higgs VEV:
[Eα,Φ0] = −µ ·αEα = 0. Accordingly we shall call a root of G broken if it has a non-vanishing
inner product with µ and we shall define it to be unbroken if this inner product vanishes.
The residual gauge group is locally of the form U(1)s ×K, where K is some semi-simple Lie
group. The root system of K is derived from the root system of G by removing the broken
roots. Similarly, the Dynkin diagram of K is found from the Dynkin diagram of G by removing
the nodes related to broken simple roots. For completeness we finally define a fundamental
weight to be (un)broken if the corresponding simple root is (un)broken.
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The magnetic charge lattice for smooth monopoles lies in the dual weight lattice of H, as
we saw in the previous chapter. For adjoint symmetry breaking the weight lattice of H is iso-
morphic to the weight lattice of G. Moreover the isomorphism respects the action of the Weyl
group W (H) ⊂W (G). The existence of an isomorphism between Λ(G) and Λ(H) is easily un-
derstood since the weight lattices of H and G are determined by the irreducible representations
of their maximal tori which are isomorphic for adjoint symmetry breaking. A natural choice
for the CSA of H is to identify it with the CSA of G. In this case Λ(G) and Λ(H) are not
just isomorphic but also isometric. Since the roots of H can be identified with roots of G and
since the Weyl group is generated by the reflections in the hyperplanes orthogonal to the roots,
this isometry obviously respects the action of W (H). Often the CSA of H is identified with
the CSA of G only up to normalization factors. This leads to rescalings of the weight lattice
of H. Of course one can apply an overall rescaling without spoiling the invariance of weight
lattice under the Weyl reflections. One can also choose the generators of U(1)s-factor such
that the corresponding charges are either integral or half-integral. Note that these rescalings
again respect the action of W (H). To avoid confusion we shall ignore these possible rescalings
in the remainder of this paper and take Λ(H) to be isometric to Λ(G).
Since the weight lattices Λ(H) and Λ(G) are isometric their dual lattices Λ∗(H) and Λ∗(G) are
isometric too. We thus see that we the Dirac quantization condition (25) for adjoint symmetry
breaking can consistently be evaluated in terms of either H or G.

Remember that for smooth monopoles monopoles there is yet another condition: since one
starts out from a trivial G bundle the magnetic charge should define a topologically trivial
loop in G as explained in the previous section. For general symmetry breaking this implies
that the Dirac quantization condition must be evaluated with respect to weight lattice of
H̃ ⊂ G̃, where G̃ is the universal covering group of G. For adjoint symmetry breaking we can
consistently lift the quantization condition to G; the weight lattice of H̃ is isometric to the
weight lattice of G̃. The weight lattice of G̃ is generated by the fundamental weights {λi} and
hence the magnetic charge lattice for smooth BPS monopoles is given by the solutions of:

2λi · g ∈ Z, (29)

for all fundamental weights λi of G̃. The most general solution of this equation is easily solved
in terms of the simple coroots of G:

g =
∑
i

miα
∗
i mi ∈ Z, (30)

with α∗i = αi/α
2
i and {αi} the simple roots of G.

We thus conclude that the magnetic charge lattice for smooth BPS monopoles is generated
by the simple coroots of G. The resulting coroot lattice Λ∗(G̃) corresponds precisely to the
weight lattice Λ(G̃∗) of the GNO dual group G̃∗ as mentioned in section 2.1. Similarly, the
dual lattice Λ∗(H̃) can be identified with Λ(H̃∗). With Λ∗(G̃) being isometric to Λ∗(H̃) we
now conclude that the weight lattice of G̃∗ can be identified with the weight lattice of H̃∗. For
G simply connected we have thus established an isometry between the root lattice of G∗ and
the weight lattice of H∗. We have used this isometry to compute the GNO dual pairs given in
table 2 which appear in the minimal adjoint symmetry breaking of the classical Lie groups.

Above we have seen that the magnetic charge lattice for smooth BPS monopoles corresponds
to the coroot lattice of the gauge group G. One can split the set of coroots into broken coroots
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and unbroken coroots. A coroot is defined to be broken or unbroken if the corresponding root
is respectively broken or unbroken. Note that the unbroken coroots are precisely the roots
of H∗. The distinction between broken and unbroken applies in particular to simple coroots.
There is however alternative terminology for the components of the magnetic charges that
reflects these same properties. Broken simple coroots are identified with topological charges
while unbroken simple coroots are related to so-called holomorphic charges.
Remember that the magnetic charge charge g = miα

∗
i defines an element in ker(π1(H) →

π1(G)). One might hope that every single magnetic charge g, i.e. every point in the coroot
lattice, defines a unique topological charge. If in that case a static monopole solution does
indeed exist even its stability under smooth deformations is guaranteed. Such a picture does
hold for maximally broken theories where the residual gauge group equals the maximal torus
U(1)r ⊂ G. If H contains a non-abelian factor the situation is slightly more complicated
because these factors are not detected by the fundamental group. For G equal to SU(3)
for instance the magnetic charge lattice is 2-dimensional and π1 (SU(3)) = 0. In the maxi-
mally broken theory we have π1(U(1)× U(1)) = Z× Z, while for minimal symmetry breaking
π1(U(2)) = π1(U(1)) = Z. As a rule of thumb one can say that the components of the mag-
netic charges related to the U(1)-factors in H are topological charges. It should be clear that
these components correspond to the broken simple coroots. We therefore call the coefficients
mi = 2λi · g with λi a broken fundamental weight the topological charges of g. The remaining
components of g are often called holomorphic charges.

2.4 Murray condition

We have found that magnetic charges of smooth monopoles in a Yang-Mills-Higgs theory lie
on the coroot lattice of the gauge group. In the BPS limit there is yet another consistency
condition which was first discovered by Murray for SU(n) [26]. We refer to this condition as
the Murray condition even though its final formulation for general gauge groups stems from a
paper by Murray and Singer [24]. For a derivation of the Murray condition we refer to these
original papers. We shall only briefly review some properties of roots which are crucial for the
Murray condition. Next we shall formulate the results of Murray and Singer in such a way
that the set of magnetic charges for BPS monopoles can easily be identified. Finally we show
that our formulation is equivalent to the condition as stated in [24]. Both formulations of the
Murray condition will show up in later sections. The set of magnetic charges satisfying the
Murray condition shall be called the Murray cone. At the end of this section we shall also
introduce the fundamental Murray cone.

The Murray condition hinges on the fact that one can split the root system of G into positive
and negative roots with respect to the Higgs VEV. If for a root α we have α · µ > 0 it is
by definition positive and if α · µ < 0 it is negative. The set of roots is now partitioned into
two mutually exclusive sets, at least if the residual gauge group is abelian. In that case we
can as usual define a simple root to be a positive root that cannot be expressed as a sum of
two other positive roots and it turns out that the Higgs VEV defines a unique set of simple
roots. These form a basis of the root diagram is such a way that every positive root is a linear
combination of simple roots with positive coefficients and similarly every negative root is a
linear combination with negative coefficients. In the non-abelian case there exist roots such
that α · µ = 0. Hence there are several choices for a set of simple roots which are consistent
with the Higgs VEV. Again for a fixed choice such simple roots must by definition have the
property that all roots are a linear combination of simple roots with either only positive or
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only negative coefficients. In addition the simple roots must have either a strictly positive or
a vanishing inner product with the Higgs VEV:

αi · µ ≥ 0. (31)

This condition implies that µ must lie in the closure of the fundamental Weyl chamber. In the
remainder of this paper we shall always choose simple roots so that the inequality in (31) is
satisfied.
All choices for a set of simple roots respecting the Higgs VEV are related by the residual Weyl
group W (H). This is seen as follows. In general all choices of simple roots in the root system
of G are related by the Weyl group W (G) of G. Since Weyl transformations are orthogonal we
have for all w ∈W (G) w(αi) ·µ = αi ·w−1(µ). Given a set of positive roots satisfying (31) the
action of w ∈W (G) gives another set of simple roots satisfying the same condition if and only
if µ and w(µ) lie in the closure of same Weyl chamber. This is only possible if µ is actually
invariant under w, implying that w ∈W (H) ⊂W (G).

Above we have defined a positivity condition for the roots of G that is consistent with the
Higgs VEV. This same definition is applicable for coroots since these differ from the roots by
a scaling. We now also extend this definition of positivity in a consistent way to the complete
(co)root lattice. We call an element on the (co)root lattice positive if it is a linear combina-
tion of simple (co)roots with positive integer coefficients. Note that the intersection of the
set of positive elements in the (co)root lattice with the set of (co)roots is precisely the set of
positive (co)roots. Finally we see that if the Higgs VEV lies in the fundamental Weyl cham-
ber then the innerproduct of any positive element in the (co)root lattice with µ is non-negative.

Murray and Singer have found that the magnetic charge must be positive with respect to
all possible choices of simple roots consistent with the Higgs VEV. This means that in the
expansion g =

∑
imiα

∗
i the coefficients mi should be positive for all possible choices of simple

roots (αi) that satisfy αi · µ ≥ 0. The Murray condition can be summarized as follows:

2w(λi) · g ≥ 0 ∀w ∈W (H), ∀λi. (32)

This is seen from the fact that the fundamental weights and simple roots satisfy 2λi · α∗j = δij
and that all allowed choices of positive simple roots and fundamental weights are related by
the residual Weyl group W (H) ⊂W (G).

The Murray condition defines a solid cone in the CSA. In combination with the Dirac quan-
tization condition this results in a discrete cone of magnetic charges. We shall call this cone
the Murray cone. As an example one can consider SU(3) broken to either U(1) × U(1) or
U(2) as depicted in figure 1. In the first case the Weyl group of the residual gauge group is
trivial and the Murray condition simply implies that the topological charges must be positive.
In the second case the residual Weyl group is Z2, the reflections in the line perpendicular
to α1. Consequently there are two possible choices of positive simple roots which makes the
Murray condition more restrictive. The topological charge still has to be positive, just like the
holomorphic charge, but the holomorphic charge is bounded by the topological charge.

We shall finish this section with yet another formulation of the Murray condition originating
from proposition 4.1 in the paper of Murray and Singer [24]. It relies on the fact that the
holomorphic charges can be minimized under the action of the residual Weyl group. For any
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element g in the coroot lattice there exists a uniquely determined reduced magnetic charge
g̃ in the Weyl orbit of g such that αj · g̃ ≤ 0 for all unbroken simple roots αj . The Murray
condition can be expressed in terms of this minimized charges. A magnetic charge g is positive
with respect to any chosen set of simple roots if and only if for a fixed choice of simple roots
its reduced magnetic charge is positive. The reduced magnetic charge should thus satisfy:

2λi · g̃ ≥ 0 ∀λi. (33)

We shall shortly show that g̃ does indeed exist and is unique. But already we can see that
this last condition easily follows from (32). Since g̃ = w̃(g) for some w̃ ∈ W (H) we have
w(λi) · g̃ = w(λi) · w̃(g) = w̃−1 (w(λi)) · g = w′(λi) · g ≥ 0, where w′ = w̃−1w ∈ W (H). To
show equivalence however we also have to show that (32) follows from (33), which boils down
to proving the following proposition:

Proposition 1. If the reduced magnetic charge g̃ is positive then w(g̃) is positive for all
w ∈W (H).

Proof. We take the gauge group G broken to H. The magnetic charges of BPS monopoles
lie on the coroot lattice of G or equivalently the root lattice of G∗. We can assume G to be
simply-connected since this does not affect the magnetic charge lattice. Under this assumption
there is an isomorphism λ from the coroot lattice Λ∗(G) to the weight lattice Λ(H∗) of H∗ as
discussed in section 2.3. Up to discrete factors H∗ is of the form U(1)s×K∗, where K∗ is some
semi-simple Lie group. Similarly, the set of simple roots of G is split up into s broken roots
{αi} with 0 < i ≤ s and r − s unbroken roots {αj} with s < j ≤ r. The magnetic charges are
thus expanded as g =

∑
imiα

∗
i +

∑
j hjα

∗
j .

The linear map λ is defined by the images of the simple coroots. For the unbroken simple
coroots this is particularly simple. We have λ(α∗j ) = α∗j . More generally the image is given
in terms of the abelian charges and a weight of K∗. While the abelian charges are identified

α1

α2

µ

α1

α2

µ

Figure 1: The Murray cone for SU(3) as a subset of the Cartan subalgebra. If the residual gauge group
equals U(1) × U(1) (left) the Higgs VEV determines a unique set of simple roots. The static BPS
monopoles have magnetic charges equal to a positive linear combination of these roots. These charges
are in one-to-one correspondence with the positive topological charges. If the residual gauge group is
U(2) (right) there are two choices of simple roots. Only those charges that have a positive expansion
for both these choices correspond to non-empty moduli spaces of static BPS monopoles. There is only
a single topological charge which is proportional to the inner product of the magnetic charge with the
Higgs VEV µ. As can been seen from the picture the total magnetic charge is not uniquely determined
by the topological charge alone: non-abelian monopoles may carry non-trivial holomorphic charges.
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with the topological charges {mi} the non-abelian charge can be expanded in terms of the
fundamental weights λj of K∗. The coefficients, i.e. the Dynkin labels, are given by the
projection on the roots of K∗: kj = 2α∗j · g/α∗j

2. Being sums of multiples of the entries of the
Cartan matrix of G∗ these labels are indeed integers.
We can now easily prove that the reduced magnetic charge g̃ exists and is unique. Let h := λ(g).
Any weight h ∈ Λ(H∗) can be mapped to a unique weight h̃ in the anti-fundamental Weyl
chamber via a Weyl transformation. We thus have h̃ · α ≤ 0. The reduced magnetic charge g̃
is fixed by λ(g̃) = h̃. Since 2λ(g) · α∗j/α∗j

2 = 2g · α∗j/α∗j
2 we have α∗j · g ≤ 0 for all unbroken

roots of G∗. The same inequality holds for the unbroken roots of G itself.
We now return to the proof of the proposition. First we shall use the fact that λ respects
the residual Weyl group is the sense that λ (w(g)) = w (λ(g)) for all w ∈ W (H). This can
be proved using the fact that any Weyl transformation is a sequence of Weyl reflections wj in
the hyperplanes perpendicular to the simple coroots α∗j . It is thus sufficient to prove that λ
commutes with wj for all unbroken simple roots. We have

λ (wj(g)) = λ

(
g −

2g · α∗j
α∗j

2 α∗j

)
= λ(g)−

2g · α∗j
α∗j

2 λ(α∗j )

= λ(g)−
2λ(g) · α∗j

α∗j
2 α∗j = wj (λ(g)) .

