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Oleg Lisovyy
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Abstract

We consider formal quantum Hamiltonian of a charged particle on the Poincaré

disk in the presence of an Aharonov-Bohm magnetic vortex and a uniform magnetic

field. It is shown that this Hamiltonian admits a four-parameter family of self-

adjoint extensions. Its resolvent and the density of states are calculated for natural

values of the extension parameters.

1 Introduction

Quantum dynamics on the Poincaré disk has long been a subject of theoretical inter-
est, mainly because of the insights its study provides into the theory of quantum chaos.
Analyzed examples include, for instance, the free motion under the action of constant
magnetic fields [8, 9, 23], the Kepler problem [25], the scattering by the Aharonov-Bohm
(AB) [24, 26] and Aharonov-Bohm-Coulomb [29] potentials, the study of point interac-
tions [3, 5] and quantum Hall effect [6].

In the present paper, we consider the Hamiltonian of a charged spinless particle moving
on the hyperbolic disk, pierced by an AB flux, in the presence of a uniform magnetic
field. First part of this work is rather standard: we determine the admissible boundary
conditions on the wave functions, using Krein’s theory of self-adjoint extensions (SAEs)
[4]. It turns out that in the most general case the formal Hamiltonian has deficiency
indices (2, 2) and thus admits a four-parameter family of SAEs. Let us remark that
similar results on the plane have been found in [2, 11] in the case of zero magnetic field,
and in [21] for non-zero fields; SAEs of the Dirac Hamiltonian on the plane have been
studied in [16, 22].

The rest of this paper is devoted to the study of a particular extension, corresponding
to the choice of regular boundary conditions at the position of the AB flux. We start by
constructing certain integral representations for common eigenstates of this Hamiltonian
and the angular momentum operator. These representations then allow to sum up the
contributions coming from different angular momenta to the resolvent kernel, and to
evaluate this kernel and the density of states in a closed form.

The material is organized as follows. In Section 2, we introduce basic notations and
study elementary solutions of the radial Schrödinger equation on the Poincaré disk. Self-
adjointness of the full AB Hamiltonian is discussed in Section 3. In Section 4 we find
a compact expression for the resolvent of the regular extension (formulas 4.14), (4.19)–
(4.22)). These relations represent the main result of the present work. The density of
states, induced by the AB flux in the whole hyperbolic space (see (5.8)–(5.10)), is obtained
in Section 5. Some technical results are relegated to the appendices.
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2 Free Hamiltonian on the Poincaré disk

2.1 Basic formulas

Let us identify the Poincaré disk D = SU(1, 1)/SO(2) with the interior of the unit circle
|z|2 < 1 in the complex plane, equipped with the metric

ds2 = gzz̄ dz dz̄ = R2 dz dz̄

(1− |z|2)2
(2.1)

of constant Gaussian curvature −4/R2. We consider a spinless particle moving on the
disk and interacting with a magnetic field. The latter can be introduced as a connection
1-form

A = Az dz + Az̄ dz̄

on the trivial U(1)-bundle over D. Quantum dynamics of a particle of unit charge is
described by the Hamiltonian

Ĥ = − 2

gzz̄
{Dz, Dz̄} , (2.2)

where Dz = ∂z + iAz and Dz̄ = ∂z̄ + iAz̄ are the usual covariant derivatives. To unburden
formulas, we put the particle mass equal to 1/2 and ~ = c = 1 throughout the paper.

In the remainder of the present section, the following vector potential is considered:

A(B) = −iBR
2

4

z̄ dz − z dz̄

1− |z|2 . (2.3)

It generates a curvature 2-form F (B), proportional to the invariant volume measure dµ =
i

2
gzz̄ dz ∧ dz̄. Indeed, we have

F (B) = dA(B) = Bdµ .

Therefore, the potential (2.3) describes a uniform magnetic field of intensity B. Introduc-
ing polar coordinates z = reiϕ, z̄ = re−iϕ, one can write the corresponding Hamiltonian
as

Ĥ(B) = −(1− r2)
2

R2

{

∂rr +
1

r
∂r +

1

r2
∂ϕϕ +

iBR2

1− r2
∂ϕ − B2R4

4 (1− r2)2
r2
}

. (2.4)

Note that the domain of Ĥ(B) is not yet specified. It will be fixed in the next section by
the requirement for the Hamiltonian to be a self-adjoint operator. According to Stone’s
theorem, this condition ensures the existence of consistent dynamics.
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2.2 Radial Hamiltonians

Formal Hamiltonian Ĥ(B) commutes with the angular momentum operator L̂ = −i∂ϕ.
Therefore, it leaves invariant the eigenspaces of L̂, spanned by the functions wl(r)e

ilϕ

(l ∈ Z). Being restricted to the eigenspace of L̂, characterized by the angular momentum
l, the Hamiltonian acts as follows:

wl(r) 7→ Ĥl wl(r),

Ĥl = −(1− r2)
2

R2

{

∂rr +
1

r
∂r −

l2

r2
− 4b l

1− r2
− 4b2r2

(1− r2)2

}

. (2.5)

Here we have introduced instead of B a dimensionless parameter b = BR2/4.
It will be useful for us to let the parameter l to take on not only integer, but also

arbitrary real values, and to study in some detail the properties of solutions of the radial
Schrödinger equation

(

Ĥl − k2
)

wl = 0. (2.6)

In what follows it will be always assumed that k2 ∈ C\R+ ∪ {0}. It is also convenient to
introduce instead of r a new variable t = r2.

We are interested in the solutions of (2.6) leading to square integrable (with the
measure dµ) functions on D. These solutions should be then square integrable on the

open interval I = (0, 1) with the measure dµt =
R2dt

2(1− t)2
. For each l ∈ R there exists

only one solution of (2.6), which is square integrable in the neighbourhood of the point
t = 1. Its explicit form is

w
(I)
l (t) = t−l/2 (1− t)χ 2F1 (χ− b, χ+ b− l, 2χ, 1− t) = (2.7)

= t l/2 (1− t)χ 2F1 (χ+ b, χ− b+ l, 2χ, 1− t) ,

where

χ =
1 +

√
1 + 4b2 − k2R2

2

and 2F1(α, β, γ, z) denotes Gauss hypergeometric function. The branches of square roots
are defined so that they take on real positive values for purely imaginary k.

