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JUMP CONDITIONS AT DISCONTINUITIES IN GENERAL RELATIVITY

by

STEPHED .O'BRIEN and J. L. SYNGE

Summary: On the surface of a body such as the earth, some of the com-
ponents of the stress-energy tensor Tz change abruptly, and
there are discontinuities in some of the derivatives of the
metric tensor Byn® The purpose of this paper is to make a
general investigation of the jump conditions for Tz and the
derivatives of 8y 8CTOSS any 3~-gpace of discontinuity in
the Riemannian 4-space of general relativity. The procedure
is to take a metric tensor depending on a parameter <« and
associate a boundary layer of thickness 2: with a selected
3-space 113; then, by letting ¢ tend to zero, we produce a
discontinuity on E;B and derive the jump conditions on 213
by a limiting process, based on certain hypotheses of bounded-

ness.

15 Introduction

A problem in mathematical physics is not completely stated by writing
down partial differential equations. Boundary conditions must be specified,
and also jump conditions across surfaces on which some of the unknown quan-
tities or their derivatives may be discontinuous.

To illustrate what this means, consider the problem of determining the
Newtonian gravitational potential V of a distribution of matter for which the

density is a constant 1 in = volume R1, a different constant ?5 in a volume



e

R, enclosing R1, and zero in infinite space R3 outside R2. It is true that

2
there is an integral formula giving V directly, but if we look at the problem

from the standpoint of field theory, we start by writing down the partial

‘differential equations b

o
}

a¥ = 4 T F1 inR1,
AV = 4"'5‘?2 inR2, (1'1)
%
A¥Y = 0 in Koo i
: |

These equations do not determine V. We must add to them the boundary con-

dition that V tends to zero at infinity, and the jump conditions
V and PV/2n continuous across &L and b 4! (1.2)

where £ is the surface separating R1 and R2 and 23' the surface separating

R2 and R3.
The conditions (1.2) may be viewed in three different ways. First, in

a field theory of gravitation which admits the existence of discontinuities
from the beginning, they must be written down alongside the field equations
(1.1) as distinct hypotheses, ranking equal with the field equations in im-
portance. Secondly, they may be derived from the field equations with the |
aid of some subsidiary hypotheses by a limiting process in which the surfacesi
'E: and Z:' are replaced by thin boundary layers in which the density chang£

rapidly but contimuously, Thirdly, both (1,1) and (1.2) may be derived from |

a hypothesis as to the continuity of V and an integral law of the form

j%—:’;-ds = 4“,r.f’ aT, (143)

connecting the integral of the normal derivative of V over a surface S with
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the integral of density throughout its interior, this law holding for all
surfaces S5, even thosé containing surfaces of discontinuity of the density.
A similar situation arises in the general theory of relativity. We

write down the familiar field equations

a e Ry (1.4)
mn mn

where Gmn are the components of the Einstein tensor (functions of e and
their first and second derivativee), i+ is a gravitational constant, and
T_, the components of the stress-energy tensor. We may regard (1.4) as
‘partial differential equations for the determination of the Eon? the

tensor Tmn being assigned, subject to the conservation conditions

Tm = 0, (1'5)
nijm

implied by (944)s (The vertical stroke denotes covariant differentiation. )
If the given distribution of Tmn is continuous, the determination of
gmn from (1.4) would require at leagst the statement of boundary conditions
at infinity. On account of the non-linearity of (1.4), the whole question
of the data necessary to determine a solution is a very difficult one, and
we have no intention of attempting to discuss it here. Our question is a
much simpler one. We think of a 3-space 213 in space-time across which
some of the components of Tmn are discontinuous (e.g. ‘the history of the
surface of the earth). It is quite certain that the field equations (1.4)
cannot determine 8o in the absence of a statement as to what happens when

We cross 253, and we ask the question: What are the jump conditions on

gmn and their partial derivatives, and also the jump conditions on Tmn’ if

some of the components of Tmn change abruptly on crossin&';%?

As in the Newtonian problem discussed above, there are three ways of
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treating this matter. First, we might extract from our physical intuition
jump conditions which seem natural and write them down as a hypothesis be-
side the field equations (1.4). Secondly, we might introduce a boundary
layer across which all quantities change continuously, and proceed to a
limit in which the thickness of the layer tends to zero. Thirdly, we might
replace the field equations (1.4) by some comprehensive integral formula
analogous to (1.3), and obtain from it (combined with the hypothesis that
gmn are continuous) both (1.4) and the remaining jump conditions.