(34)

Note that for the unbroken roots λ(αj) = αj and that λ is an isometry as discussed in section
2.3 and thus leaves the innerproduct invariant.
Secondly for the proof of the proposition we use the fact that for a lowest weight h̃ we have
w(h̃) = h̃ + njα

∗
j with nj ≥ 0 for any w ∈ W (H∗), see for example chapter 10 to 13 of [27].

For g̃ and any w ∈W (H∗) = W (H) we now get:

λ (w(g̃)) = w (λ(g̃)) = w(h̃)

= h̃+ njα
∗
j = λ(g̃) + njλ(α∗j )

= λ(g̃ + njα
∗
j ).

(35)

Consequently in terms of the unbroken simple coroots of G we find w(g̃) = g̃ + njα
∗
j where

nj ≥ 0. Thus for the all fundamental weights of G we have 2λi · w(g̃) ≥ 0 if 2λi · g̃ ≥ 0.

Note that the set of positive reduced magnetic charges is a subset of the Murray cone and can
be obtained by modding out the residual Weyl group. The set of Weyl orbits in the Murray
cone is a physically important object; it corresponds to the magnetic charge sectors of the
theory. This follows from the fact that a magnetic charge g is defined only modulo the action
of the residual Weyl group. For this reason we shall introduce a set called the fundamental
Murray cone which is bijective to the set of of Weyl orbits in the Murray cone. The set of pos-
itive reduced magnetic charges can of course be identified with the fundamental Murray cone.
However, it would be more appropriate to call this set the anti-fundamental Murray cone. We
recall that a reduced magnetic charge g̃ satisfies αj · g̃ ≤ 0 for all unbroken simple roots αj . It
follows from this condition that g̃ can be identified with a lowest weight of H∗. Similarly, we
can define the subset of the Murray cone {g : αj · g̃ ≥ 0}. These magnetic charges now map
to the fundamental Weyl chamber of H∗, hence we call this set the fundamental Murray cone.
We thus find that the magnetic charge sectors are labelled by dominant integral weights of the
residual gauge group. A similar conclusions was drawn for singular monopoles by Kapustin [52].
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3 Generating charges

As we have seen in the last section consistency conditions on the charges of magnetic monopoles
give rise to certain discrete sets of magnetic charges. In the case of singular monopoles this set
is nothing but the weight lattice of the dual group H∗. The set of charges of smooth monopoles
in a theory with adjoint symmetry breaking corresponds to the root lattice of the dual group
G∗. Alternatively one can view this set as a subset in the weight lattice of the residual dual
gauge group H∗ ⊂ G∗. In the BPS limit the minimal energy configurations satisfy an even
stronger condition which gives rise to the so-called Murray cone in the root lattice of G∗. Both
the weight lattice of H∗ and the Murray cone in the root lattice of G∗ contain an important
subset which is obtained by modding out the Weyl group of H∗. For singular monopoles one
simply obtains the set of dominant integral weights, i.e. the fundamental Weyl chamber of H∗.
In the case of smooth BPS monopoles modding out the residual Weyl group is equivalent to
restricting the charges to the fundamental Murray cone.

In each case we want to find a set of minimal charges that generate all remaining charges
via positive integer linear combinations. As it turns out this problem is most easily solved
for the Murray cone. In the latter case the generators can be identified as the coroots with
minimal topological charges. Below we shall prove this for any compact, connected semi-simple
Lie group G and arbitrary symmetry breaking. For the weight lattice Λ(H∗) one can give a
generic description for a small set of generators. To find a smallest set of generators one needs
to know some detailed properties of H∗. The generators the fundamental Weyl chamber and
the fundamental Murray cone are not easily identified in general either. In all these cases we
shall therefore restrict ourselves to some clear examples.

The physical interpretation of the generating charges is that the monopoles with these min-
imal charges are the building blocks of all monopoles in the theory. We shall therefore call
monopoles with minimal charges in the weight lattice of H∗ or in the Murray cone in G∗ fun-
damental monopoles. The monopoles corresponding to the generators of the fundamental Weyl
chamber and those related to the fundamental Murray cone both are called basic monopoles.
In section 4 and 5 we study to what extent these notions make sense in the classical theory.

3.1 Generators of the Murray cone

Given two allowed magnetic charges g and g′, that is two magnetic charges satisfying the Dirac
condition (7) and the Murray condition (32), one can easily show that the linear combination
ng+n′g′ with n, n′ ∈ N again is an allowed magnetic charge. This raises the question whether
all allowed magnetic charges can be generated from a certain minimal set of charges. This
would mean that all charges can be decomposed as linear combinations of these generating
charges with positive integer coefficients. The minimal set of generating charges is precisely
the set of indecomposable charges. These indecomposable charges cannot be expressed as a
non-trivial positive linear combination of charges in the Murray cone. It is obvious that such
a set exists. It is also not difficult to show that such a set is unique. This follows from the
fact all negative magnetic charges are excluded by the Murray condition. Despite its existence
and uniqueness we do not know a priori what the set of generating charges is, let alone that
we can be sure it is reasonably small or even finite.

There are some charges which are certainly part of the generating set, namely those for which
the corresponding topological charges are minimal. These are the allowed charges g such that
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2λi · g = 1 for one particular broken fundamental weight λi and 2λj · g = 0 for all other broken
fundamental weights.

Proposition 2. Topologically minimal charges are indecomposable.

Proof. If an allowed charge g with a minimal topological component can be decomposed into
two allowed charges, g = g′+ g′′ then one of these, say g′, would have a topological component
equal to zero. This means that 2λi · g′ = 0 for all broken fundamental weights λi, implying
that g′ =

∑
imiα

∗
i with only unbroken roots αi and mi ≥ 0. If {αi} is a set of simple roots of

H ⊂ G then so is {α′i} with α′i = −αi. Since the Weyl group acts transitively on the bases of
simple roots there exists an element in W (H) that takes all unbroken roots αi to α′i = −αi.
With respect to the basis (α′i) we have g′ =

∑
im
′
iα
′
i with m′i ≤ 0. This implies that g′ only

satisfies the Murray condition if g′ = 0 showing that g is indecomposable.

We now wish to identify these topologically minimal charges. As a first step we shall show that
some of the coroots, that is roots of G∗ are contained in the set of topologically minimal charges.
Note that there always exist coroots with topologically minimal charges, these correspond to
the broken simple roots. If the residual symmetry group is non-abelian the set of topological
minimal coroots is larger than the set of broken simple roots. In any case the whole set of
topologically minimal coroots lies in the Murray cone.

Proposition 3. Any coroot α∗ with 2λj ·α∗ = 1 for one of the broken fundamental weights and
which is orthogonal to the other broken fundamental weights, satisfies the Murray condition.

Proof. We shall first show that α∗ ·µ ≥ 0. As argued in section 2.4 we take µ to lie in the closure
of the fundamental Weyl chamber, i.e. µ = 2

∑
i µiλi with µi ≥ 0. Thus α∗ · µ = µj ≥ 0. If

α∗ · µ = 0, α would be an unbroken root and as such orthogonal to all broken fundamental
weights. This is clearly not the case since 2λj ·α∗ = 1. We conclude that α∗ · µ > 0 and hence
that α∗ is a positive coroot.
It is now easy to show that α∗ does indeed satisfy Murray’s condition. Since the Weyl group is
the symmetry group of the (co)root system we have for any w ∈ W (H) ⊂ W (G), that w(α∗)
is another coroot. Moreover w(α∗) is positive since the residual Weyl group leaves the Higgs
VEV invariant: w(α∗) · µ = α∗ · w−1(µ) = α∗ · µ. We thus have that w(α∗) · µ > 0 for any
w ∈W (H). Equaling some root of G∗ the positivity of w(α∗) implies that it can be expanded
in simple positive coroots with all coefficient greater than zero: 2λj · w(α∗) ≥ 0. We finally
find that 2w(λi) · α∗ ≥ 0 for all fundamental weights and for all elements in the residual Weyl
group.

It was easily shown that topologically minimal charges satisfying the Murray condition are
indecomposable charges within the Murray cone. Furthermore we have seen that these topo-
logically minimal charges contain the set of coroots with topologically minimal charges. We
will now prove that these coroots do not only constitute the complete set of minimal topologi-
cal charges in the Murray cone, they actually form the full set of indecomposable charges. For
G = SU(3) these facts are easily verified in figure 2 where the Murray cones and its generators
are drawn for the two possible patterns of adjoint symmetry breaking. Below we prove that the
minimal topological charges generate the full Murray cone. Consequently the set of minimal
topological charges must coincide with the complete set of indecomposable charges.

Proposition 4. The coroots with minimal topological charges generate the Murray cone
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α1

α2 α1+α2α2

Figure 2: In the picture above the generators of the Murray cones of SU(3) are depicted. If the gauge
group is maximally broken (left) to U(1)×U(1), the generators correspond to the simple roots of SU(3).
Both generating charges have distinct unit topological charges. For minimal symmetry breaking (right)
where the gauge group is U(2), the Murray cone is further restricted by the Murray condition. The
generating magnetic charges do have distinct holomorphic charges related by the Weyl group. Their
topological charges both equal 1.

Proof. The outline of the proof is as follows. We slice up the Murray cone according to the
topological charges in such a way that each layer corresponds to a unique representation of
the dual residual group. For unit topological charges we show that the weights correspond
to the coroots with unit topological charges. Finally we show that the representations for
higher topological charges pop up in the symmetric tensor products of representations with
unit topological charges.
Consider G→ H where H is locally of the form U(1)s ×K. We split the r roots of the gauge
group G into s broken roots (αi) with 0 < i ≤ s and r− s unbroken roots (αj) with s < j ≤ r.
The magnetic charges are thus expanded as g =

∑
imiα

∗
i +

∑
j hjα

∗
j .

Without loss of generality we can assume G to be simply connected just like in the proof of
proposition 1. In that same proof we also defined an isomorphism λ from the coroot lattice
Λ∗(G) to the weight lattice Λ(H∗) of H∗. Since H∗ is locally of the form U(1)l ×K∗ with K
semi-simple, λ(g) can be expressed in terms of the U(1) charges and a weight of K∗. While
the abelian charges are identified with the topological charges mi, the Dynkin labels of the
non-abelian charge are by kj = 2α∗j ·g/α∗j

2. Being sums of multiples of the entries of the Cartan
matrix of G∗ these labels are indeed integers. Moreover for vanishing holomorphic charges only
the off-diagonal entries contribute so that kj ≤ 0. Consequently for any g ∈ Λ∗(G) we have:

λ(g) = λ
(
miα

∗
i + hjα

∗
j

)
= λ (miα

∗
i ) + λ

(
hjα

∗
j

)
= h−(mi) + hjα

∗
j .

(36)

where h−(mi) is a lowest weight that only depends on the topological charges. We shall prove
that for a fixed set of positive topological charges {mi} the magnetic charges in the Murray
cone are in one-to-one relation with the weights of the irreducible representation of H∗ labelled
by h−(mi). To show this we use two important facts. First a weight h is in the representation
defined by h− if and only if for the lowest weight h̃ in the Weyl orbit of h one has h̃ = h−+njα∗j
where nj ≥ 0. Second, the map λ commutes with the residual Weyl group.
First we shall show that for a magnetic charge g in the Murray cone λ(g) is a weight in the
h−(mi) representation. As a superficial consistency check we note that λ(g) and h−(mi) differ
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by an integer number of roots of H∗ given by the holomorphic charges. The lowest weight in
the Weyl orbit of λ(g) is given by the image of the reduced magnetic charge λ(g̃), as explained
in the proof of proposition 1. It follows from the Murray condition (32) that g̃ is of the form
g̃ = miα

∗
i + h′′jα

∗
j where h′′j ≥ 0. Consequently λ(g̃) = h−(mi) + njα

∗
j where nj ≥ 0.

To prove the converse we take a weight h in the representation defined h−(mi) with mi ≥ 0.
We need to prove that g with λ(g) = h satisfies the Murray condition. This is done as fol-
lows. The triple (h−(mi), h̃, h) of weights in Λ(H∗) can be mapped to a triple (g−(mi), g̃, g)
of elements in the coroot lattice Λ∗(G) by the inverse of λ. Next we show that g−(mi), g̃ and
g satisfy the Murray condition. We have g−(mi) = miα

∗
i so that λ(g−) = λ−(mi) and mi ≥ 0.

The broken simple coroots satisfy the Murray condition and hence g−(mi) lies in the Murray
cone. g̃ is given by g̃ = g−(mi) + njα

∗
j so that λ(g̃) = λ(g−(mi)) + njα

∗
j = h̃. Since g̃ maps

to the anti-fundamental Weyl chamber of H∗ and has a positive expansion in simple coroots
it satisfies the Murray conditions as follows from proposition 1. Finally since λ respects the
residual Weyl group and h̃ is in the Weyl orbit of h we find that g is in the Weyl orbit of g̃.
With g̃ satisfying the Murray condition it is easy to show that g also obeys the condition.
The coroots of G form the nonzero weights of the adjoint representation of G∗. Under sym-
metry breaking the adjoint representation maps to a reducible representation of H∗. We are
particularly interested in the irreducible factors corresponding to unit topological charges.
Coroots with unit topological charge, i.e. mi = δik, equal a broken simple coroot α∗k up to un-
broken roots. We have seen in proposition 3 that coroots with unit topological charge satisfy
the Murray condition. Hence the previous discussion tells us that such coroots are mapped to
the weight space of the representation labelled by λ(α∗k). The weight λ(α∗k) itself corresponds
to g = α∗k. We now see that each weight in the λ(α∗k)-representation must not only correspond
to a magnetic charge in the coroot lattice of G but in fact to a coroot, otherwise the coroot
system would not constitute a proper representation of H∗.
We can now finish the proof. Each element in the Murray cone is the weight in a representation
labelled by h−(mi). Such representations only depend on the topological charges. Moreover
the lowest weights are additive with respect to the topological charges: h−(mi) + h−(m′i) =
h−(mi + m′i). Consequently every such lowest weight is of the form

∑
imiλ(α∗i ). The repre-

sentation labelled by h−(mi) is obtained by the symmetric tensor product of representations
labelled by λ(αi). A weight in the product representation equals a sum of weights from the
λ(α∗i ) representations. By identifying the weights with magnetic charges we find that all
charges is the Murray cone equal a sum of coroots with unit topological charges.