Similarly, for each l ∈ (−∞,−1] ∪ [1,∞) there is only one solution of (2.6), which
is square integrable with respect to dµt near the point t = 0. The form of this solution
depends on whether l ≥ 1 or l ≤ −1. In the first case, i. e. for l ≥ 1, it is given by

w
(II,+)
l (t) = tl/2 (1− t)χ 2F1 (χ+ b, χ− b+ l, 1 + l, t) (2.8)

while for l ≤ −1 this solution is written as follows:

w
(II,−)
l (t) = t−l/2 (1− t)χ 2F1 (χ− b, χ+ b− l, 1− l, t) . (2.9)

Note that for |l| < 1 both functions w
(II,±)
l (t) are square integrable in the vicinity of the

point t = 0 and solve the radial Schrödinger equation (2.6). These solutions are linearly
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independent except for l = 0. However, in the latter case the equation (2.6) still admits
two distinct solutions that are square integrable as t→ 0:

w
(II)
0 (t) = (1− t)χ u(t), w̃

(II)
0 (t) = (1− t)χ v(t),

where u and v are any two linearly independent solutions of the hypergeometric equation
with parameters α = χ+b, β = χ−b, γ = 1 (one can choose them, for instance, according
to the formulas 15.5.16 and 15.5.17 of [1]).

Let us now show that the solutions w
(I)
l (t) and w

(II,+)
l (t) are linearly independent for

l > −1, and the solutions w
(I)
l (t) and w

(II,−)
l (t) are linearly independent for l < 1. This

can be done by an explicit computation of their Wronskian

W (f1, f2) = f1 · ∂tf2 − ∂tf1 · f2 .

Namely, using the connection and analytic continuation formulas for hypergeometric func-
tions [1], one obtains

W
(

w
(I)
l (t), w

(II,±)
l (t)

)

=
(

t C±
k,l

)−1
, (2.10)

with

C±
k,l =

Γ(χ± b)Γ(χ∓ b± l)

Γ(2χ)Γ(1± l)
. (2.11)

Therefore, for k2 ∈ C\R+ ∪ {0} and |l| ≥ 1 the equation (2.6) has no square integrable
solutions (with the measure dµt) on the whole interval I. This is true, in particular, for
all radial Hamiltonians Ĥl∈Z of the free particle in a uniform magnetic field, except for
the s-wave Hamiltonian Ĥ0. In the case |l| < 1 the equation (2.6) has exactly one square
integrable solution, given by the formula (2.7).

Let us now restrict the domain of Ĥl to D(Ĥl) = C∞
0 (I), i. e. to smooth compactly

supported functions. Then the above remarks imply that

• Ĥl is essentially self-adjoint for |l| ≥ 1,

• for |l| < 1 the operator Ĥl has deficiency indices (1, 1) and thus admits a one-
parameter family of self-adjoint extensions (SAEs).

Different extensions Ĥ
(γ)
l (|l| < 1) are in one-to-one correspondence with the isometries

between the deficiency subspaces K±
l = ker

(

Ĥl ∓ iε
)

, where ε ∈ R+ may be chosen

arbitrarily. They can be labeled by a real parameter γ ∈ [0, 2π) and characterized by the
domains

D(Ĥ
(γ)
l ) =

{

f + c
(

w+
l + eiγw−

l

)

| f ∈ C∞
0 (I), c ∈ C

}

,

where the functions w±
l (t) may be chosen as follows:

w±
l (t) = w

(I)
l (t)

∣

∣

∣

k2=±iε
. (2.12)

Remark. For a particular value of γ the domain D(Ĥ
(γ)
l ) is composed of functions,

regular at t = 0. The corresponding SAE of Ĥl will be denoted by Ĥreg
l .

4



2.3 Resolvent

The kernel Gk,l(t, t
′) of the resolvent of the radial Hamiltonian Ĥl satisfies the equation

(

Ĥl(t)− k2
)

Gk,l(t, t
′) =

2(1− t)2

R2
δ(t− t′) . (2.13)

It basically means that if
(

Ĥl − k2
)

u = v for some u ∈ D(Ĥl), then

u(t) =

∫

I

Gk,l(t, t
′)v(t′) dµt′.

In order to find the solution of the equation (2.13), consider the following ansatz:

Gk,l(t, t
′) =

{

C̃ ±
k,l w

(II,±)
l (t) w

(I)
l (t′) for 0 < t < t′ < 1,

C̃ ±
k,l w

(I)
l (t) w

(II,±)
l (t′) for 0 < t′ < t < 1,

(2.14)

where the signs “+” and “−” should be chosen for l ≥ 0 and l < 0, correspondingly. It is
clear that the function, defined by (2.14), solves the equation (2.13) for t 6= t′ and satisfies
the boundary conditions of square integrability at the points t = 0 and t = 1. (In the case
|l| < 1 the requirement of square integrability at the boundary points is not sufficient to
make the operator Ĥl self-adjoint; however, for such l, the ansatz (2.14) also satisfies the
regularity condition at t = 0 and thus corresponds to the resolvent of the extension Ĥreg

l ).

Taking into account the explicit form of the operator Ĥl, one may show that the
required singular behaviour of the Green function at the point t = t′ is guaranteed provided
the condition

∂t′Gk,l(t
′, t)
∣

∣

∣

t+0

t−0
= − 1

2t

holds. Using (2.14), one can rewrite this condition as

2t C̃ ±
k,l ·W

(

w
(I)
l (t), w

(II,±)
l (t)

)

= 1 .

It follows from (2.10) that the last relation is satisfied if we choose C̃ ±
k,l = C ±

k,l/2. Substi-
tuting this expression into (2.14), one finds a representation for the radial Green functions
Gk,l(t, t

′).

3 Hamiltonian in the presence of a magnetic vortex

3.1 Radial Hamiltonians

Let us now add to the Hamiltonian the field of an Aharonov-Bohm magnetic flux Φ = 2πν,
centered at z = 0:

A(v) = −iν
2

(

dz

z
− dz̄

z̄

)

. (3.1)
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This choice of the flux position involves no loss of generality, since we have a well-known
transitive SU(1, 1)-action on D, which preserves the metric (2.1):

z 7→ zg =
αz + β

β̄z + ᾱ
, g =

(

α β
β̄ ᾱ

)

∈ SU(1, 1). (3.2)

Any gauge field configuration corresponding to a single vortex and a uniform magnetic
field can be reduced to A = A(B) +A(v), using the transformation (3.2) combined with a
gauge change.