We lack the physical intuition required in the first way, and we have

no idea what integral law to take in order to proceed in the third way;

accordingly we shall follow the second way, that of the boundary layer.

5P Notation and coordinate system

We shall use latin suffixes for the range 1, 2, 3, 4 and Greek for the
range 1, 2, 3, with summation for repeated suffixes in both cases.

Let yr be a coordinate system in a domain R, of space-time. A set of

4
four equations

yr £7 (x1, x2, x3, x4) (2+1)

may be regarded as defining a singly infinite set of 3-spaces in R4, the

parametric equations of any one of these 3-spaces being given by putting

x4 = constant, with x¥ as parameters. We shall denote by 533 the 3-gpace

with equation x4 = 0, or

o z

y = fr (11, s x3, O). (2.2)

This is the 3-space which we shall take as the 3-space of discontinuity. It

B S orank B . with

divides (we shall suppose) R, into two parts, R, with x 4

4



x < 0 (Pig. 1).

Pig. 1: R, divided into R*, and R™, by T, (x* = 0)

We shall henceforth use x as coordinates in R4, the coordinates yr
serving merely to introduce them. Note that there is no implication that
x4 is a time-like coordinate; indeed no mention has been made of the metric

tensor so far in relation to the coordinate system.
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X e The boundary layer

We now introduce a parameter € which takes values in the range
50 > € ) 0, where € isa positive constant, fixed once for all. We
shall denote by E the range € ) € Y 0, the value € = O being thus ex-
cluded from the range E.

We think of a S-dimensional space 85 in which x* and € are coordinates.

5
corresponding to € = constant. The universe with € = O will be that in

Thus S. is composed of a single infinity of universes, a single universe

which 53 is a discontinuity, and we shall approach this by letting € —3» O,

For any assigned value of ¢ in B, consider the two 3-spaces:

2+3 with equation x4

]
m

(3.1)
il

}:"3 with equation <t

These lie in R+4 and R-4 respectively, and they enclose between them a por-

tion of space-time (of the universe € ) which we shall call the boundary

layer. Fig. 2 shows the boundary layer, with a parametric line of x4

(alm.ng which x1, x2, x3;!_§r:e constant) cutting the 3-spaces 8—3’ 23, 2:3
P7 at 9’, P, P respectively. As € —) O the boundary layer collapses on }:3 :

but of course this limiting process demands consideration, not of a single

universe (€ fixed), but of an infinity of universes (& —>0).

We need a representation of the boundary layer in 85. Along PPP, as
in Fig. 2, xP are fixed, and threre are only two variable quantities, x4 and
€, Thus we may draw a disgram as in Fig. 3, with x4 as abscissa and £ as
ordinate. The boundary layer appears as the shaded triangle, bounded by
the three lines, x4 = &, x4 =~G 4,2 €= €, °

The process by which we make the boundary layer collapse on ‘[“3 is a

rather delicate one. We need transition curves in S., leading one universe



=
into another as - changes, and finally leading to the universe € =0 in

which thero is a discontinuity. We define the curves as follows. Let (xr)o

Fig. 2: 3-gpaces 2+3 and f__’“s defining the boundary layer -€ ¢ x ¢ &4

be any event in the universe & = 6‘0. The transition curve through the

point [(xr)o, € | of S. is given by the equations

o 5

£ i {xf 2
xt - (x4)0 6. g if ("4)0 e o
& - (x4)0 = =€ ) B (x4)og w B0 7]
i B BN ke

Thus the transition curves form a congruence if 55, one curve passing through
each point. They appear as straight lines in Fig. 4, where AB* and AB™ are
the edges of the boundary layer, as in Fig. 3.

We now introduce in 85 a metric tensor gmn('x, &) and a stress-energy



kb
tensor 'I‘mn(x,‘é_). For the present it does not matter whether they satisfy the
field equations (1.4). We shall use the symbol I~ (x,& ) to stand for gmn(x,é),
or any partial derivative of these quantities up to the third order inclusive,

or Tmn(x, €), or a first order partial derivative of these. The partial de-

rivatives in question are those with respect to the x's only - we shall not use

€
- +
R B
SETE. / /r R 7 : ; / / s E= &
N TP e

' / / ;/

f 7;'/ ' L
A K"‘

Fig- B Representation of the boundary layer in S5

partial derivatives with respect to ¢ .