3.2 Generators of the magnetic weight lattice

In this section we want to describe the generators of the magnetic charge lattice for singular
monopoles in a theory with gauge group H. This charge lattice can be identified with the
weight lattice Λ(H∗) of the dual group H∗ as discussed in section 2.1. As for the Murray cone
it is obvious that a minimal set of generating charges exists such that all charges are linear
combinations of these generating charges with positive integer coefficients. The difference with
the Murray cone however is that the generating set is not necessarily unique. We shall give
some simple examples below to illustrate this, but we already note that the underlying reason
for this is that the weight lattice of H∗ is closed under inversion.

Using some textbook results on Lie group theory is easy to find a relatively small set of
generators: let V be a faithful representation of H∗ and V ∗ its conjugate representation. Any
irreducible representation of H∗ is contained in the tensor products of V and V ∗, see e.g section
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VIII of [28] for a proof. Since the weights of V1⊗V2 are given by the sums of the weights of V1

and V2 we now find that any weight of an irreducible representation of H∗ is a linear combina-
tion of weights of V and V ∗ with positive coefficients. Since any weight in Λ(H∗) is contained
in an irreducible representation of H∗ we have found that the weights of V and V ∗ generate
the magnetic weight lattice. Note that if this faithful representation V is self-conjugate the
weight lattice is obviously generated by the non-zero weights of V . This happens for example
for SO(n) and Sp(2n) which have only self-conjugate representations. To find a small set of
generators one should take the non-zero weights of a smallest faithful representation and its
conjugate representation, i.e. the fundamental representation and its conjugate representation.
The recipe above does not necessarily give a smallest set of generators since there still might
be some double counting. We mention two examples. First V ∗ might be contained in the
tensor products of V . This happens for example for SU(n): the representation n̄ is given by
the (n − 1)th anti-symmetric product of n. Second some weights of V may be decomposable
within V . Consider for example SU(n)/Zn. The weight lattice of this group corresponds to
the root lattice of SU(n) and for V one can take the adjoint representation whose weights are
the roots of SU(n). Note that all roots can be expressed as positive linear combinations of the
simple roots and their inverses in the root lattice.
When H∗ is a product of groups the defining representation is reducible and falls apart into
irreducible components. Each of these irreducible representations has trivial weights for all
but one of the group factors. This agrees with the fact that in this case the weight lattice of
H∗ is a product of weight lattices.
In table 3 we give the representation or representations whose nonzero weights constitute
a minimal generating set of the magnetic weight lattice Λ(H∗). The corresponding electric
groups H were mentioned in tables 1 and 2.

H∗ {V }
SU(n) {n}
Sp(2n) {2n}
SO(n) {n}

(U(1)× SU(n))/Zn {n1, n̄−1}
U(1)× SO(2n+ 1) {(2n + 1)0, 11, 1−1}
(U(1)× Sp(2n))/Z2 {2n1, 2n−1}
(U(1)× SO(2n))/Z2 {2n1, 2n−1}

Table 3: Generators of the magnetic weights lattice Λ(H∗) in terms of representations of the dual
group H∗. The boldface numbers give the dimensionality of the irreducible representations of the
corresponding simple Lie groups, their conjugate representations are distinguished by an extra bar.
The subscripts denote U(1)-charges.

3.3 Generators of the fundamental Weyl chamber

The charges of singular monopoles in a theory with gauge group H take values in the weight
lattice of the dual group H∗. This weight lattice has a natural subset: the weights in the
fundamental Weyl chamber. If H is semi-simple and has trivial center H∗ is semi-simple and
is simply connected. In this particular case the generators of the fundamental Weyl chamber
of H∗ are immediately identified as the fundamental weights. If H∗ is not simply connected
or even not semi-simple the generating weights in the fundamental Weyl chamber are not that
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easily identified. The generating charges are however closely related to the generators of the
representation ring, which are computed in chapter 23 of [29]. We shall explain this relation
for the semi-simple, simply connected Lie groups. Finally we use the obtained intuition to
compute the generators of the fundamental Weyl chamber for the dual groups in table 2 which
occur in minimal symmetry breaking of classical groups. In the next section we shall use sim-
ilar methods to find the generators of the fundamental Murray cone.

The representation ring R(H∗) is the free abelian group on the isomorphism classes of irre-
ducible representations of H∗. In this group one can formally add and subtract representations.
The tensor product makes R(H∗) into a ring. We shall for now assume H∗ to be a simple
and simply connected Lie group of rank r so that its weight lattice Λ is generated by the r
fundamental weights {λi}.
R(H∗) is isomorphic to a certain ring of Weyl-invariant polynomials. We will review the proof
following [29]. We shall start by introducing Z[Λ], the integral ring on Λ. By this we mean
that any element in Z[Λ] can be written as

∑
Λ nλeλ where nλ ∈ Z and nλ 6= 0 for a finite set

of weights. We thus see that eλ is the basis element in Z[Λ] corresponding to λ. The product
in Z[Λ] is defined by eλeλ′ = eλ+λ′ . We thus see that Z[Λ] is nothing but a group ring on the
abelian group Λ. Note that the additive and multiplicative unit are given by 0 and e0 while
the additive and multiplicative inverses of eλ are given by respectively −eλ and e−λ.

There is a homomorphism, denoted by Char, from the representation ring into Z[Λ] This
map sends a representation V to Char(V ) =

∑
dim (Vλ) eλ, where dim (Vλ) equals the multi-

plicity with which the weight λ occurs in the representation V . It is easy to see that this map
does indeed respect the ring structure.
The Weyl group W of H∗ acts linearly on Z[Λ] and the action is defined by w ∈W : eλ 7→ ew(λ).
To show that the action of W respects the multiplication in Z[Λ] one simply uses the fact that
W acts linearly on Λ.
Z[Λ] contains a subring Z[Λ]W consisting of elements invariant under the Weyl group. The
claim is that R(H∗) is isomorphic to Z[Λ]W . It is easy to show that the image of Char is
contained in Z[Λ]W . Below we shall also prove surjectivity by using the fact that there is a
basis of Z[Λ]W that is generated out of certain representation of H∗. In the end we are of
course interested in these generators.

To each dominant integral weight λ ∈ Λ we associate an element Pλ ∈ Z[Λ]W by choosing
Pλ =

∑
nλ′eλ′ with nw(λ′) = nλ′ for all w ∈ W and with nλ = 1. For simplicity we take Pλ

so that nλ′ = 0 if λ − λ′ is not a linear combination of roots. We now restrict the choice of
Pλ so that for any dominant integral weight λ′ > λ, nλ′ vanishes. Note that λ is the highest
weight of Pλ. One can now prove by induction that any set {Pλ} satisfying the conditions
above forms an additive basis for Z[Λ]W .
We shall now make a rather special choice for the basis {Pλ}. For the fundamental weights λi we
take Pλi to be Pi = Char(Vi) were Vi is the irreducible representation of H∗ with highest weight
λi. For any other dominant integral weight λ =

∑
miλi we take Pλ = Char (⊗iV mi

i ) = Πi P
mi
i .

Since {Pλ} is a basis for Z[Λ]W any element in this ring can thus be written as a polynomial
in the variables Pi with positive integer coefficients:

Z[Λ] = Z[P1, . . . , Pr]. (37)

As promised we have proven that R(H∗) is isomorphic to Z[Λ]W for H∗ semi-simple and simply
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connected. In addition we have found that the generators of Z[Λ]W correspond precisely to the
generators of the fundamental Weyl chamber via the map λi 7→ Pi. This is not very surprising
because it was input for the proof of the isomorphism. So the interesting question is if we can
really retrieve the generators of the fundamental Weyl chamber from R(H∗). This can indeed
be done by identifying the generators of Λ with the generators of Z[Λ]. We shall explain this
below for SU(n). Before we do so we want to make an important remark.
In the proof we used the fact that there is a basis Pλ where each Pλ can be identified with
Char(Vλ) and where Vλ is some representation with highest weight λ. Such a choice of basis
always exist since one can take Vλ be the irreducible representation with highest weight λ. The
fact that there is a generating set for the fundamental Weyl chamber is thus not crucial in the
proof of the isomorphism between R(H∗) and Z[Λ]W .

We return to Z[Λ], where Λ is the weight lattice of SU(n). As discussed in the previous
section the weight lattice of SU(n) is generated by the weights of the n-dimensional funda-
mental representation. Let us denote these weights by Li and define

xi = eLi ∈ Z[Λ]. (38)

Note that the vectors Li are not linearly independent since
∑

i Li = 0. We thus have

x1x2 · · ·xn = 1, (39)

where 1 = e0 is the multiplicative unit of Z[Λ]. We find that any element eλ can be written
as monomial Πi x

mi
i with positive coefficients mi. Such monomials are unique up to factors

x1 · · ·xn. Since {eλ : λ ∈ Λ} forms a basis for Z[Λ] we find:

Z[Λ] = Z[x1, . . . xn]/(x1 · · ·xn − 1). (40)

The Weyl group of SU(n) is the permutation group Sn and obviously permutes the indices of
the xis. Consequently

R(SU(n)) = Z[Λ]Sn = Z[x1, . . . xn]S
n
/(x1 · · ·xn − 1). (41)

To find the generators of R(SU(n)) we use the well known fact that any symmetric polyno-
mial in n variables can be expressed as a polynomial of ak : k = 1, . . . , n where ak is the kth
elementary symmetric function of xi given by:

ak =
∑

i1<···<ik

xi1 · · ·xik . (42)

Note that an = x1 · · ·xn is identified with 1 in R(SU(n)). We have thus established the
isomorphism:

R(SU(n)) = Z[a1, . . . , an−1]. (43)

Our conclusion is that the first n − 1 elementary symmetric functions form a minimal set
generating the representation ring of SU(n). It should not be very surprising that for i < n
ai = Pi = Char(Vi) where Vi is the irreducible representation with highest weight λi. It is nice
to note that Vi = ∧iV where V is the fundamental representation of SU(n) and that ∧nV = 1
the trivial representation.

For SO(2n+ 1), Sp(2n), and SO(2n) the fundamental representation has 2n nonzero weights
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±Li : i = 1, . . . n. By identifying x±1
i = e±Li one finds that the group ring on the weight lattice

is isomorphic to Z[x1, x
−1
1 , . . . , xn, x

−1
n ]. As shown in [29] the representation rings are given by

polynomial rings of the form:

R(SO(2n+ 1)) = Z[b1, · · · , bn] (44)
R(Sp(2n)) = Z[c1, · · · , cn] (45)
R(SO(2n)) = Z[d1, · · · , dn−1, d

+
n , d

−
n ]. (46)

The polynomials bk, ck and dk can all be chosen to equal the elementary symmetric functions in
the 2n variables {x±i }. The polynomials d±n can be expressed as (d±)2. d+ and d− correspond
to the two spinor representations of SO(2n) :

d± = Char(S±) =
∑

s1···sn=±1

√
xs11 · · ·x

sn
n . (47)

It is easy to check that d±n are indeed polynomials.
To explain why R(SO(2n)) has an extra generator compared to the other groups we note that
its Weyl group is given by Sn n Zn−1

2 whereas the Weyl groups of SO(2n + 1) and Sp(2n)
are given by Sn n Zn2 . This means that the Weyl groups act on the non-zero weights of the
fundamental representations by permuting the indices and changing the signs of the weights,
but for SO(2n) only an even number of sign changes is allowed. Consequently the generators of
R(SO(2n)) do not have to be invariant under for example of x1 7→ x−1 and hence the generator
dn can be decomposed into d+

n and d−n .
for completeness we mention that the highest weights of bk, ck and dk are given by the highest
weights of the anti-symmetric tensor products ∧kV of the corresponding fundamental repre-
sentation V . The highest weights of d±n are given by twice the highest weight of the spinor
representations S±.

We finally want to identify the generators of the fundamental Weyl chamber for some groups
that arise in minimal symmetry breaking of classical groups. As discussed in section 3.2 the
weight lattice Λ of U(n) is generated by the weights of its n-dimensional representation n1

and those of its conjugate representation n̄−1. Let us denote the weights of n1 by {Li} and
define xi = eLi ∈ Z[Λ]. The weights of n̄−1 are given by {−Li}. We thus immediately find the
following isomorphism for the group ring on the weight lattice of U(n):

Z[Λ] = Z[x1, x−1, . . . , xn, x
−1
n ]. (48)

To find the generators of the representation ring R(U(n)) = Z[Λ]W we note that the Weyl
group W = Sn of U(n) permutes the indices of the generators of Z[Λ] but does not change
any of the signs as happened for the classical groups discussed right above. This implies
that R(U(n)) is generated by {ak : k = 1, . . . , n} the elementary symmetric polynomials in
xi and {āk : k = 1, . . . , n} the elementary symmetric polynomials in the variables {x−1

i }.
Note that an = x1 · · ·xn is invertible in the representation ring and its inverse is given by
ān = (x1 · · ·xn)−1.
The generators we have found for R(U(n)) are not completely independent since:

aka
−1
n =

∑
ij−1<ij<ij+1

xi1 · · ·xik(x1 · · ·xn)−1 =
∑

ij−1<ij<ij+1

(xi1 · · ·xin−k)−1 = ān−k. (49)

The representation ring of U(n) can thus be identified with the polynomial ring:

R(U(n)) = Z[a1, . . . , an, a
−1
n ]. (50)
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The generating polynomials ak and a−1
n are indecomposable in the representation ring, their

highest weights thus form a minimal set generating the fundamental Weyl chamber of U(n).
We finally mention that ak = Char(∧kV ), where V is the fundamental representation of U(n).
Moreover ∧nV is the one dimensional representation that acts by multiplication with det(g)
where g ∈ (U(n)) This representation is invertible and a−1

n = Char
(
(∧nV )−1)

)
.

Since U(1) × SO(2n + 1) is a product of groups its representation ring is simply R(U(1)) ×
R(SO(2n + 1). The representation ring of U(1) can be identified with the polynomial ring
Z[x0, x

−1
0 ] where x±1

0 = Char(V ±1) and V the fundamental representation of U(1). There is
however an alternative description of the representation ring which will prove to be valu-
able in the next section. Let {L0, L1, L

′
1, . . . , Ln, L

′
n} be the weights of the fundamental

representation of U(1) × SO(2n + 1), i.e. the representation with unit U(1) charge. Define
{x0, x1, x

′
1, . . . xn, x

′
n} to be the images of these weights in the group ring Z[Λ] of the weight

lattice. It is not too hard to show that Z[Λ] is isomorphic to Z[x0, x
−1
0 , x1, x

′
1, . . . xn, x

′
n]/I

where I is the ideal generated by the relations xix′i = x2
0. Moreover one can prove that

R(U(1)× SO(2n+ 1)) = Z[x0, x
−1
0 , b1, . . . , bn], (51)

where bk = Char(∧kV ) is the kth elementary symmetric polynomial in the 2n + 1 variables
x0, x1, x

′
1, . . . , xn, x

′
n. The highest weights of these generating polynomials correspond to the

minimal set of generating charges in the fundamental Weyl chamber.