The Hamiltonian (2.2) in the presence of a vortex has thus the following form:

Ĥv = −(1− r2)
2

R2

{

∂rr +
1

r
∂r +

1

r2
(∂ϕ + iν)2 +

4ib

1− r2
(∂ϕ + iν)− 4b2

(1− r2)2
r2
}

. (3.3)

This Hamiltonian still commutes with the angular momentum operator L̂. Radial Hamil-
tonians Ĥv,l are obtained by the restriction of Ĥv to the eigenspaces of L̂ with fixed

angular momenta l ∈ Z. Namely, one obtains Ĥv,l = Ĥl+ν, where the operators Ĥα∈R are
defined as in (2.5). Thus the only effect the AB vortex has on the formal Hamiltonians is
the shift of the angular momentum variable by ν. This observation allows to considerably
simplify the derivation of many results, using the calculations from the previous section.

Remark. As usual, for integer flux values some further simplifications occur. The Hamil-
tonians Ĥ(B) and Ĥv are related by a gauge transformation

Ĥv = UĤ(B)U †, U : w 7→ e−iνϕw, (3.4)

which is globally well-defined for ν ∈ Z. The kernels of the resolvents of Ĥ(B) and Ĥv in
this case differ only by a factor of eiν(ϕ−ϕ′), and this change has no effect on the observable
quantities.

3.2 Self-adjointness

From now on it will be assumed that −1 < ν ≤ 0 (it is clear from the above that this
involves no loss of generality). Let us consider the full Hamiltonian Ĥv and restrict its
domain to functions with compact support on the punctured disk: D(Ĥv) = C∞

0 (D\{0}).
It was shown in the previous section that for |l| ≥ 1 the operator Ĥl is essentially self-
adjoint, and for |l| < 1 it has deficiency indices (1, 1). One should then distinguish two
cases:

• ν = 0. In this case Ĥv has deficiency indices (1, 1) and admits a one-parameter

family of SAEs Ĥ
(γ)
v with γ ∈ [0, 2π) and

D(Ĥ(γ)
v ) =

{

f + c
(

w+
0 + eiγw−

0

)

| f ∈ C∞
0 (D\{0}), c ∈ C

}

.

These Hamiltonians describe a purely contact (non-magnetic) interaction of a par-
ticle with the AB solenoid. They have already been considered in [3], so we will not
pursue their study.
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• −1 < ν < 0. For such ν the deficiency subspaces K± of the full Hamiltonian Ĥv are

generated by those of the operators Ĥν and Ĥ1+ν . Thus Ĥv has deficiency indices
(2, 2) and admits a four-parameter family of SAEs. Different extensions can be
labeled by a unitary 2× 2 matrix U and characterized by the domains

D(Ĥ U
v ) =

{

f +
∑

i=1,2

ci

(

w+
i +

∑

j=1,2

Uij w
−
j

)
∣

∣

∣
f ∈ C∞

0 (D\{0}), c1,2 ∈ C

}

.

where w±
1,2 are orthonormal elements of the bases of K±,

w±
1 (t, ϕ) =

w±
ν (t)

‖w±
ν (t)‖

, w±
2 (t, ϕ) =

w±
1+ν(t)

‖w±
1+ν(t)‖

eiϕ,

and ‖ · ‖ denotes the L2-norm on I with respect to the measure dµt.

Note that the diagonal matrix U describes magnetic point interactions acting separately
in s-channel (l = 0) and p-channel (l = 1). Non-diagonal U introduces a coupling between
the two modes so that the Hamiltonian no longer commutes with the angular momentum.

Further analysis of spectral properties of HU
v is a bit cumbersome in the general case

(see, for example, the papers [21], [2, 11], where such an analysis has been performed
for the AB effect on the plane with and without magnetic field). We remark, however,
that there exists a distinguished SAE of Ĥv, whose domain consists of functions vanishing
for t → 0. This extension will be denoted by Ĥreg

v . The next section is devoted to

the calculation of its resolvent
(

Ĥreg
v − k2

)−1

. The resolvent of any other SAE can be

obtained from the latter using Krein’s formula [4].

4 One-vortex resolvent

4.1 Contour integral representations of the radial waves

The main technical difficulty in the calculation of the resolvent kernel Gk(z, z
′) of the

Hamiltonian Ĥreg
v is the summation of radial contributions coming from different angular

momenta:

Gk(z, z
′) =

1

2π

∑

l∈Z

Gk,l+ν(t, t
′)eil(ϕ−ϕ′). (4.1)

In order to address this problem, it is useful to introduce instead of the radial waves
(2.7)–(2.9) the functions depending on both t and ϕ:

w
(I)
l (z) =

Γ(χ+ b)Γ(χ− b)

Γ(2χ)
e il(ϕ+π)w

(I)
l (t), (4.2)

ŵ
(I)
l (z) =

Γ(χ+ b)Γ(χ− b)

Γ(2χ)
e−il(ϕ+π)w

(I)
l (t), (4.3)
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w
(II,±)
l (z) = 2πi

Γ(χ∓ b± l)

Γ(χ∓ b)Γ(1± l)
e il(ϕ+π) w

(II,±)
l (t), (4.4)

ŵ
(II,±)
l (z) = 2πi

Γ(χ∓ b± l)

Γ(χ∓ b)Γ(1± l)
e−il(ϕ+π)w

(II,±)
l (t). (4.5)

Combining these formulas with the relations (2.14), (2.11), one can rewrite the Green
function (4.1) in the following way:

Gk(z, z
′) =

e−iν(ϕ−ϕ′)

8iπ2

(

G(+)
k (z, z′) + G(−)

k (z, z′)
)

, (4.6)

where the functions G(±)
k (z, z′) are given by

G(±)
k (z, z′) =

∑

l∈Z+ν, lR0

w
(I)
l (z)ŵ

(II,±)
l (z′) for |z| > |z′|, (4.7)

G(±)
k (z, z′) =

∑

l∈Z+ν, lR0

w
(II,±)
l (z)ŵ

(I)
l (z′) for |z| < |z′|. (4.8)

The sums (4.7)–(4.8) can be computed using a special set of solutions of stationary
Schrödinger equation without AB flux, known as horocyclic waves [12]. These solutions
have the form

Ψ±(z, θ) =
(1− |z|2)χ±

(1 + z e−θ)χ±−b (1 + z̄ eθ)χ±+b
, (4.9)

where

χ± =
1

2
±
(

χ− 1

2

)

and θ is an arbitrary complex parameter. Being considered as functions of θ, horo-
cyclic waves Ψ±(z, θ) have an infinite number of branchpoints located at θ = ± ln r +
i (ϕ+ π + 2πZ). Let us introduce a system of branch cuts in the θ-plane as shown in
the Fig. 1. The sheets of Riemann surfaces of the functions Ψ±(z, θ) are fixed by the
requirement that the arguments of both 1 + z e−θ and 1 + z̄ eθ are equal to zero on the
line Im θ = ϕ.

Recall that the Hamiltonians Ĥ(B) and Ĥv are related by the gauge transformation
(3.4). Although this transformation is singular for non-integer values of the flux, one can
still relate any solution of the equation (Ĥv−k2)w = 0 to a solution of the same equation
without AB field, (Ĥ(B) − k2)ψ = 0. However, since we have w = e−iνϕψ, the function ψ
should be branched with the monodromy e2πiν at the point z = 0. Motivated by this well-
known fact, we will try to represent radial wave functions (4.2)–(4.5) as superpositions of
elementary solutions (4.9),

w(z) =

∫

C

Ψ±(z, θ) ρ(θ) dθ ,

where C is an integration contour and ρ(θ) is an appropriately chosen weight function.
There will be three types of contours that will be important to us (see also Fig. 1):
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−

θ
φ+3π

φ+π

φ−π

α

lnr lnrγγ

α+2π

−

Figure 1: Contours of integration in the θ-plane

• Contour C+(z) starts at −∞ + iα, surrounds the branch cut b+ =
(

−∞ + i(ϕ +
π), ln r + i(ϕ+ π)

]

in a counter-clockwise manner, and goes to −∞+ i(α + 2π).

• Contour C−(z) starts at ∞ + i(α + 2π), then goes counter-clockwise around the
branch cut b− =

[

− ln r + i(ϕ + π),∞ + i(ϕ + π)
)

, and finally travels to ∞ + iα
along the ray parallel to the real axis.

• Contour C0(z) joins two branchpoints: θ1 = ln r+i(ϕ+π) and θ2 = − ln r+i(ϕ+π).

Real parameters α and γ can be chosen arbitrarily; the only conditions they should satisfy
are given by

|ϕ− α| < π, 0 ≤ γ < − ln r.

Assuming that Re k2 < 0, one may now write a number of contour integral represen-
tations for the radial waves (4.2)–(4.5):

w
(I)
l (z) =

∫

C0(z)

Ψ−(z, θ) e
lθ dθ, (4.10)

ŵ
(I)
l (z) =

∫

C0(z)

Ψ̂−(z, θ) e
−lθ dθ, (4.11)

w
(II,±)
l (z) = ±

∫

C±(z)

Ψ+(z, θ) e
lθ dθ, (4.12)

ŵ
(II,±)
l (z) = ∓

∫

C∓(z)

Ψ̂+(z, θ) e
−lθ dθ, (4.13)

where the functions Ψ̂±(z, θ) are obtained from Ψ±(z, θ) by replacing b → −b. Although
the validity of the representations (4.10)–(4.13) can be checked directly, their general
structure may also be a posteriori understood as follows. Consider, for instance, the
functions w

(I)
l (z) and w

(II,±)
l (z) as defined by (4.10) and (4.12). Continuation of these
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functions along a counter-clockwise circuit enclosing the point z = 0 amounts to simulta-
neous shift of the branch cuts and integration contours upwards by 2π in the θ-plane. This
shift is in turn equivalent to simple multiplication of both functions by e2πil. Moreover,
elementary solutions (4.9) satisfy the relation

L̂Ψ±(z, θ) = (z∂z − z̄∂z̄)Ψ±(z, θ) = −∂θΨ±(z, θ),

which means that RHSs of (4.10) and (4.12) are common (multivalued) eigenfunctions of
Ĥ(B) and L̂, their angular momenta being equal to l. First function is regular for t → 1,
since in this case the branch cuts pinch the imaginary axis. Similarly, the second function
is regular for t → 0. This implies (modulo constant factors that have to be found by a
direct calculation) the relations (4.2) and (4.4).

4.2 Summation

Let us now turn to the calculation of the sums (4.7)–(4.8). For simplicity the case |z| > |z′|
is treated in detail and we only indicate the changes needed to handle another case.
Substituting contour representations (4.2) and (4.5) into the relation (4.7), one obtains

G(±)
k (z, z′) = ∓

∑

l∈Z+ν, lR0

∫

C0(z)

dθ1

∫

C∓(z′)

dθ2 Ψ−(z, θ1)Ψ̂+(z
′, θ2) e

l(θ1−θ2).

Since |z| > |z′|, one may choose the contours C±(z
′) in such a way that γz′ > − ln r.

Consequently, we have Re (θ1 − θ2) < 0 for all θ1 ∈ C0(z), θ2 ∈ C−(z
′) and Re (θ1 − θ2) >

0 for all θ1 ∈ C0(z), θ2 ∈ C+(z
′). Then it becomes possible to perform the summation

inside the integrals and one finds

G(+)
k (z, z′) + G(−)

k (z, z′) =

∫

C0(z)

dθ1

∫

C+(z′)∪C−(z′)

dθ2 Ψ−(z, θ1)Ψ̂+(z
′, θ2)

e(1+ν)(θ1−θ2)

eθ1−θ2 − 1

We would like to deform the contours C±(z
′) in the last integral over θ2 so that their

vertical parts compensate one another. Then C+(z
′) ∪ C−(z

′) transforms into two hori-
zontal lines, but one also earns a pole contribution coming from e θ2 = e θ1 . Next, if we
assume that ϕ − ϕ′ 6= ±π, then the two lines can be deformed into Im θ2 = ϕ′ using
quasiperiodicity in θ2. Together with (4.6), this leads to the following representation for
the Green function:

Gk(z, z
′) =











e−iν(ϕ−ϕ′+2π)G
(0)
k (z, z′) + ∆k(z, z

′) for ϕ− ϕ′ ∈ (−2π,−π),
e−iν(ϕ−ϕ′) G

(0)
k (z, z′) + ∆k(z, z

′) for ϕ− ϕ′ ∈ (−π, π),
e−iν(ϕ−ϕ′−2π)G

(0)
k (z, z′) + ∆k(z, z

′) for ϕ− ϕ′ ∈ (π, 2π) ,

(4.14)

with

G
(0)
k (z, z′) =

1

4π

∫

C0(z)

dθ Ψ−(z, θ)Ψ̂+(z
′, θ) , (4.15)
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∆k(z, z
′) =

1− e−2πiν

8iπ2
e−iν(ϕ−ϕ′)

∫

C0(z)

dθ1

∫

Im θ2=ϕ′

dθ2 Ψ−(z, θ1)Ψ̂+(z
′, θ2)

e(1+ν)(θ1−θ2)

e θ1−θ2 − 1
. (4.16)

Similarly, assuming that |z| < |z′|, one obtains an integral representation of the Green

function which has exactly the same form as (4.14), except that the functions G
(0)
k (z, z′)

and ∆k(z, z
′) are now given by

G
(0)
k (z, z′) =

1

4π

∫

C0(z′)

dθ Ψ̂−(z
′, θ)Ψ+(z, θ) , (4.17)

∆k(z, z
′) =

e2πiν − 1

8iπ2
e−iν(ϕ−ϕ′)

∫

C0(z′)

dθ1

∫

Im θ2=ϕ

dθ2 Ψ̂−(z
′, θ1)Ψ+(z, θ2)

e(1+ν)(θ2−θ1)

e θ2−θ1 − 1
. (4.18)

After some computations (technical details are outlined in the Appendix A) one may
show that both representations coincide. Moreover, the integrals (4.15) and (4.17) can be
carried out explicitly:

G
(0)
k (z, z′) =

(

1− zz̄′

1− z̄z′

)b

ζ
(

u(z, z′)
)

, (4.19)

where u(z, z′) =

∣

∣

∣

∣

z′ − z

1− z̄z′

∣

∣

∣

∣

2

has a simple relation with the geodesic distance between the

points z and z′, and the function ζ(u) is given by

ζ(u) =
1

4π

Γ(χ+ b)Γ(χ− b)

Γ(2χ)

(

1− u
)χ

2F1

(

χ+ b, χ− b, 2χ, 1− u
)

. (4.20)

Note that G
(0)
k (z, z′) coincides with the well-known expression for the resolvent kernel

of the Hamiltonian without AB field [9, 20]. This can also be seen directly from the
representation (4.14), since ∆k(z, z

′) in (4.16) or (4.18) obviously vanishes for ν = 0. The
function ∆k(z, z

′) may also be written in a symmetric form:

∆k(z, z
′) =

sin πν

π

∞
∫

−∞

dθ
e(1+ν)θ+i(ϕ−ϕ′)

1 + e θ+i(ϕ−ϕ′)

(

1 + rr′e−θ

1 + rr′e θ

)b

ζ
(

v(r, r′, θ)
)

, (4.21)

with

v(r, r′, θ) =
r2 + r′2 + 2rr′ cosh θ

1 + r2r′2 + 2rr′ cosh θ
. (4.22)

In our opinion, the representation (4.14) and the formulas (4.19)–(4.22) constitute the
most interesting results of the present paper. It is instructive to compare them with the
known results in the flat space (cf. the relations (2.25)–(2.26) in [30] or the formula (5.10)
from [27]). Notice that the ‘free’ part of the Green function is manifestly separated in
(4.14) from the vortex-dependent contribution ∆k(z, z

′).
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5 Spectrum and density of states

The spectrum of the regular extension Ĥreg
v consists of three parts:

• a continuous spectrum E ∈
[

(1 + 4b2)/R2 ,∞
)

;

• a finite number of infinitely degenerate eigenvalues, which coincide with the usual
Landau levels on the hyperbolic disk [9, 24] in the absence of the AB field. These
levels are explicitly given by

E(0)
n =

1

R2

[

1 + 4b2 − 4

(

|b| − n− 1

2

)2
]

, (5.1)

where n = 0, 1, . . . , nmax < |b| − 1/2. Corresponding common eigenfunctions of the
Hamiltonian Ĥreg

v and the angular momentum operator L̂ can be expressed in terms
of Jacobi’s polynomials (cf. the relation (13) in [24]):

Ψ
(0)
n,l(t, ϕ) ∼ t|l+ν|/2(1− t)|b|−nP (2|b|−2n−1,|l+ν|)

n (2t− 1) eilϕ.

Here one should take l = 0,−1,−2, . . . for b > 0 and l = 1, 2, . . . for b < 0.

• a finite number of bound states E
(ν)
n with finite degeneracy. The form of these

eigenvalues depends on the sign of magnetic field. Namely, for b > 0 one has

E(ν,+)
n =

1

R2

[

1 + 4b2 − 4

(

b− n− (1 + ν)− 1

2

)2
]

, (5.2)

where n = 0, 1, . . . , n′
max < b− (ν +1)− 1/2. In the case b < 0, the eigenvalues may

be written as

E(ν,−)
n =

1

R2

[

1 + 4b2 − 4

(

|b| − n+ ν − 1

2

)2
]

, (5.3)

with n = 0, 1, . . . , n′′
max < |b| + ν − 1/2. Common eigenstates of Ĥreg

v and L̂ are
again given by Jacobi’s polynomials:

b > 0 : Ψ
(ν,+)
n,l (t, ϕ) ∼ t(l+ν)/2(1− t)b−n−(ν+1)P (2b−2n−2(ν+1)−1,l+ν)

n (2t− 1) eilϕ,

b < 0 : Ψ
(ν,−)
n,l (t, ϕ) ∼ t|l+ν|/2 (1− t)|b|−n+ν P (2|b|−2n+2ν−1,|l+ν|)

n (2t− 1) eilϕ.

For given radial quantum number n the allowed eigenvalues of the angular momen-
tum are l = 1, 2, . . . , n+ 1 (for b > 0) and l = 0,−1, . . . ,−n (for b < 0).

Remark. The above expressions (5.1)–(5.3) for the energy levels can also be extracted
from the recent work [7]. It is worthwhile to emphasize that the discrete spectrum is
absent for |b| < 1/2.
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Let us now consider the density of states (DoS) on the hyperbolic disk. It can be
obtained from the boundary values of the resolvent kernel on the real axis in the complex
energy plane, using the following formula:

ρ(E) =
1

π
ImTrGk(z, z

′ → z)
∣

∣

∣

k2=E+i0
, E ∈ R.