By mapping the weights of the fundamental representation and its conjugate representa-
tions to Z[Λ] on finds that group rings on the weight lattices of (U(1) × Sp(2n))/Z2 and
(U(1)× SO(2n))/Z2 can be identified with the polynomial ring

Z[x1, x
−1
1 , x′1, x

′−1
1 , . . . , xn, x

−1
n , x′n, x

′
n−1]/I, (52)

where I is the ideal generated by the relations xix′i = xjx
′
j . Note that these relations imply

that x1x
′
1 is invariant under the Weyl group that permutes the indices and swaps primed

variables with their unprimed counterparts. One can now show that the representation rings
R ((U(1)× Sp(2n))/Z2) and R ((U(1)× SO(2n))/Z2) can be identified as quotient rings of
respectively:

Z[x1x
′
1, (x1x

′
1)−1, c1, . . . , cn, c̄1, . . . , c̄n] (53)

and
Z[x1x

′
1, (x1x

′
1)−1, d1, . . . , dn−1, d

+
n , d

−
n , d̄1, . . . , d̄n−1, d̄

+
n , d

−
n ], (54)

where ck and dk are the elementary symmetric polynomials in the 2n variables x1, . . . , xn and
x′1, . . . , x

′
n. The functions c̄k and d̄k are similar elementary symmetric polynomials expressed in

terms of the inverted variables. Explicit expressions for d±n = (d±)2 can be found from formula
(47) where the inverted variables should be replaced by the primed variables. Finally d̄±n is
found by substitution of the inverted variables in d±n . The generating set of polynomials we have
found is not the minimal set. This follows from the fact that x−1

j = (xjx′j)
−1x′j = (x1x

′
1)−1x′j .

Consequently one finds:

R ((U(1)× Sp(2n))/Z2) = Z[x1x
′
1, (x1x

′
1)−1, c1, . . . , cn] (55)

R ((U(1)× SO(2))/Z2) = Z[x1x
′
1, (x1x

′
1)−1, d1, . . . , dn−1, d

+
n , d

−
n ]. (56)

The highest weights of these generating polynomials are the generators of the fundamental
Weyl chamber of the two groups.
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3.4 Generators of the fundamental Murray cone

The fundamental Murray cone, just like the Murray cone, contains a unique set of indecom-
posable charges. The uniqueness of this set is a consequence of the fact that the fundamental
Murray cone does not allow for invertible elements. The main difference with the Murray cone
however is that the generators for the fundamental Murray cone are not easily computed. After
a general discussion we shall therefore only determine the generators for a couple of cases that
correspond to minimal symmetry breaking of classical groups. The approach we use is closely
related to the computation of the generators of the fundamental Weyl chamber as discussed
in the previous section and can in principle be applied to any gauge group and for arbitrary
symmetry breaking.

Note that this whole exercise only makes sense if the fundamental Murray cone is closed
under addition. At the beginning of section 3.1 we argued that the Murray cone is closed
under this operation by evaluating the defining equations. For the fundamental Murray cone
similar considerations apply. For g to be in the fundamental Weyl chamber of the Murray cone
we have the extra condition g · αi ≥ 0 for all unbroken roots αi. It is now easily seen that if
both g and g′ satisfy this condition then g+g′ will satisfy it too, as will any linear combination
of these charges with positive integer coefficients. This proves that the fundamental Murray is
closed under addition of charges.

Instead of computing the generators of the fundamental Murray cone directly by evaluating
the Murray condition we shall determine the indecomposable generators of a certain represen-
tation ring. We shall start by describing this ring. Let G be a compact, semi-simple group
broken to H via a adjoint Higgs field. Without loss of generality we can assume G to be simply
connected since this does not change the set of magnetic charges. Under this condition the
magnetic weight lattice Λ := Λ(H∗) is isomorphic to the root lattice of G∗. The ring we want
to consider is the free abelian group on the irreducible representations of H∗ with weights in
the Murray cone. These irreducible representations of H∗ are labelled by dominant integral
weights in Λ+ ⊂ Λ and can be identified with the fundamental Murray cone as a set. Note
that since the Murray cone is closed under addition this set of representations is closed under
the tensor product. As we proof in the appendix there exists an algebraic object, but not a
group, having a complete set of irreducible representations labelled by the magnetic charges in
the Murray cone. Let us denote this object by H∗+. The representation ring we are discussing
here is thus precisely the representation ring R(H∗+).

Just as in the previous section we now introduce a second ring Z[Λ+] that turns out to be
quite useful. Z[Λ+] has a basis {eλ : λ ∈ Λ+}. Since Λ+ is closed under addition Z[Λ+]
is indeed closed under multiplication. The multiplicative identity is given by 1 = e0. The
basis elements eλ of Z[Λ+] are not invertible under multiplication since e−λ is not contained
in Z[Λ+]. Finally we introduce the ring Z[Λ+]W consisting of the Weyl invariant elements in
Z[Λ+]. Note that Z[Λ+] ⊂ Z[Λ] and Z[Λ+]W ⊂ Z[Λ]W . By using arguments almost identical
to arguments mentioned in the previous section one can show that R(H∗+) is isomorphic to
Z[Λ+]W . This last ring can be identified with a polynomial ring. The highest weights of the
indecomposable polynomials can be identified with the generators of the fundamental Murray
cone.

We shall identify the generators of the fundamental Murray cone for the classical simply-
connected groups SU(n + 1), Sp(2n + 2), Spin(2n + 3), and Spin(2n + 2) and for minimal
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symmetry breaking. The relevant residual electric groups and their magnetic dual groups are
listed in table 2. One can show that the Murray cone in these cases is generated by the weights
of the fundamental representation of H∗ which are respectively n, 2n + 1, 2n and 2n dimen-
sional.

Let us denote the weights of the fundamental representation of U(n) by Li where i = 1, . . . , n.
We define xi = eLi . Since the weights Li freely generate the Murray cone we immediately find

Z[Λ+] = Z[x1, . . . , xn]. (57)

The Weyl group of U(n) permutes the indices of the generators. Copying our results of the
previous section we thus find the following isomorphism:

Z[Λ+]W = Z[a1, . . . , an]. (58)

where ak are the elementary symmetric polynomials in the variables xi. The highest weights
of these indecomposable polynomials are the generators of the fundamental Murray cone for
SU(n+1) broken down to U(n). Note that Z[Λ+]W is obtained from Z[Λ]W as given in formula
(50) by removing the generator a−1

n .

Let {L0, L1, L
′
1, . . . , Ln, L

′
n} be the weights of the fundamental representation of U(1)×SO(2n+

1). Define {x0, x1, x
′
1, . . . xn, x

′
n} to be the images of these weights in the ring Z[Λ+]. Z[Λ+] is

isomorphic to
Z[x0, x1, x

′
1, . . . xn, x

′
n]/I, (59)

where I is the ideal generated by the relations xix′i = x2
0. Moreover one can now prove that

Z[Λ+]W = Z[x0, b1, . . . , bn], (60)

where bk = Char(∧kV ) is the kth elementary symmetric polynomial in the 2n + 1 variables
x0, x1, x

′
1, . . . , xn, x

′
n. The highest weights of these generating polynomials correspond to the

minimal set of generating charges in the fundamental Murray cone.

By mapping the weights of the fundamental representation to Z[Λ+] for G equals Sp(2n+ 2)
or SO(2n+ 2) the ring Z[Λ+] can be identified with the polynomial ring

Z[x1, x
′
1, . . . , xn, x

′
n]/I, (61)

where I is the ideal generated by the relations xix′i = xjx
′
j . One can now show that the

representation rings can be identified as respectively:

Z[x1x
′
1, c1, . . . , cn] (62)

and

Z[x1x
′
1, d1, . . . , dn−1, d

+
n , d

−
n ], (63)

where ck and dk are both elementary symmetric polynomials in the variables x1, . . . , xn and
x′1, . . . , x

′
n. Explicit expressions for d±n = (d±)2 are the same as the corresponding generating

polynomials for Z[Λ]W . The generators of the fundamental Murray cone can be found by
computing the highest weights of the polynomials.
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4 Moduli spaces for smooth BPS monopoles

For both singular and smooth monopoles we have identified the set of magnetic charges. This
set always contains a subset closed under addition that arises by modding out Weyl transfor-
mations. On top of this we have seen that these sets are generated by a finite set of magnetic
charges. This suggest that these generating charges correspond to a distinguished collection of
basic monopoles and that all remaining magnetic charges give rise to multi-monopole solutions.
By studying the dimensions of moduli spaces of solutions we can try to confirm this picture.
In this section we shall only be concerned with smooth BPS monopoles. For such monopoles
the magnetic charges satisfy the Murray condition.

4.1 Framed moduli spaces

The moduli spaces we shall discuss in this section are so-called framed moduli spaces. Such
spaces are commonly used in the mathematically oriented literature on monopoles, see, for
example, the book [30]. We shall discuss these spaces presently. In the next sections we review
the counting of dimensions.

The moduli spaces we are considering correspond to a set of BPS solutions modded out by
gauge transformations. The set of BPS solutions is restricted by the boundary condition we
use, as discussed in section 2.3. Beside the finite energy condition one can use additional
framing conditions, hence the terminology framed moduli spaces.
Recall from our discussion following (14) that the value φ(r̂0) of the asymptotic Higgs field at
an arbitrarily chosen point r̂0 on the two-sphere at infinity determines the residual gauge group.
It is therefore natural to restrict the configuration space to BPS solutions with φ(r̂0) = Φ0 for
a fixed value of Φ0. The resulting space has multiple connected components labelled by the
topological charge of the BPS solutions. This topological charge is given by the topological
components mi of G0 = G(r̂0) as explained in section 2. We shall thus consider the finite
energy configurations satisfying the framing condition

Φ(tr̂0) = Φ0 −
G0

4πt
+O

(
t−(1+δ)

)
t� 1, (64)

where r̂0, Φ0 and the topological components mi of G0 are completely fixed. The framed mod-
uli space M(r̂0,Φ0,mi) is now obtained from the configuration space by modding out certain
gauge transformations that respect the framing condition. The full group of gauge transfor-
mations G : R3 → G that respect this condition satisfy G(tr̂0) = h as t → ∞ where h ∈ H.
However, for the moduli space to be a smooth manifold one can only mod out a group of gauge
transformations that acts freely on the configuration space. For example the configuration
Φ = Φ0 and B = 0 is left invariant by all constant gauge transformations given by h ∈ H. The
framed moduli space is thus appropriately defined as the space of BPS solutions satisfying the
boundary conditions (14) and (64), modded out by the gauge transformations that become
trivial at the chosen base point r̂0 on the sphere at infinity.

The moduli spaceM(r̂0,Φ0,mi) has several interesting subspaces which will play an important
role in what is to come. These subspaces are related to the fact that there is a map f from the
moduli space to the Lie algebra of G. This map is defined by assigning G0 to each configura-
tion. As explained in section 2.3 and 2.4, up to a residual gauge transformation G0 is given by
G0 = 4π

e g ·H with g an element in the fundamental Murray cone. The topological components
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of g are of course fixed while the holomorphic charges are restricted by the topological charges.
The image of f in the Lie algebra of G is thus a disjoint union of H orbits

C(g1) ∪ · · · ∪ C(gn), (65)

where gi is the intersection of each orbit with the fundamental Murray cone. The map f defines
a stratification ofM(r̂0,Φ0,mi). Each stratumMgi is mapped to a corresponding orbit C(gi)
in the Lie algebra.
The remarkable thing about the stratification is that for a fixed topological charge the strata
are disjoint but connected even though the images of the strata are disconnected sets in the
Lie algebra of G. This follows from the fact that all BPS configurations in M(r̂0,Φ0,mi) are
topologically equivalent and can be smoothly deformed into each other. Under such smooth
deformations the holomorphic charges can thus jump.
If the residual gauge group is abelian the stratification is trivial. Since the topological charges
completely fix g there is only a single stratum Mg =M(r̂0,Φ0,mi).

There is another interesting moduli space we want to introduce. This so-called fully framed
moduli space M(r̂0,Φ0, G0) ⊂M(r̂0,Φ0,mi) arises by imposing even stronger framing condi-
tions. The points in the fully framed moduli space M(r̂0,Φ0, G0) correspond to BPS config-
urations obeying the usual boundary conditions (14) and (64) but instead of only fixing Φ0

we also choose a completely fixed magnetic charge G0. Again the gauge transformations that
become trivial at the chosen base point are modded out.
The fully framed moduli spaces have a special property in relation to the strata. Monopoles
with magnetic charges G′0 and G0 related by h in residual gauge group H ⊂ G lie in the same
stratum of the framed moduli space. Moreover, the action of h ∈ H ⊂ G on the magnetic
charges can be lifted to a gauge transformation G : S2 → G [24]. Since π2(G) = 0 this gauge
transformation can in turn be extended to a gauge transformation in R3 acting on the com-
plete BPS solution. In other words the action of h ∈ H on the Lie algebra can be lifted to
an action on the framed moduli space such that each point in M(r̂0,Φ0, G0) is mapped to a
point in M(r̂0,Φ0, G0). We thus see that all fully framed moduli spaces in a single stratum
are isomorphic. In addition we also have that a stratum is nothing but a space of fully framed
moduli spaces. Finally we conclude that locally we must have that Mi = C(gi)×M(r̂0,Φ0, G0)
where G0 is defined by gi.
If the residual gauge group is abelian the action of H on the magnetic charges is trivial.
In this particular case the fully framed moduli space equals the single stratum and we have
M(r̂0,Φ0, G0) =M(r̂0,Φ0,mi).