Both terms in the representation (4.14) of the Green function contribute to the DoS.

The contribution of the free-resolvent kernel G
(0)
k (z, z′) has been first calculated by Comtet

[9]. His results (supplemented by an additional term [6], coming from the discrete spec-
trum) give the following expression for the DoS:

ρ(0)(E, z) =
1

π
ImG

(0)
k (z, z′ → z)

∣

∣

∣

k2=E+i0
=

=
1

4π

sinh 2πλ

cosh 2πλ+ cos 2πb
Θ

(

E − 1 + 4b2

R2

)

+

+
2

πR2

nmax
∑

n=0

(

|b| − n− 1

2

)

δ
(

E − E(0)
n

)

.

Here Θ(x) denotes Heaviside function and

λ =
1

2

√
ER2 − 1− 4b2 . (5.4)

One can not expect that the DoS per unit area, induced by the AB field, will also be
constant on D. However, it should depend only on the geodesic distance between a given
point on the disk and the flux position. Indeed, since the function ∆(z, z′) is non-singular
for z → z′, the vortex-dependent part of the DoS is given by

ρ(ν)(E, z) =
1

π
Im∆k(t)

∣

∣

∣

k2=E+i0
, (5.5)

where the function ∆k(t) is obtained from ∆(z, z′) by setting ϕ = ϕ′, r2 = r′2 = t:

∆k(t) =
sin πν

π

∞
∫

−∞

dθ
e (1+ν)θ

1 + e θ

(

1 + te−θ

1 + te θ

)b

ζ

(

2t(1 + cosh θ)

1 + t2 + 2t cosh θ

)

. (5.6)

As it stands, the representation (5.6) is valid in the left half-plane Re k2 < 0, where the
function ∆k(t) is analytic. However, the DoS is determined by the singularities of ∆k(t)
that occur on the positive part of the real axis (we may expect there a finite number of
poles and the branch cut

[

(1 + 4b2)/R2 ,∞
)

, corresponding to the continuous part of the

spectrum of Ĥreg
v ). One could try to construct the appropriate analytic continuation of

∆k(t), considering (5.6) as a contour integral and then suitably deforming the contour. It
seems, however, that this approach does not lead to any satisfactory result because of the
complicated singularity structure of the function under the integral sign in the θ-plane.
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An alternative method consists in the following. Remark that the vortex-dependent
contribution to the DoS in the whole hyperbolic space

ρ(ν)(E) =

∫

D

dµ ρ(ν)(E, z) (5.7)

has a finite value, since

(

1 + te−θ

1 + te θ

)b

ζ

(

2t(1 + cosh θ)

1 + t2 + 2t cosh θ

)

=

=



















− 1

4π

[

ln 2t+ ln(1 + cosh θ) + 2γE + ψ(χ+ b) + ψ(χ− b)
]

+ o(1) for t→ 0,

1

4π

Γ(χ+ b)Γ(χ− b)

Γ(2χ)

(1− t)2χ

(1 + eθ)χ+b(1 + e−θ)χ−b
+ o

(

(1− t)2χ
)

for t→ 1.

If one now integrates ∆k(t) over spatial coordinates (see Appendix B) and then consid-
ers the analytic continuation of the result to the complex energy plane, the following
expression for ρ(ν)(E) can be obtained:

ρ(ν)(E) = −R
2

4π
Im

1

2χ− 1

{

(χ− b+ ν)
[

ψ(χ− b)− ψ(χ− b+ ν + 1)
]

+ (5.8)

+ (χ+ b− ν − 1)
[

ψ(χ+ b)− ψ(χ + b− ν − 1)
]}
∣

∣

∣

k2=E+i0
=

= ρ
(ν)
d (E) + ρ(ν)c (E),

where the contributions of the discrete and continuous part of the spectrum are given by

ρ
(ν)
d (E) =























n′
max
∑

n=0

(n+ 1) δ
(

E − E(ν,+)
n

)

−
nmax
∑

n=0

(n− ν) δ
(

E −E(0)
n

)

for b > 0,

n′′
max
∑

n=0

(n+ 1) δ
(

E − E(ν,−)
n

)

−
nmax
∑

n=0

(n + ν + 1) δ
(

E − E(0)
n

)

for b < 0,

(5.9)

ρ(ν)c (E) = −R
2

8λ
Θ

(

E − 1 + 4b2

R2

)

{

λ sinh 2πλ+
(

1
2
− b+ ν

)

sin 2π(b− ν)

cosh 2πλ+ cos 2π(b− ν)
− (5.10)

− λ sinh 2πλ+
(

1
2
− b+ ν

)

sin 2πb

cosh 2πλ+ cos 2πb

}

,

and the parameter λ is defined as in (5.4).
At last we add a comment concerning the flat space limit (R → ∞) at zero magnetic

field (b = 0). In this case the representation (5.8) for the vortex-dependent DoS transforms
into

ρ(ν)(E)
R→∞
−→

1

π
Im

ν(ν + 1)

2k2

∣

∣

∣

k2=E+i0
= −ν(ν + 1)

2
δ(E) . (5.11)

14



This result has been first obtained in [10], and it has important consequences in the theory
of disordered magnetic systems (see, for example, [13, 14, 15]). Obtaining the relation

(5.11) directly from (5.10) is more subtle; one should consider ρ
(ν)
c (E) as a distribution

and supply it with a proper regularization at the edge of the spectrum, i. e. as λ→ +0.

6 Discussion

We have studied the Hamiltonian of a particle moving on the hyperbolic disk in the
background of a uniform magnetic field and the AB gauge potential. The density of
states and the resolvent of this operator have been calculated in a closed form, using
Sommerfeld-type integral representations for the radial waves.

The above discusssion does not exhaust all problems related to the system under
consideration. First of all, there remains a technical question of analytic continuation
of the representation (4.21) to energy values with Re k2 ≥ 0. Such continuation would
allow to investigate the curvature dependence of various vacuum quantum numbers, e. g.
fractional charge, magnetic flux and angular momentum (see, for instance, [33]), induced
by the AB vortex. One may also try to address the latter problem, applying the technique
we have used in the calculation of the density of states.