4.2 Parameter counting for abelian monopoles

The dimensions of the framed moduli spaces for maximal symmetry breaking have been com-
puted by Erick Weinberg [19]. From his index computation Weinberg concluded that there
must be certain fundamental monopoles and that the remaining monopoles should be inter-
preted as multi-monopole solutions. The magnetic charges of these fundamental monopoles
are precisely the generators of the Murray cone. Note that since there is no distinction between
the Murray cone and the fundamental Murray cone in the abelian case we may also call these
fundamental monopoles basic. Our conclusion is thus that the moduli space dimensions are
consistent with the structure of the (fundamental) Murray cone. This result also holds in the
non-abelian case albeit in a much less obvious way. To get some feeling for this general case
we shall first briefly review Weinberg’s results.
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As before we consider a Yang-Mills theory with a gauge group G. The adjoint Higgs VEV µ
is taken such that the gauge group is broken to its maximal torus U(1)r, r is the rank of the
group. In this abelian case the structure of the framed moduli as well as the structure of the
Murray cone is relatively simple. Since there is no residual non-abelian symmetry there are no
holomorphic charges. Consequently the magnetic charge is fully determined by the topologi-
cal charges and the action of the residual gauge group on the magnetic charges is trivial. The
fully framed moduli spaces thus coincide with the framed moduli spaces while the fundamental
Weyl chamber of the Murray cone is identical to the complete cone. From the Murray-Singer
analysis it follows that the stable magnetic charges are of the form:

g =
r∑
i=1

miα
∗
i , mi ∈ N. (66)

The r simple coroots α∗i obviously generate the Murray cone and the positive expansion coef-
ficients mi can be identified with the topological charges as explained in section 2.3.
According to the index calculations of Weinberg the dimensions of the moduli spaces are pro-
portional to the topological charge:

dim Mg =
r∑
i=1

4mi. (67)

As an illustration the Murray cone is depicted for SU(3)→ U(1)2 in figure 3. For each charge
the dimension of the moduli space is given. In general there are r indecomposable charges, one
for each U(1)-factor. These basic monopoles all have unit topological charge. Thus we see that
the dimension of the moduli space is proportional to the number N =

∑
mi of indecomposable

charges constituting the total charge. As Weinberg concluded this is precisely what one would
expect for N non-interacting monopoles, and hence is seems consistent to view the higher
topological charge solutions as multi-monopole solutions.

α1

α2 4

4 8 12

8 12 16

8

20

Figure 3: The Murray cone for SU(3) broken to U(1)×U(1). The generators of the cone are precisely
the simple (co)roots α1 and α2 of SU(3). Both these charges correspond to unit topological charge in
π1(U(1)2) = Z×Z. All charges can be decomposed into the generating charges. The dimensions of the
moduli spaces are proportional to the number of components. These dimensions are obviously additive.

Before we continue with general symmetry breaking let us pause for moment to discuss the
nature of the moduli space dimensions. These dimensions correspond to certain parameters
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of the BPS solutions. For the basic monopoles with charge α∗i the obvious candidates for
three of these are their spatial coordinates, i.e. the position of the monopole. The fourth is
related to electric action by Hαi which keeps the magnetic charge fixed but nevertheless acts
non-trivially on the monopole solutions. This can be seen by considering exact solutions for
the basic monopoles obtained by embedding SU(2) monopoles [31, 19].
If the multi-monopole picture is correct the nature of the moduli space dimensions for higher
topological charge is easy to guess. 3N correspond to the positions of the N constituents, while
the remaining N dimensions arise from the action of the gauge group on the constituents. It has
been shown by Taubes [32] that if

∑
mi = N there exists an exact BPS solutions corresponding

to N monopoles with unit topological charges. A similar result was obtained by Manton for
two ’t Hooft-Polyakov monopoles [33]. The positions of the individual monopoles can be
chosen arbitrarily as long as the monopoles are well separated. This immediately confirms
the given interpretation of the 3N parameters. Further evidence for this interpretation of
the moduli space parameters can be found by studying the geodesic motion on the moduli
space. For N widely separated monopoles the geodesic motion on the asymptotic moduli
space corresponds to the motion of N dyons, considered as point-particles in R3, interacting via
Coulomb-like forces. The conserved electric U(1)-charges appear in the geodesic approximation
on the asymptotic moduli space because the metric has U(1)-symmetries. The correspondence
between the classical theory on the asymptotic moduli space and the effective theory of classical
dyons in space has up till now only been demonstrated for an arbitrary topological charge in a
SU(n)-theory broken to U(1)n [34, 35, 36, 37, 38] and for topological charge 2 in an arbitrary
theory with maximal symmetry breaking [39].

4.3 Parameter counting for non-abelian monopoles

Just as in the abelian case the dimensions of the framed moduli spaces for non-abelian mono-
poles are proportional to the topological charges. Hence the dimensions of the moduli spaces
respect the addition of charges in the Murray cone. In that sense one could once more interpret
monopoles with higher topological charges as multi-monopole solutions built out of monopoles
with unit topological charges. This analysis would however ignore the fact that both the
framed moduli space and the Murray cone have extra structure. The framed moduli space
has a stratification while the magnetic charges have topological and holomorphic components.
The holomorphic charges and thereby the strata are physically very important because they
are directly related to the electric symmetry that can be realized in the monopole background
as we shall discuss later in the section. Therefore one should wonder if these structures are
compatible and if so how they will affect the multi-monopole interpretation.

The dimensions for the framed moduli spaces of monopoles have been computed by Mur-
ray and Singer for any possible residual gauge symmetry, either abelian or non-abelian [24].
Their computation does not rely on index methods but instead it is based on the fact that
framed moduli spaces can be identified with certain sets of rational maps. Such a bijection was
first proved by Donaldson for G = SU(2) [40] and later generalized by Hurtubise and Mur-
ray for maximal symmetry breaking [41, 42, 43]. Finally the correspondence between framed
moduli spaces and rational maps was proved for general gauge groups and general symmetry
breaking by Jarvis [23, 44]. Murray and Singer have computed the dimensions of these spaces
of rational maps. For further details we refer to the original paper. The SU(n) case can also
be found in [26].
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One of the results of the calculations in [24] is that the dimension of the framed moduli
space M(r̂0,Φ0,mi) is given by:

dim M(r̂0,Φ0,mi) = 4
s∑
i=1

(1− 2ρ · α∗i )mi, (68)

where ρ is the Weyl vector of the residual group and thus equals half the sum of the unbroken
roots:

ρ =
1
2

r∑
j=s+1

αj . (69)

In equation (68) one sums over the broken roots and thus also over the topological charges.The
dimensions of the framed moduli spaces have two important properties. First for g = g′ + g′′

with topological charges mi = m′i +m′′i we have

dim M(r̂0,Φ0,mi) = dim M(r̂0,Φ0,m
′
i) + dim M(r̂0,Φ0,m

′′
i ). (70)

Second if the residual gauge group equals the maximal torus U(1)r in G so that there are no
holomorphic charges the dimension formula above reduces to Weinberg’s formula

dim M(r̂0,Φ0,mi) = 4
r∑
i=1

mi. (71)

We thus see that equation (68) for the dimension of the framed moduli space is a generalization
of Weinberg’s result. More importantly we find that dimensions of the framed moduli spaces
respect the addition of charges in the Murray cone.

The dimensions of the framed moduli spaces are compatible with the addition of charges in
the Murray cone. These dimensions do not depend on the holomorphic components. Naively
it thus seems we can safely ignore these components. Nevertheless, from a physical perspective
one is forced to take the holomorphic charge into account because it determines the allowed
electric charge of a monopole as we shall discuss in a moment. It is thus very interesting to
know how the holomorphic charges affects the fusion of single monopoles into multi-monopole
configurations.

If we want to take the holomorphic charges into account we should consider the strata within
the framed moduli spaces. These strata were introduced in section 4.1. For a given stratum G0

is fixed up to the action of the residual gauge group and hence the holomorphic components
of g are given up to Weyl transformations. The dimensionality of the stratum corresponding
to g can be expressed in terms of the reduced magnetic charge as was shown by Murray and
Singer [24].
Let g be any charge in the Murray cone and g̃ its reduced magnetic charge. Remember that g̃
is simply the lowest charge in the orbit of g under the action of the residual Weyl group. The
reduced magnetic charge can thus be expressed as:

g̃ =
s∑
i=1

miα
∗
i +

r∑
j=s+1

hjα
∗
j . (72)

The dimensionality of the corresponding stratumMg in the framed moduli spaceM(r̂0,Φ0,mi)
is given by:

dim Mg =
s∑
i=1

4mi +
r∑

j=s+1

4hj + dim C(Φ0)− dim C(Φ0) ∩ C(G0). (73)
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C(Φ0) ∈ G is the centralizer subgroup of the Higgs VEV, i.e. it is simply the residual gauge
group H. Similarly, C(G0) ∈ G is the centralizer of the magnetic charge. Hence the fourth
term in the equation above equals the dimensionality of the subgroup in H that leaves G0

invariant. So the last two terms in equation (73) express the dimension of the orbit of the
magnetic charge G0 under the action of the residual gauge group.
In figure 4 we have worked out formula (73) for SU(3)→ U(2) for each charge in the Murray
cone. In this particular case the H-orbits of the magnetic charges are either 2-spheres or they
are trivial.

α1

α26 6

10 12 10

14 18 18 14

Figure 4: Dimensions for the strata of the framed moduli spaces for SU(3) broken to U(2).

The next goal is to relate the dimensions of the strata to the generators of the Murray cone
found in section 3.1, the monopoles with unit topological charges. In the abelian case dis-
cussed previously such a relation is obvious. Since there are no stratifications the moduli space
dimensions are proportional to the topological charges. In the true non-abelian case such a
simple relation is distorted by the centralizer terms in formula (73). This is easy to see in the
SU(3) example in figure 4. Therefore we shall have to leave these centralizer terms out in our
analysis. Since the centralizer terms correspond to the orbit of the magnetic charges under the
action of residual gauge group, discarding the centralizer terms amounts to restricting to the
fully framed moduli spaces introduced in section 4.1.

There are good arguments to discard the centralizer terms in the present discussion or at
least to treat them on a different footing than the remaining terms in (73). The centralizer
terms count the dimensions of the orbit of the magnetic charge under the action of the electric
group. Naively one would thus expect that this orbit is related to the electrical properties of
the monopoles. Such a picture is flawed because already at the classical level there is a topo-
logical obstruction for implementing the full residual electric group H ⊂ G globally as has been
proven by various authors [45, 46, 47, 48, 49]. This obstruction is directly related to the fact
that a magnetic monopole defines a nontrivial H-bundle on a sphere at infinity. A subgroup
H ′ ⊂ H ⊂ G is implementable as a global symmetry in the background of a monopole if the
transition function (24)

G(ϕ) = exp
(
ie

2π
G0ϕ

)
(74)

is homotopic to a loop in

ZH(H ′) = {h ∈ H : hh′ = h′h ∀h′ ∈ H} (75)
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the centralizer of H ′ ⊂ H. Note that the maximal torus U(1)r ⊂ H is always implementable.
As as rule of thumb one finds that H ′ can be non-abelian if up to unbroken coroots the mag-
netic charge has one or more vanishing weights with respect to the non-abelian component of
H. This follows from the fact that the holomorphic components of the magnetic charge are
not conserved under smooth deformations.
There is an even stronger condition on the electric symmetry that can be realized in the
monopole background. One can show [46] that the action of the residual electric group maps
finite energy configurations to monopole configurations with infinite energy if the magnetic
charge is not invariant. The interpretation is that all BPS configurations with finite energy
whose magnetic charges lie on the same electric orbit are separated by an infinite energy bar-
rier.
Classically one thus finds that only if the generators of the residual gauge group H commute
with the magnetic charge one can define a global rigid action of H. In other words the monopole
effectively breaks the symmetry further down so that only the centralizer group can be realized
as a symmetry group. For example in the case that SU(3) is broken to U(2) monopoles with
magnetic charge g = 2α2 can only carry electric charges under U(1)2, while monopoles in the
same framed moduli space with g = 2α2 +α1 might carry charges under the full residual U(2)
group. These obstructions persist at the semi-classical level [50, 45, 51].

The dimensions of the fully framed moduli spaces have a simple expression in terms of the
topological and holomorphic components of the reduced magnetic charge g̃ [24]:

dim M(µ,Φ0, G0) =
s∑
i=1

4mi +
r∑

j=s+1

4hj . (76)

4 4

8 12 8

12 16 16 12

Figure 5: Dimensions for the fully framed moduli spaces for SU(3) broken to U(2), and the generators
of the Murray cone. The dimensions are only additive if one moves along the central axis of the cone
or away from it.

Previously we have found that the Murray cone is spanned by the magnetic charges with unit
topological charges. We might hope that the dimensions of the fully framed moduli spaces
behave additively with respect to the expansion into these indecomposable charges as was
the case for the framed moduli space. Such additive behaviour does indeed occur, but only
partially. For instance the case of SU(3) → U(2) is worked out in figure 5. The additivity of
the moduli space dimensions still holds as long as we stick to one of the Weyl chambers of the
cone, defined with respect to the residual Weyl action.
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Figure 6: The fundamental Murray cone for SU(3) broken to U(2). In this example the magnetic charge
lattice is interpreted as the weight lattice of U(2). The fundamental Murray cone is the intersection of
the full cone with the fundamental Weyl chamber of the U(2) weight lattice. The dimensions of the
fully framed moduli spaces are additive under the composition of the generators depicted by the arrows.

Apparently the dimensions of the fully framed moduli spaces are not compatible with the
Murray cone in general. However, as we will prove below these dimensions are compatible
with the fundamental Murray cone.
In the abelian case this is obviously true. The Weyl group of the residual group is now trivial
and there is no additional identification within the cone. Therefore we can refer back to the
previous sections where we found that the generating charges have unit topological charge and
that the dimensionality of the moduli space is proportional to the total topological charge.
Our favourite example in the truly non-abelian case SU(3) → U(2) is worked out in figure
6. The generators of the fundamental Murray cone are easily recognized and the additivity of
dimensions is easily confirmed.
We claim that the additivity of the moduli space dimensions with respect to a decomposition
in generating charges of the fundamental Murray cone holds in general. Without an explicit set
of generators it seems we cannot prove this directly. However, it suffices to check the additivity
for every pair of charges in the fundamental cone.

Proposition 5. For any pair of magnetic charges g and g′ in the fundamental Murray cone
we have for the fully framed moduli spaces dimMg + dimMg′ = dimMg+g′ .

Proof. Recall from equation (76) that the dimensions of the fully framed moduli space are
proportional to the topological and holomorphic charges of the reduced magnetic charge. We
thus have to show that the topological and holomorphic charges add. These charges are given
by the inner product of the reduced magnetic charge with respectively the broken and unbroken
fundamental weights as explained in section 2.3 and 2.4. For example mi = λi · g̃. Next we note
that there exists a Weyl transformation w ∈W (H) ⊂W (G) that maps the fundamental Weyl
chamber to the anti-fundamental Weyl chamber. Thus if g, g′, g′′ lie in the fundamental Murray
cone and g′′ = g+ g′ the reduced magnetic charges satisfy g̃′′ = w(g′′) = w(g) +w(g′) = g̃+ g̃′.
As a last step we find that m′′i = λi · g̃′′ = λi · (g̃ + g̃′) = mi +m′i. Similar results hold for the
holomorphic charges.

The dimensions of the fully framed moduli spaces only respect the addition of charges in the
Murray cone if the charges are restricted to one Weyl chamber, for example the fundamental
Weyl chamber. This is consistent with our conclusion at the end of section 2.4 that the mag-
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netic charge sectors are labelled by weights in the fundamental Weyl chamber of the residual
dual group.

In this section we have established a non-abelian generalization of Weinberg’s analysis for
abelian monopoles: we have shown that the dimensions of the fully framed moduli spaces
respect the addition of magnetic charges within the fundamental Murray cone. Just as Wein-
berg we are now led to the conclusion that there is a distinguished set of basic monopoles.
The charges of these basic monopoles correspond to the generators of the fundamental Murray
cone. The remaining charges in the fundamental Murray cone are then associated with multi-
monopole solutions.
For maximal symmetry breaking the set of basic monopoles coincides with the monopoles with
unit topological charge. In our proposal this is not true in the general case. There can be basic
monopoles with non-minimal topological charges. In the next section we shall discuss addi-
tional evidence to support our conclusion that basic monopoles are always indecomposable,
even if they have non-minimal topological charges.

5 Fusion properties of non-abelian monopoles

In the previous sections we argued that smooth BPS monopoles with non-trivial charges can
consistently be viewed as multi-monopole solutions built out of BPS configurations with min-
imal charges. These classical fusion rules cannot always be verified directly because of the
complexity of the BPS equations. In this paper we have therefore gathered all available cir-
cumstantial evidence. These consistency checks can be organized into four different themes:
the existence of generating charges and the consistent counting of moduli space parameters
have been discussed in the previous sections. Below in section 5.1 and 5.2 we shall study some
examples where one can verify the classical fusion rules directly. For singular BPS monopoles
there is a similar set of generating charges, a consistent counting of parameters and a consistent
way to patch classical solutions together as we discuss in section 5.3. These analogies form
a remarkable hint suggesting that the classical fusion rules we have found for smooth BPS
monopoles are indeed correct. Finally in section 5.4 we look ahead and discuss how this anal-
ogy between singular and smooth BPS monopoles might help us to derive the semi-classical
fusion rules of smooth BPS monopoles and conversely how to get a better understanding of
the generalized electric-magnetic fusion rules in the singular case.

5.1 Patching smooth BPS solutions

The first hint revealing the existence of multi-monopole solutions built out of certain minimal
monopoles comes from the fact that there is a small set of indecomposable charges generating
the full set of magnetic charges. In this section we use results of Taubes obtained in [32] to show
that certain monopoles with non-trivial charges are indeed multi-monopole solutions respect-
ing the decomposition of the magnetic charge into generating charges. We shall first discuss
maximal symmetry breaking. In this case all monopoles with higher topological charges are
manifestly seen to be multi-monopoles. Second we shall deal with non-abelian residual gauge
groups. In this case Taubes’ result gives a consistency check for the classical fusion rules.

For maximal symmetry breaking the set of magnetic charges corresponds to the Murray cone
and is generated by the broken simple coroots. For each of these coroots an exact solution is
known. These are spherically symmetric SU(2) monopoles [31, 19, 51]. For G equal to SU(2)
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one has the usual ’t Hooft-Polyakov monopole [5, 6], while for higher rank gauge groups one
can embed ’t Hooft-Polyakov monopoles via the broken simple roots. Since these monopoles
have unit topological charges they are manifestly indecomposable.
Exact solutions are also known in other cases. It was shown by Taubes [32] that there are
solutions to the BPS equation for any charge g = miα

∗
i with mi > 0. Hence for all charges

in the Murray cone solutions exist. These solutions are constructed out of superpositions of
embedded SU(2) monopoles. The constituents are chosen such that the sum of the individual
charges matches the total charge. These solutions become smooth solutions of the BPS equa-
tions if the constituents are sufficiently separated. This proves that for all magnetic charges
with higher topological charges multi-monopole solutions exist.
One might wonder if all solutions with higher topological charges are indeed multi-monopole
solutions. For any given topological charge the framed moduli space is connected. Thus any
point in this moduli space is connected to another point corresponding to a widely separated
superposition as described by Taubes. Any monopole configuration can thus be smoothly
deformed so that the individual components are manifest. This does indeed show that any
smooth abelian BPS monopole can consistently be viewed as multi-monopole configuration
built out of indecomposable monopoles.

The multi-monopole picture above for maximal symmetry breaking can be generalized to ar-
bitrary symmetry breaking. For any given topological charge there exist smooth solutions of
widely separated monopoles. According to Taubes the building blocks of these smooth solu-
tions correspond to the SU(2) monopoles embedded via the broken simple roots. The framed
moduli space does not depend on the full magnetic charge, but only on the topological compo-
nents. Moreover the framed moduli space is always connected. We now find that any solution
of the BPS equation with higher topological charges can be deformed to a configuration which
is manifestly a multi-monopole solution.
However, this decomposition via widely separated multi-monopole solutions does not respect
the additive structure of the Murray cone unless we completely ignore the holomorphic charges.
In the previous section we argued that this does not make sense from a physical perspective
because the allowed electric excitations depend on the holomorphic charges. Moreover we have
found that if we take these holomorphic charges into account we should restrict the magnetic
charges to lie in the fundamental Murray cone. The appropriate moduli spaces to consider in
this situation are the fully framed moduli spaces. The question now is if these fully framed
moduli spaces contain configurations which can be interpreted as widely separated monopoles.
With the results of Taubes we can answer this question unambiguously for one of the fully
framed moduli spaces in the set of spaces defined by the topological charge. We start out
with a magnetic charge that is equal to a sum of unbroken simple coroots. Such a charge
does not lie in the fundamental Murray cone, but instead in the anti-fundamental Weyl cham-
ber of the Murray cone. This implies that there is a Weyl transformation that maps such a
magnetic charge to the fundamental Murray cone. Similarly, there is a related large gauge
transformation that maps Taubes’ multi-monopole configurations to new solutions of the BPS
equation. These transformed configurations are again widely separated superpositions, but
now the buildings blocks correspond to SU(2) monopoles embedded via the Weyl transformed
broken roots. Note that magnetic charges of these constituents are precisely the generators of
the fundamental Murray cone with unit topological charges.
We thus obtain the following result: let g equal a sum of generators of the fundamental Murray
cone with unit topological charges. The fully framed moduli space corresponding to g has a
subset of configurations that are manifestly multi-monopole solutions. Since the fully framed

37



moduli space is connected any monopole with charge g can be interpreted as a multi-monopole
solution.

The considerations above only involved indecomposable charges corresponding to simple co-
roots. For a maximally broken gauge group this is sufficient to provide convincing evidence
for the multi-monopole picture. In the non-abelian case one should also take other generators
into account. We will come back to this in the next section.

5.2 Murray cone vs fundamental Murray cone

One problem we encounter in this paper is that it is not completely clear what the full set
of magnetic charges is supposed to be, either the Murray cone or the fundamental Murray
cone. By the same token it is a priori not clear what the truly indecomposable monopoles
are, the fundamental monopoles or the basic monopoles. The fundamental Murray cone is
slightly favoured because because the large gauge transformations have been modded out. On
the other hand not all generating charges of the fundamental Murray cone have unit topolog-
ical charges, while the fundamental monopoles generating the Murray cone do. This suggest
that the monopoles corresponding to the generators of the fundamental Murray cone, the basic
monopoles might be decomposable into fundamental monopoles related to the generators of the
Murray cone. What seems to settle this issue though is that there is only a consistent counting
of moduli space parameters if we restrict to the fundamental Murray cone. The indecompos-
ability for the basic monopoles with non-minimal topological charges can be understood from
the existence of so-called cloud parameters. These clouds emerge as soon as one attempts to
split a basic monopole into fundamental monopoles. Below we explain this for the case that
G = SU(3) is broken to U(2).

The case SU(3) → U(2) is an interesting example to discuss issues regarding composition
and decomposition because some of the corresponding non-trivial moduli spaces have been
thoroughly investigated. Specifically for g = 2α2 + α1, one of the generators of the funda-
mental Murray cone, the 12 dimensional fully framed moduli space and its metric have been
found Dancer [53]. Determining the isometries of the metric reveals the nature of almost all
of the 12 parameters. 3 parameters are related to R3, the center of mass position in space.
The action of U(2) × SO(3) shows the presence of 3 rotational degrees of freedom and 4
large gauge modes. After the removal of translations, gauge freedom and rotations one is
left with a 2-dimensional space. This space turns out to be parameterized by k and D with
0 ≤ k ≤ 1 and 0 ≤ D < 2

3K(k), where K(k) denotes the first complete elliptic integral

K(k)=
∫ π

2
0 (1− k2 sin2(θ))−1/2dθ [53]. The interpretation of these two parameters seems some-

what mysterious. To understand their significance, the behaviour of the BPS solutions have
been studied numerically for various values of these parameters [54, 55, 56]. See section 8 of
[57] and section III.B of [58] for a review.
There is a subset of solutions where the energy density has two maxima symmetrically posi-
tioned about the center of mass. If the parameter D is increased the peaks of the energy density
becomes more pronounced and move further from the center of mass. This seems to indicate
that certain solutions can be viewed as a pair of widely separated particles. The question
that comes to mind now is the following: do these widely spaced lumps correspond to a pair of
monopoles with unit topological charge? In this particular case there is only one broken simple
root, and hence there is only one class of embedded SU(2) monopoles with unit topological
charge giving rise to a 4 dimensional fully framed moduli space. Taubes has shown that such
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solutions can be patched together yielding widely separated solutions with higher topological
charges [32]. A pair of these patched solutions with magnetic charge g̃ = α2 + α1 would give
a configuration with total charge 2α2 + 2α1. We thus see that these solutions do not lie in
the 12 dimensional Dancer moduli space but in the neighbouring 8 dimensional fully framed
moduli space. Before drawing any conclusions we recall one subtle point. All monopoles of
equal topological charge lie in one connected moduli space, which is divided up into strata.
By dividing out large gauge transformations these strata reduce to the fully framed moduli
spaces we discussed here. To be more precise the 8 dimensional fully framed moduli space
related to g = 2α2 + 2α1 lies in a 10 dimensional stratum which is the boundary of the Dancer
moduli space. A measure for the distance to the boundary of the Dancer moduli space is given
by 1/a where a = D/(K(k) − 3

2D). The widely separated monopoles in the Dancer moduli
space, and as a matter of fact any configuration in the Dancer moduli space can be deformed
into widely separated monopoles discussed by Taubes. As we explained in section 5.1 this
decomposition does not respect the additive structure of the Murray cone nor the addition of
charges in the fundamental Murray cone. What is even more striking is that this deforma-
tion will give rise to highly non-localized degrees of freedom in the form of a non-abelian cloud.

A rather insightful computation to illustrate the appearance of the non-abelian cloud as one
moves to the boundary of the Dancer moduli space is discussed by Irwin [56]. In his paper
Irwin computes the asymptotic behaviour for the magnetic field of axially symmetric trigono-
metric monopoles (k = 0) in the Dancer moduli space as a → ∞. In the string gauge the
asymptotic fields in this limit are given by:

Φ = Φ0 −
1
er
t0 −

1
er(1 + r/a)

t3

∗F =
1
er2

t0dr +
1 + 2r/a

er2(1 + r/a)2
t3dr +

1
ear2(1 + r/a)2

(t1dθ − sin θt2dϕ)

A = − 1
e

cos θ (t0 + t3) dϕ− 1
e(1 + a/r)

(t2dθ + sin θt1dϕ) .

(77)

The expectation value Φ0 is proportional to t0. The matrices ti are the generators of the
residual gauge group U(2) ⊂ SU(3): t0 = (α1 + 2α2) · H =

√
3H2, t1 = 1

2 (Eα1 + E−α1),
t2 = − i

2 (Eα1 − E−α1) and t3 = α1 ·H = H1. With these conventions the commutation rela-
tions for the SU(2) generators are given by [ti, tj ] = iεijktk. Obviously we also have [t0, ti] = 0.
As a side remark we note that (77) gives an exact solution of the BPS equations for U(2) which
is singular at r=0.
The behaviour of the solution above shows that the non-abelian fields penetrate outside the
core of the monopoles up to some finite distance determined by the parameter a. Beyond this
distance the magnetic field becomes abelian, which is in agreement with the boundary condi-
tion at infinity. The interpretation of this observation is that the monopoles are surrounded
by a non-abelian cloud screening the non-abelian charge. As one moves all the way to the
boundary of the Dancer moduli space and a becomes infinite the cloud gets diluted so that the
non-abelian field yields to infinity resulting in non-vanishing holomorphic charges.

This whole exposition does lead us to an important conclusion: the behaviour of the Dancer
monopoles shows us that these configurations can indeed be split up into separate lumps. At
the same time this separation yields a non-localized degree of freedom. Since this cloud param-
eter does not correspond to one monopole or the other, the two widely spaced lumps are not the
same as they would be on their own. Therefore the Dancer monopoles cannot be decomposed.
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In this particular example we thus see that basic monopoles are indeed indecomposable. We
expect that similar arguments should hold in general.

5.3 Patching singular BPS solutions

There are striking similarities between the results obtained in this paper for smooth BPS
monopoles and results obtained by Kapustin and Witten regarding singular BPS monopoles
[15]. In the context of singular monopoles we shall discuss the existence of fundamental and
basic monopoles, consistent counting of moduli space parameters, patching of classical solu-
tions and the indecomposability of basic monopoles with non-trivial topological charges.

The magnetic charge lattice for singular monopoles in a gauge theory with gauge group H
is determined by the Dirac quantization condition. As we reviewed in section 2.1 this lattice
can be identified with the weight lattice Λ(H∗) of the GNO or Langlands dual group. The
magnetic weight lattice contains an important subset, the set of magnetic charge sectors, which
is obtained by modding out the Weyl group of H∗. This subset can thus be identified with the
fundamental Weyl chamber in Λ(H∗). Modding out the Weyl group of H∗ is natural because a
magnetic charge λ ∈ Λ(H∗) is only defined up to Weyl transformations. Note that these Weyl
transformations acts as large gauge transformations on the BPS solutions.

The existence of generating charges within the weight lattice Λ(H∗) of the dual gauge group
and within its fundamental Weyl chamber has been discussed in sections 3.2 and 3.3. These
generating charges correspond to what we define as respectively fundamental monopoles and
basic monopoles. The basic monopoles, not the fundamental monopoles, form the building
blocks of singular multi-monopole solutions of the BPS equations just as we concluded for
smooth BPS solutions. This is seen indirectly by analyzing the moduli space parameters.