Another interesting question concerns the generalization of our results to the case of
the Dirac Hamiltonian. This problem, in its turn, appears to be non-trivially related
to the theory of isomonodromic deformations on the hyperbolic disk [28, 31, 32]. More
precisely, it was shown in [31] that the two-point isomonodromic tau function of the Dirac
operator on the Poincaré disk provides a solution to Painlevé VI equation. The explicit
form of this Painlevé transcendent in a particular case of zero magnetic field has been
conjectured by Doyon [17], whose idea was to replace the tau function by its physical
analog — a correlator of monodromy fields, and to sum up the corresponding form factor
expansion. The missing ingredient in the rigorous proof of this result and its generalization
to the case of non-zero field is the Green function of the Dirac operator with one branch
point, precisely analogous to the resolvent found in the present paper. Moreover, the
knowledge of this Green function enables one to compute all form factors of monodromy
fields on the hyperbolic disk [17], in particular, those of Ising spin and disorder fields
[18, 19]. We leave these problems to a future publication.

Acknowledgements. I warmly thank Dublin Institute for Advanced Studies, where
a large part of this work has been done, for hospitality. I am very grateful to Sasha
Povolotsky for useful conversations and help with the literature.

Appendix A

Here we describe a method of obtaining the expressions (4.19)–(4.22) for the Green func-
tion from the integral representations (4.15)–(4.18). First, note that horocyclic waves
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(4.9) satisfy the following identity:

Ψ±(z, θ) =
(

ᾱ + βe−θ
)−χ±+b (

α + β̄eθ
)−χ±−b

(

βs̄+ α

β̄s+ ᾱ

)b

Ψ±(s, ξ), (A.1)

where we have introduced the notation

s =
ᾱz − β

−β̄z + α
, e ξ =

ᾱ eθ + β

β̄ eθ + α
(A.2)

and assumed that |α|2+ |β|2 = 1. Let us now make the change of variables (A.2) in (4.15)

(introducing similarly the variable s′ =
ᾱz′ − β

−β̄z′ + α
instead of z′). It is then straightforward

to check that (4.15) reduces to

G
(0)
k (z, z′) =

1

4π

(

βs̄+ α

β̄s+ ᾱ

)b(
β̄s′ + ᾱ

βs̄′ + α

)b ∫

C0(s)

dξ Ψ−(s, ξ)Ψ̂+(s
′, ξ) (A.3)

We may now adjust the parameters α and β in such a way that s′ = 0. For example, one
can take

α =
1

√

1− |z′|2
, β =

z′
√

1− |z′|2
.

Since in this case s =
z − z′

1− zz̄′
, the relation (A.3) transforms into

G
(0)
k (z, z′) =

1

4π

(

1− zz̄′

1− z̄z′

)b ∫

C0(s)

dξ Ψ−(s, ξ) =

=
1

4π

(

1− zz̄′

1− z̄z′

)b
(

1− |s|2
)χ−

− ln |s|
∫

ln |s|

dξ

(1− |s|e−ξ)χ−−b (1− |s|e ξ)χ−+b
. (A.4)

After the change of variable e ξ =
1− (1− |s|2)t

|s| in the last integral, we obtain standard

representation of Gauss hypergeometric function,

G
(0)
k (z, z′) =

1

4π

(

1− zz̄′

1− z̄z′

)b
(

1− |s|2
)χ

1
∫

0

tχ−b−1(1− t)χ+b−1dt

(1− (1− |s|2) t)χ+b
,

which immediately gives (4.19)–(4.20). Performing analogous manipulations with the
representation (4.17), one finds the same answer.

Let us now consider the representation (4.16) for the function ∆k(z, z
′). Interchanging

the order of integration and then introducing instead of θ2 a new variable θ̃2 = θ2 − θ1,
one can check that this relation transforms into

∆k(z, z
′) =

1− e−2πiν

2πi
e−iν(ϕ−ϕ′)

∫

Im θ̃2=ϕ′−ϕ−π

dθ̃2
e−(1+ν)θ̃2

e−θ̃2 − 1
F (z, z′, θ̃2) , (A.5)
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where the function F (z, z′, θ̃2) after additional change of integration variable θ1 → θ̃1 =
θ1 + θ̃2 can be written as

F (z, z′, θ̃2) =
1

4π

∫

C
θ̃2

(z)

dθ̃1 Ψ−(z, θ̃1 − θ̃2)Ψ̂+(z
′, θ̃1) . (A.6)

In the last expression, Cθ̃2
(z) represents the integration contour obtained from C0(z) by

shifting it by θ̃2.
One may now use the trick described above to eliminate the function Ψ̂+(z

′, θ̃1) from
(A.6). Namely, consider further change of variables:

θ̃1 → ξ, e ξ =
e θ̃1 + z′

z̄′e θ̃1 + 1
.

Somewhat tedious but fairly routine calculation shows that the integral (A.6), being
rewritten in terms of ξ, reduces to

F (z, z′, θ̃2) =
1

4π

(

1 + z′s̃

1 + z̄′s

)b

(1− ss̃)χ−

∫

Cξ

dξ

(1 + s e−ξ)χ−−b(1 + s̃ e ξ)χ−+b
, (A.7)

where we have introduced the notation

s = − r eRe θ̃2 + r′

1 + rr′ eRe θ̃2
eiϕ

′

, s̃ = − r e−Re θ̃2 + r′

1 + rr′ e−Re θ̃2
e−iϕ′

. (A.8)

Contour Cξ denotes the horizontal line segment in the ξ-plane, joining the points ln |s|+iϕ′

and − ln |s̃|+ iϕ′. Rewriting (A.7) in terms of ordinary integrals and using (A.8), one gets
a relation analogous to (A.4):

F (z, z′, θ̃2) =
1

4π

(

1 + rr′ eRe θ̃2

1 + rr′ e−Re θ̃2

)b

(1− ss̃)χ− ×

×
− 1

2
ln |ss̃|
∫

1

2
ln |ss̃|

dξ
(

1− |ss̃|1/2 e−ξ
)χ−−b (

1− |ss̃|1/2 e ξ
)χ−+b

=

=

(

1 + rr′ eRe θ̃2

1 + rr′ e−Re θ̃2

)b

ζ
(

|ss̃|
)

. (A.9)

Finally, combining the last formula with (A.5) and (A.8), we find the relations (4.21)–
(4.22). The same result can be obtained from the representation (4.18) in a completely
analogous manner.
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Appendix B

In order to integrate the function ∆k(t) over the hyperbolic disk, consider the following
identity:

(

1 + te−θ

1 + te θ

)b

ζ

(

2t(1 + cosh θ)

1 + t2 + 2t cosh θ

)

=

=
(1− t)2χ

4π

∞
∫

−∞

dθ′

[(1 + e−θ)(1 + e−θ′)− (1− t)e−θ]χ−b
×

× 1

[(1 + eθ)(1 + eθ′)− (1− t)(eθ + eθ′ + eθ+θ′)]χ+b
.