The moduli spaces for singular BPS monopoles introduced by Kapustin and Witten are spaces
of so-called Hecke modifications and correspond to orbits in the affine Grassmannian. For
further details we refer to [15] and reference therein. It is important that these moduli spaces
are labelled by a dominant integral weight in the weight lattice of the dual gauge group H∗.
We also note that these moduli spaces are closed under large gauge transformations, hence
magnetic charges on one Weyl orbit correspond to the same moduli space. For completeness
we mention that the compactifications of these moduli spaces are singular. The singular sub-
spaces in Mλ correspond to the moduli spaces Mλ′ where λ′ < λ.

The dimensionality of an orbit Mλ in the affine Grassmannian labelled by a dominant in-
tegral weight λ ∈ Λ(H∗) is given by [59]:

dimMλ = 2λ · ρ, (78)

where ρ is the Weyl vector of H and thus equals half the sum of the simple roots of H, see
e.g. [60] for a brief summary. We now immediately find for a pair of dominant integral weights
λ and λ′:

dimMλ + dimMλ′ = dimMλ+λ′ . (79)

Here we use the fact that sum of two dominant integral weights is again a dominant integral
weight. We thus see that the moduli space dimensions respect the addition of charges in the
fundamental Weyl chamber of H∗. It is not difficult to see that these dimensions are not
consistent with the addition of charges in the complete weight lattice of H∗. Similar results

40



where obtained in section 4.3 for the Murray cone and the fundamental Murray cone.

The formalism in which Kapustin and Witten work is so powerful that one can quite explicitly
see that all singular monopoles with non-basic charges are indeed multi-monopole solutions.
This is related to the fact that the singularities of the compactified moduli spaces can be
blown-up in a very specific way. We briefly sketch how this works. Singular BPS monopoles
correspond to ’t Hooft operators which create the flux of a Dirac monopole with a singularity
at a point p ∈ R3. These ’t Hooft operators can in turn be identified with Hecke operators.
The Hecke operators act on vector bundles over C in this case in such a way that the trivializa-
tion outside a preferred point on C is respected. To achieve this relation R3 is identified with
C × R. For a non-zero magnetic charge the Hecke operator maps a trivial bundle to a non-
trivial bundle. These two bundles over C are identified with pullback bundles of the nontrivial
bundle over R3 \ {p} corresponding to the singular BPS configuration. The two embeddings of
C are chosen at opposite sides of p ∈ C× R. Note that the isomorphism class of the resulting
modified bundle does not only depend on the magnetic charge but also in a certain way on the
trivialization of the trivial bundle one started out with. This why one Hecke operator gives
rise to a space of Hecke modifications.
A relevant but actually not very deep observation is that all Hecke operators can be decomposed
as a sequence of basic Hecke operators and thus all ’t Hooft operators can be decomposed as
sequence of basic ’t Hooft operators. These basic operators create the flux of a Dirac monopole
associated to a basic charge in the fundamental Weyl chamber of H∗. An important as well
as deep consequence of the identification of ’t Hooft operators and Hecke operators is that the
resulting sequence of basic ’t Hooft operators can be separated in space. Each basic ’t Hooft
operator is positioned between two copies of C ⊂ R3 and the associated Hecke operators map
one bundle over C to the other bundle at the reverse side of the singularity. The resulting
bundles over C can be considered as as series op pullback bundles in a bundle over R3 corre-
sponding to a series of smoothly patched BPS solutions.

Singular BPS solutions corresponding to basic monopoles may have non-trivial topological
charges just as we have seen for smooth BPS solutions. One might again wonder if such basic
monopoles can be split up into fundamental monopoles which do have unit topological charges.
Intuitively this does not seem difficult. One would expect that there exists an exact multi-
monopole solution of widely separated fundamental monopoles in the same topological sector.
Because all spaces of Hecke modifications in one topological sector are connected one can now
deform the original monopole into a manifest multi-monopole solution. Just as for smooth
monopoles this deformation does not respect the holomorphic charges. There is also a more
subtle way to look at this holomorphic obstruction.
As an example we consider H∗ = U(2). This case has been worked out in quite some detail
by Kapustin and Witten. The basic monopole with unit topological charge corresponds to
the highest weight λ of the fundamental representation of U(2). The basic monopole with
topological charge equal to 2 has a magnetic charge given by 2λ − α, where α is the simple
root of SU(2). The compactification ofM2λ is given by the singular space WCP2(1, 1, 2). The
singularity corresponds to the 0-dimensional space M2λ−α. The singularity of WCP2(1, 1, 2)
can be blown-up to obtain CP1×CP1. Since CP1 =Mλ the blow-up obviously gives the mod-
uli space of two separated fundamental monopoles. On thus sees that the a basic monopole
with topological charge 2 can be deformed into two separate monopoles only if one attributes
extra degrees of freedom by embedding the moduli space as a singularity in a larger space and
only if these degrees of freedom are changed in a nontrivial way by blowing-up the singularity.
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It follows for U(2) that classically basic monopoles are not truly separable into fundamental
monopoles. For general monopoles similar arguments should hold.
Note that for smooth monopoles we used the emergence of non-localized degrees of freedom to
show that the basic U(2)-monopoles are indeed indecomposable. Though the motivation via
clouds is quite different from the argument used right above in the singular case the result is
the same: the charges of the indecomposable monopoles in the smooth theory are subset of
the indecomposable charges for singular monopoles. In that sense the classical fusion rules for
smooth BPS monopoles are consistent with those for singular BPS monopoles.

5.4 Towards semi-classical fusion rules

In the literature it has often been assumed that the BPS solutions corresponding to weights of
the fundamental representation ofH∗ give rise to a singleH∗-multiplet [31, 61, 62, 63, 64, 57, 65]
as would be favourable to the conjecture that these monopoles can be regarded as massive gauge
particles of the dual theory. This proposal runs into trouble in particularly for non-simply laced
gauge groups because the electric action on the classical solutions does clearly not commute
with the magnetic action of the residual dual group on the magnetic charges. From the classi-
cal fusion rules we find that smooth BPS solutions, and actually also singular BPS solutions,
are labelled by dominant integral weights in the weight lattice of the residual dual group H∗.
This suggest that each electric orbit in the magnetic charge lattice of H∗ thus gives rise to a
unique H∗-multiplet. This form of the GNO-duality conjecture has been proven by Kapustin
and Witten in the case of singular BPS monopoles [15]. They show that the semi-classical
fusion rules for singular BPS monopoles are indeed the fusion rules of H∗. Since the classical
fusion rules for singular and smooth BPS monopoles are completely analogous and because
the semi-classical fusion rules must also agree one can expect that a similar approach can be
used to derive the semi-classical fusion rules in the smooth case. It is not immediately clear
though how such a program can be realized and some major hurdles have to be overcome. We
shall discuss this shortly.

In the Kapustin-Witten approach the semi-classical fusion rules are found from the quan-
tum mechanics on the moduli spaces. A similar strategy but with a less ambitious goal in
mind was adopted in the case of smooth monopoles by Dorey et al. in [64]. These authors
tried to give a consistent counting of states, an attempt that turned out not to be completely
successful. In hindsight we can understand that the problem was caused by the fact Dorey
et al. did not use the same moduli spaces as Kapustin and Witten. The moduli spaces used
by Kapustin and Witten can be identified with orbits in the affine Grassmannian labelled by
the magnetic charges in the weight lattice of H∗. These orbits do contain the orbits of the
magnetic charge in h, the Lie algebra of H, under the action of the gauge group H as used
in [64]. Only if the magnetic charge labels a so-called minuscule representation the orbit in
the affine Grassmannian is isomorphic to the orbit in the Lie algebra of H. In these cases
the number of ground states of the quantum mechanics on the orbit in the Lie algebra agrees
with the dimension of the irreducible representation labelled by the magnetic charge. In other
cases the orbit in h is a non-trivial subspace within the orbit in the affine Grassmannian. The
degeneracy of the ground state of the quantum mechanics on the orbit in h under-estimates
the dimension of the magnetic representations.

If one wants to retrieve a counting of states consistent with the irreducible representations
of H∗ as well as the fusion rules of H∗ one is forced to consider the orbits in the affine Grass-
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mannian. The problem is that it is only partially clear how these magnetic moduli spaces
are to appear within the full moduli spaces of smooth BPS monopoles. What is consistent
though is that the orbits of the magnetic charges under the electric action, which are part of
the related orbits in the affine Grassmannian, have to be treated on a different footing within
the framed moduli spaces as we discussed in section 4.3.

One of the drawbacks of the approach used by Kapustin and Witten is that it is not clear
how to deal with electric excitations of magnetic monopoles even though one can introduce
general Wilson-’t Hooft operators in for example certain N = 2 gauge theories [66]. If one
manages for smooth monopoles to introduce the appropriate magnetic moduli spaces in com-
bination with the fully framed moduli spaces then one obtains an interesting model to study
electric-magnetic symmetry. This would be an important achievement because it is not known
what this unified electric-magnetic symmetry is. It is clear though that this symmetry is not
the group H ×H∗ as originally proposed in [1] because the magnetic charge effectively breaks
the electric group as we discussed in section 4.3. In [65] a unified electric-magnetic group was
introduced for H = U(n) which does respect this interaction between electric representations
and magnetic charges. We plan to elaborate on this elsewhere [67].
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Appendix: The algebra underlying the Murray cone

As announced in section 3.4 we shall construct an algebraic object whose set of irreducible
representations corresponds to the fundamental Murray cone. We do this in such a way that
the fusion rules respect the fusion rules of the residual dual group H∗. We shall start out
from what is roughly speaking the group algebra of H∗. Next we introduce its dual F (H∗).
By dualizing again we find an object F ∗(H∗) which again should be thought of as the group
algebra of H∗. The difference however is that in this new form the group algebra can explicitly
be truncated to F ∗+(H∗) in such a way that the irreducible representations are automatically
restricted to the fundamental Murray cone. The nice feature of our construction is that it is
very general. Starting out from any Lie group and any subset of irreducible representations
closed under fusion we can construct a bi-algebra which has a full set of irreducible represen-
tations corresponding to the subset one started out with and whose fusion rules match those
of the group one started out with. At the end we briefly discuss the group-like object H∗+
which has the same irreducible representations and the same fusion rules as F ∗+(H∗). For most
common consistent truncations of the weight lattice of H∗ one knows that H∗+ is obtained
from H∗ by modding out a finite group. If one restricts the weight lattice to the Murray cone
however H∗+ is not a group any more.
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As a group H∗ has a natural product and coproduct:

h1 × h2 = h1h2 (80)
∆(h) = h⊗ h. (81)

In addition there is a natural unit 1, co-unit ε and antipode S by

1 = e ∈ H∗ (82)
ε : h 7→ 1 ∈ C (83)

S : h 7→ h−1. (84)

For a finite group one can immediately define the linear extensions of these maps on the group
algebra of H∗. For a continuous groups there are several ways to define a vector space with this
Hopf algebra structure. We shall circumvent this discussion by considering another algebra
which is manifestly seen to be a vector space. This is the Hopf algebra corresponding to the
matrix entries of the irreducible representations of H∗. Let πλ be such a representation. For
the matrix entries we have:

πλmm′ : h ∈ H∗ → (πλ(h))mm′ ∈ C. (85)

The set of finite linear combinations of such maps is obviously a vector space. The resulting
set turns out to be a Hopf algebra and inherits a natural product, coproduct, co-unit and
antipode from H∗.
The product in F (H∗) is directly related to the product of representations and can thus be
expressed in terms of Clebsch-Gordan coefficients, see for example chapter 3 of [68] for the
SU(2) case. The coproduct is much simpler because it merely reflects the fact that the product
of H∗ is respected by the representations.

πλ1

m1m′1
× πλ2

m2m′2
(h) = πλ1

m1m′1
⊗ πλ2

m2m′2
(∆(h)) =

πλ1

m1m′1
⊗ πλ2

m2m′2
(h⊗ h) = πλ1

m1m′1
(h)πλ2

m2m′2
(h) = (86)∑

λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′1,m

′
2,m
′
1+m′2

πλm1+m2,m′1+m′2
(h)

∆(πλmm′)(h1 ⊗ h2) = πλmm′(h1 × h2) =

πλmm′(h1h2) =
∑
s

πλms(h1)πλsm′(h2) =
∑
s

πλms ⊗ πλsm′(h1 ⊗ h2) (87)

The product and coproduct on F (H∗) are thus completely defined by:

πλ1

m1m′1
× πλ2

m2m′2
=
∑
λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′1,m

′
2,m
′
1+m′2

πλm1+m2,m′1+m′2
(88)

∆(πλmm′) =
∑
s

πλms ⊗ πλsm′ . (89)

To find the unit 1 ∈ F (H∗) and the co-unit of F (H∗) we note that these are defined in terms
of their dual counterparts by:

1(h) = ε(h) = 1 ∈ C (90)

ε(πλmm′) = πλmm′(e) = δmm′ ∈ C. (91)
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From the first equation it follows that the unit in F (H∗) is given by the matrix entry of the
trivial irreducible representation of H∗ while the co-unit of F (H∗) is related to the entries of
the unit matrix in the λ-representation of H∗.
The antipode of F (H∗) is defined by S(πλmm′)(h) = πλmm′(h

−1). In the end however we will
only be interested in the bi-algebra structure. To avoid unnecessary complication we will ig-
nore the antipode.