Substituting this relation into the integral

∫

D

dµ ∆k(t), integrating over the angle ϕ and

introducing instead of t a new variable s = 1− t, one obtains
∫

D

dµ ∆k(t) = R 2 sin πν

4π

∫ ∞

−∞

dθ

∫ ∞

−∞

dθ′
e (1+ν)θ

1 + e θ
F(θ, θ′), (B.1)

F(θ, θ′) =

∫ 1

0

s2χ−2 ds

[(1 + e−θ)(1 + e−θ′)− se−θ]χ−b [(1 + eθ)(1 + eθ′)− s(eθ + eθ′ + eθ+θ′)]χ+b
.

After further change of variable s→ u =
s

s+ (1 + eθ)(1 + eθ′)(1− s)
the function F(θ, θ′)

can be rewritten as

F(θ, θ′) =
1

(1 + eθ)(1 + eθ′)

∫ 1

0

u2χ−2du

[e−θ−θ′ + (1 + e−θ′)u]χ−b
.

Integrating once by parts, one finds

F(θ, θ′) =

[

1 + e−θ′ + e−θ−θ′
]−(χ−b)

(2χ− 1)(1 + eθ)(1 + eθ′)
+ (B.2)

+
(χ− b)e−θ′

(2χ− 1)(1 + eθ)

∫ 1

0

u2χ−1du

[e−θ−θ′ + (1 + e−θ′)u]χ−b+1
. (B.3)

Let us consider the contribution of the term (B.2) to the integral (B.1). Introducing
instead of θ′ a new variable v = [1 + e−θ′ + e−θ−θ′]−1, we may write
∫ ∞

−∞

dθ

∫ ∞

−∞

dθ′
e (1+ν)θ

1 + e θ
F1(θ, θ

′) =
1

2χ− 1

∫ 1

0

dv

∫ ∞

−∞

dθ
e (1+ν)θ

(1 + e θ)2
vχ−b−1

1 + ve−θ
. (B.4)

In the contribution of the term (B.3), we first perform the integration over θ′, then replace
θ → −θ and finally exchange the order of integration over θ and u. The result looks quite
similar to (B.4):
∫ ∞

−∞

dθ

∫ ∞

−∞

dθ′
e (1+ν)θ

1 + e θ
F2(θ, θ

′) =
1

2χ− 1

∫ 1

0

du

∫ ∞

−∞

dθ
e−νθ

(1 + e θ)2
uχ+b−1

1 + ue−θ
. (B.5)
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The integrals over θ in (B.4)–(B.5) can be easily calculated by residues. For example, one
obtains

sin πν

π

∫ ∞

−∞

dθ
e (1+ν)θ

(1 + e θ)2(1 + ve−θ)
=
v1+ν − 1 + (1 + ν)(1− v)

(1− v)2
.

Subsequent integration over v and u leads to the final result:

∫

D

dµ ∆k(t) = − R 2

4(2χ− 1)

{

(χ− b+ ν)
[

ψ(χ− b)− ψ(χ− b+ ν + 1)
]

+

+ (χ+ b− ν − 1)
[

ψ(χ+ b)− ψ(χ+ b− 1− ν)
]}

,

where ψ(x) denotes the digamma function.
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[5] J. Brüning, V. A. Geyler, Gauge-periodic point perturbations on the Lobachevsky
plane, Theor. & Math. Phys. 119, (1999), 687–697.

[6] D. V. Bulaev, V. A. Geyler, V. A. Margulis, Quantum Hall effect on the Lobachevsky
plane, Physica B337, (2003), 180–185.

[7] D. V. Bulaev, V. A. Geyler, V. A. Margulis, Effect of surface curvature on magnetic
moment and persistent currents in two-dimensional quantum rings and dots, Phys.
Rev. B69, (2004), 195313; preprint cond-mat/0308500.

[8] A. Comtet, P. J. Houston, Effective action on the hyperbolic plane in a constant
external field, J. Math. Phys. 26, (1985), 185–191.

[9] A. Comtet, On the Landau levels on the hyperbolic plane, Ann. Phys. 173, (1987),
185–209.

[10] A. Comtet, Y. Georgelin, S. Ouvry, Statistical aspects of the anyon model, J.
Phys. A22, (1989), 3917–3925.

19



[11] L. Dabrowski, P. Stovicek, Aharonov-Bohm effect with δ-type interaction, J. Math.
Phys. 39, (1998), 47–62; preprint physics/9612014.

[12] E. De Micheli, I. Scorza, G. A. Viano, Hyperbolic geometrical optics: hyperbolic
glass, J. Math. Phys. 47, (2006), 023503.

[13] J. Desbois, C. Furtlehner, S. Ouvry, Random magnetic impurities and the δ-impurity
problem, J. Phys. I France 6, (1996), 641-648; preprint cond-mat/9412076.

[14] J. Desbois, C. Furtlehner, S. Ouvry, Random magnetic impurities and the Landau
problem, Nucl. Phys. B453, (1995), 759-776; preprint cond-mat/9509105.

[15] J. Desbois, S. Ouvry, C. Texier, Persistent currents and magnetization in two-
dimensional magnetic quantum systems, Nucl. Phys. B528, (1998), 727-745;
preprint cond-mat/9801106.

[16] Ph. de Sousa Gerbert, Fermions in an Aharonov-Bohm field and cosmic strings,
Phys. Rev. D40, (1989), 1346–1349.

[17] B. Doyon, Two-point correlation functions of scaling fields in the Dirac theory on
the Poincare disk, Nucl. Phys. B675, (2003), 607–630; preprint hep-th/0304190.

[18] B. Doyon, Form factors of Ising spin and disorder fields on the Poincaré disk, J.
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