To retrieve the group algebra of H∗ we shall again take the dual F ∗(H∗) of F (H∗). This
space of linear functionals is generated by the basis elements f ll

′
µ . These are defined in the

standard way by:

f ll
′

µ : πλmm′ ∈ F (H∗) 7→ f ll
′

µ (πλmm′) = δµλδlmδl′m′ ∈ C. (92)

The product and coproduct of F ∗(H∗) can be defined in terms of their counterparts in F (H∗).

f
l1l′1
µ1 × f

l2l′2
µ2 (πλmm′) = f

l1l′1
µ1 ⊗ f

l2l′2
µ2 (∆(πλmm′))

= f
l1l′1
µ1 ⊗ f

l2l′2
µ2

(∑
s

πλms ⊗ πλsm′

)
=
∑
s

f
l1l′1
µ1 (πλms)f

l2l′2
µ2 (πλsm′)

=
∑
s

δµ1λδl1mδl′1sδµ2λδl2sδl′2m′ = δµ1µ2δl′1l2δµ2λδl1mδl′2m′

= δµ1µ2δl′1l2f
l1l′2
µ2 (πλmm′)

(93)

∆(f ll
′

µ )(πλ1

m1m′1
⊗ πλ2

m2m′2
) = f ll

′
µ (πλ1

m1m′1
× πλ2

m2m′2
)

=
∑
λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′1,m

′
2,m
′
1+m′2

f ll
′

µ (πλm1+m2,m′1+m′2
)

=
∑
λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′1,m

′
2,m
′
1+m′2

δµλδl,m1+m2δl′,m′1+m′2

= Cλ1λ2µ
m1,m2,m1+m2

Cλ1λ2µ
m′1,m

′
2,m
′
1+m′2

δl,m1+m2δl′,m′1+m′2

=
∑

Cµ1µ2µ
l1,l2,l

Cµ1µ2µ
l′1,l
′
2,l
′ δl,l1+l2δl′,l′1+l′2

δµ1λ1δl1m1δl′1m′1δµ2λ2δl2m2δl′2m′2

=
∑

Cµ1µ2µ
l1,l2,l

Cµ1µ2µ
l′1,l
′
2,l
′ δl,l1+l2δl′,l′1+l′2

f
l1l′1
µ1 (πλ1

m1m′1
)f l2l

′
2

µ2 (πλ2

m1m′1
)

=
∑

Cµ1µ2µ
l1,l2,l

Cµ1µ2µ
l′1,l
′
2,l
′ δl,l1+l2δl′,l′1+l′2

f
l1l′1
µ1 ⊗ f

l2l′2
µ2 (πλ1

m1m′1
⊗ πλ2

m2m′2
)

(94)

The product and coproduct on F ∗(H∗) are thus completely defined by:

f
l1l′1
µ1 × f

l2l′2
µ2 = δµ1µ2δl′1l2f

l1l′2
µ2 (95)

∆(f ll
′

µ ) =
∑

Cµ1µ2µ
l1,l2,l

Cµ1µ2µ
l′1,l
′
2,l
′ δl,l1+l2δl′,l′1+l′2

f
l1l′1
µ1 ⊗ f

l2l′2
µ2 , (96)

where the sum in the last line is over l1, l2, l′1, l
′
2, µ1 and µ2. Note that this sum has an infinite

number of non-vanishing terms corresponding to the pairs of irreducible representations (µ1, µ2)
whose tensor product contains the irreducible representation of H∗ labelled by µ.
One can easily check that the unit and co-unit of F ∗(H∗) are given by:

1 =
∑
µ,l

f llµ (97)

ε(f ll
′

µ ) = δµ0δl0δl′0. (98)
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Just as the coproduct, the unit is is not properly defined because it is a sums over an infinite
number of basis elements with non-vanishing coefficients. This is just a formal problem because
the finite dimensional representations of F ∗(H∗) will only pick out a finite number of elements
as we shall see below.

We can now truncate F ∗(H∗) to F ∗+(H∗) by projecting out all functionals fmm
′

µ that do not
satisfy the Murray condition for G → H. This means that we will project out all functionals
with µ not in the Murray cone Λ+. The Murray condition can thus be implemented by using
the following linear projection operator:

P : fmm
′

µ 7→ P (fmm
′

µ ) =
{

0 if µ /∈ Λ+

fmm
′

µ if µ ∈ Λ+
(99)

The product and coproduct of this truncated bi-algebra are given by:

f
l1l′1
µ1 × f

l2l′2
µ2 = δµ1µ2δl′1l2f

l1l′2
µ2 (100)

∆(f ll
′

µ ) =
∑

Cµ1µ2µ
l1,l2,l

Cµ1µ2µ
l′1,l
′
2,l
′ δl,l1+l2δl′,l′1+l′2

P (f l1l
′
1

µ1 )⊗ P (f l2l
′
2

µ2 ). (101)

Similarly, we have for the unit and co-unit:

1 =
∑
µ,l

P (f llµ ) (102)

ε(f ll
′

µ ) = δµ0δl0δl′0. (103)

We shall now turn to the representations of F ∗(H∗) and F ∗+(H). First we will introduce the
set {πλ} of representations of F ∗(H∗), where {λ} is the set of irreducible representations of
H∗. We define these representations of F ∗(H∗) by:

πλ : f ll
′

µ 7→ πλ(f ll
′

µ ), (104)

where the matrix entries are given by(
πλ(f ll

′
µ )
)
mm′

= f ll
′

µ (πλmm′). (105)

This definition ensures that the representations {πλ} respect the product of F ∗(H∗). The
representations πλ defined here can thus be identified with the irreducible representations of
H∗. Below we shall prove that πλ itself is actually an irreducible representation of F ∗(H∗)
and moreover we will find that these representations constitute the full set of irreducible rep-
resentation of F ∗(H∗).

Next we want to consider if the representations πλ of F ∗(H∗) are also representations of
the truncated algebra F ∗+(H∗). For F ∗(H∗) the representations above all satisfy

πλ(1) = πλ
(∑

f llµ

)
= I. (106)

However, in F ∗+(H∗) we find for the representations labelled by λ not satisfying the Murray
condition:

πλ(1) = πλ
(∑

P (f llµ )
)

= 0. (107)
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Since such πλ does not respect the identity this is not a representation of F ∗+(H∗). Hence for
F ∗+(H∗) we must restrict to the truncated set of representations {πλ} satisfying the Murray
condition. This last set of representations is obviously in one-to-one relation with the magnetic
charges in the fundamental Murray cone for G → H. Below we shall prove that this is the
complete set of irreducible representations of F ∗+(H∗).

We will construct the irreducible representations of F ∗(H∗) and F ∗+(H∗) out of the repre-
sentations of a set of subalgebras. Let F ∗ denote either F ∗(H∗) or F ∗+(H∗). The subalgebras
denoted by F ∗λ ⊂ F ∗ are generated by {f ll′λ } with fixed dominant integral weight λ. In the
case of F ∗+(H∗) we of course restrict λ to be a dominant integral weight in Λ+. Note that
∪λF ∗λ = F ∗. It follows from the product rule (95) or (100) that F ∗λ is indeed closed under
multiplication. The identity 1λ in F ∗λ is expressed as:

1λ =
∑
l

f llλ . (108)

These elements 1λ ∈ F ∗ satisfy:

f × 1λ = 1λ × f ∀f ∈ F ∗ (109)∑
λ

1λ = 1F ∗ (110)

1λ × 1λ′ = δλλ′1λ. (111)

We can use these properties to characterize the irreducible representations of F ∗. Let V be
any irreducible representation of F ∗. It is easy to see that for any λ the image Vλ of V under
the action of 1λ is itself a representation of F ∗. This follows from the fact that any f ∈ F ∗
commutes with 1λ as expressed by equation (109). V thus contains invariant subspaces {Vλ}.
For irreducible representations all invariant subspaces must be trivial, i.e. equal either {0} or
V . Since any representation of F ∗ respects the identity 1F ∗ we find from (110) that for at
least one λ we must have Vλ 6= {0}, hence Vλ = V . Note that λ is unique since Vλ′ = {0} for
λ′ 6= λ as follows from (111). Consequently any irreducible representation of F ∗ is labelled by a
dominant integral weight λ. It now follows from the product rule of F ∗ that any f ll

′
λ′ ∈ F ∗λ′ with

λ′ 6= λ acts trivially on Vλ. An irreducible representation of F ∗ thus corresponds to an irre-
ducible representation of F ∗λ . Fortunately the irreducible representations of F ∗λ are easily found.

Note that the labels l and l′ of F ∗λ take integer values in {1, . . . , n} where n is the dimen-
sion of the irreducible representation πλ of H∗. As it turns out F ∗λ is a n × n matrix algebra
and it is a well known fact that such an algebra has a unique irreducible representation of
dimension n. For completeness we shall prove this now.
F ∗λ has a commutative subalgebra F ∗λ

diag generated by the elements f llλ . Let us construct the
irreducible representations of F ∗λ

diag. Since the algebra is commutative its irreducible represen-
tations are 1-dimensional. Let π be such a representation. From π(f llλ )2 = π(f llλ ×f llλ ) = π(f llλ )
we find that π(f llλ ) equals either 0 or 1. If we assume the latter for a fixed value k of l then we
have for l 6= k:

π(f llλ ) = π(fkkλ )π(f llλ ) = π(fkkλ × f llλ ) = δklπ(f llλ ) = 0. (112)

Note that since the unit of F ∗λ
diag must be respected π(f llλ ) cannot vanish for all l. The

irreducible representations of F ∗λ
diag are thus given by:

πl : f l
′l′
λ 7→ δll′ . (113)
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Any non-trivial irreducible representation (π, V ) of F ∗λ can be decomposed into a sum of
irreducible representations of F ∗λ

diag. Hence there is a vk ∈ V such that π(f llλ )vk = δlkv
k. Let

us define a set of n vectors in V by vm = π(fmkλ )vk. The span of {vm} defines an invariant
subspace of V . This follows again from the product rule:

π(f ll
′

λ )vm = π(f ll
′

λ )π(fmkλ )vk = π(f ll
′

λ × fmkλ )vk

= δl′mπ(f lkλ )vk = δl′mv
l.

(114)

Since π is irreducible the span of {vm} is V .

The claim is that V is n-dimensional. In order to prove this we have to show that the vectors
vm are linearly independent. If ∑

m

amv
m = 0 (115)

one finds from (114):

f llλ

(∑
m

amv
m

)
= alv

l = 0. (116)

So either al = 0 or vl = 0. However, vl = 0 together with the product rule and the definition of
vm implies that vm = π(fmlλ )vl = 0. This would mean that V = {0} contradicting the fact that
V is non-trivial i.e. at least one dimensional. We thus find that an irreducible representation
of F ∗λ is n-dimensional and moreover it follows from the explicit action on a basis of V as in
equation (114) that such an irreducible representation is unique up to isomorphy.

We have found that an irreducible representation of F ∗ is completely fixed by a dominant
integral weight λ in the appropriate weight lattice. The dimension of such an irreducible rep-
resentation is given by the dimension of the irreducible representation ofH∗ with highest weight
λ. To find the fusion rules for these representations we go back to the representations {πλ} in-
troduced in formula (104) and (105) via the matrix entries of the original H∗-representations.
The dimensions of these representations are given by the dimensions of the corresponding
highest weight representations of H∗. Moreover they satisfy πλ(f ll

′
µ ) = 0 for µ 6= λ, i.e. πλ

defines a representation of F ∗λ . By comparing (105) and (114) one finds that πλ corresponds
precisely to the unique non-trivial irreducible representation of F ∗λ . We conclude that the
representations {πλ} are the irreducible representations of F ∗. Since the labels, the matrix
elements and hence also the dimensions of these irreducible representations match those of
the irreducible representations of H∗ is seems very likely that the fusion rules for these rep-
resentations of F ∗ are also identical to the fusion rules of the corresponding H∗-representations.

We have seen that the representation of F ∗(H∗) are identical to the representations of H∗.
One might thus wonder to what extent H∗ and F ∗(H) are equivalent. If H∗ is a finite group
one would find that F ∗(H∗) being a double dual of CH∗ is isomorphic to the group algebra
CH∗. Since in our cases H∗ is a continuous group one has to take care in taking the dual.
Nonetheless one can define F (H∗) as the dual of H∗ via the irreducible representations of H∗.
Similarly, one can retrieve H∗ from the co-representations of F ∗(H). These co-representations
are nothing but the representations of F (H) which is the dual of F ∗(H). Let us illustrate this
for H∗ = U(1).
An irreducible representation of U(1) is uniquely labelled by an integer number. It is not very
hard to check from equation (86) that the product of F (U(1)) can be expressed as:

πn × πn′ = πn+n′ . (117)
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Since F (U(1)) is commutative its irreducible representations are 1-dimensional. An irreducible
representation thus sends π1 to some z ∈ C. It follows from (117) that the representation is
completely defined by z:

z : πn 7→ zn ∈ C. (118)

Not all values of z give a representation of F (U(1)) though. To give an example we note that
π−1 is mapped to z−1. This goes wrong for z = 0. For each z ∈ C \ {0} one does find a proper
representation. It is easy to check that C\{0} is a group. Obviously this is not the group U(1).
As matter of fact we have reconstructed the complexification U(1)C of U(1). To understand
this we note that U(1) has an involution which takes h 7→ h∗ = h−1. The representations of
U(1) respect this involution in the sense that (πn(h))∗ = πn(h∗). We therefore have a natural
involution on F ∗(U(1)) defined by (πn)∗ = π−n. Again one can define the representations
of F (U(1)) to respect the involution, i.e. (z(πn))∗ = z((πn)∗). This results in the condition
z∗ = z−1 which restricts z to the unit circle in C, i.e. to U(1).

For SU(2) broken to U(1) the Murray cone is the set of all non-negative integers. This implies
that the dual F+(U(1)) of F ∗+(U(1)) is generated by {πn : n ≥ 0}. The product is still given
by (117) and hence F+(U(1)) is a commutative algebra. Again we define an irreducible repre-
sentation by π1 7→ z ∈ C. Since the representation should respect the product we find that the
choice of z completely fixes the representation, i.e. z : πn 7→ zn. One might again wonder if all
values of z give a representation. Note that F+(U(1)) is not closed under inversion just as the
Murray cone is not closed under inversion. For example π−1 /∈ F+(U(1)). The representation
labelled by z = 0 is thus not immediately ruled out. Note that for z = 0 we have πn 7→ 0 for
all n > 0. The image of π0 seems undetermined, nonetheless we can set z(π0) = z0 ∈ C for
z = 0. The representation we now obtain does respect the product if and only if z0 equals
either 0 or 1. But since π0 is the unit of the algebra it should be mapped to the unit of C.
Hence we find that z(π0) = 1 for all z ∈ C and in particular for z = 0.
We have found that we should identify U(1)+ with C. The complex numbers are indeed closed
under multiplication and moreover this multiplication is associative. On the other hand there
is no inverse. We thus see that U(1)+ is a semi-group and not a group as U(1). Let us finally
connect both ends of the circle and see if the commutative algebra U(1)+ = C has the appro-
priate irreducible representations. Obviously U(1)+ has representations πn for n > 0 defined
by:

πn : z 7→ zn. (119)

Representations with n < 0 do not exist because the image of z = 0 would not be defined.
Finally the representation π0 is a bit tricky. One can however simply define π0(0) = z0.
It follows from the product on C that z0 equals either 0 or 1. If however we restrict all
representations to be continuous we find z0 = 1. It is now almost trivial to check that the
fusion rules of U(1)+ correspond precisely to the fusion rules of U(1). It would be interesting
to study if a smooth semi-group H∗+ can be defined for every possible residual dual gauge group
H∗.
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