We define a limiting process L as follows:

L M(x,e) = 1limit of T (x, ¢) as we proceed along a transition

curve to & = 0. (3.3)

Thus L r'(x, &) is determined when we are given starting values of X and & s

it is equally a function of the values of % at the point where the transition

curve meets € = 0O, unless at this final point we have x4 = 03 in this

|
I
latter case we expect L r'(x, E-.) to be undetermined, since there are in- i
-
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finitely many transitions curves through A in Fig. 4.

If the transition curve used in (3.3) is one of the lines ¥ . + €,
x” = constant (i.e. B'A, B A in Fig. 4), we shall use a special nota-
tion:
. - lm |
_ B (3.4)
s e 14 &
i { s L | (x, € ) oy & :10 [l (x, € )] 4 »
| . - 3 X = =g
E

Fig. 4: Transition curves in 85

Mus "7 and T~ are functions of x ', x°, x> on L

As a convenient shorthand, we shall use the letter B to indicate that a
quantity r'(x, e) is bounded above and below for all xr in R4 and all € in
B. We shall also use the letter B to stand for any such cuartity; no con-
fusion is like¥y, to arise from this loose notation. The property B is of
importance in relation to the limiting process L.

The following is true:

Theorem I: If B F(x, &)/ hx4 is B, than, for common values of :rp '
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1}

b g (3.5)

To see this, we note that

: : | :
[r.(x,ﬁ}] 4 - [P(x,i)] 4 = - B4 r(x,é)dx4, (3.6)

X =g X = -€ x
oy

and from this (3.5) follows immediately on letting € tend to zero.

4. Hypotheses

To obtain jump conditions across 5:'3 we shall use seven hypotheses. The
first three hypotheses are as follows:
Hypothesis It For all x in R, and all € in B, gmn(xle) exist and are con-
tinuous, together with their derivatives with respect to the x's up to the

third order inclusive, and the field equations (1.4) hold.

Hypothesis II: gmn(x, ¢) and their first order partial derivatives

ve,. / 8x" are B.

Hypothesis III: The components Tmn of the stress-energy tensor are B.

Note that in Hypothesis I the value € = 0 is not included; natu-
rally, because once the discontinuity has been established, some derivatives
will no longer exist at points on it, and at these points the field equations
becomelmeaningless. Hypothesis II is suggested by the bounded character of
the gradient of the Newtonian potential, and Hypothesis III by the boundedness
of density.

The next two hypotheses are

Hypothesis IV: For any quantity r‘(x, &), as defined in Section 3, the

1imit T [ (x,€) of (3.3) exists and
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L br [ (x,€) ?’r L ((x,e) (441)

3% nx

provided that the transition curve along which L is calculated does not lead

D for £ 20,

Hypothesis V: | * and [®~, as defined in (3.4), exist as functions of x_1_,
g 3
X, X, and
+ r-+ w5
: > o 5 > !
e N e (4.2)
»x” »x¥ vxt x

Thus Hypothesis IV asserts the commutability of the operations L and
} /dx", provided we are not led to ):3 in the limit €& ———30; Hypothesis
V asserts the commutability of Land /2 x* on both sides of 7:.3. We
ghall not have occasion to refer explicitly to these two hypotheses again, but

they underlie the whole investigation, and it would be meaningless without

them,

The next hypothesis is to avoid degeneracy:

Hypothesis VI:  Det gun(x, &) is bounded away from zero for all x° in 34 and
all € in E.
The last hypothesis is to exclude rapid oscillations in Z,'Sz

Hypothesis VII: If any quantity I (x, €) is B, then 2 [(x,e) / ox® is

also B,

Note that this does not apply to differentiation with respect to x4.

5 Jump conditions for gmn and their first derivatives

By Hypothesis II, ‘bgmn(x,e) /ﬁb x4 is B, and so by Theorem I we have

Theorem II: The metric tensor is continuous across 83, or

# -
g an - g on ° (501)



-12-

Differentiation with respect to the parameters in Z:B gives
3

Theorem III: All partial derivatives of gmn with respect to x1L xz, X

are continuous across 223; in particular

+ - 2 + 2 -
bgmn bgmn LA™ 2 € np
= ’

v x” »>xf 2x? px¥ xP 2T

. (542)

What we have so far obtained in the way of jump conditions in Theorems
IT and III is not very serious; they do not really go beyond the simple
assumption of the continuity of B and that we might be prepared to make
ad hoc. What we are now coming to is less obvious.
We turn to Hypothesis I and integrate the field equations (1.4) along
the path P PP’ of Fig. 2. This gives
€

f (6 + K1) TRl (5.3)
‘e

Now Tmn is B, by Hypothesis III, and so this gives

€ ¢
lim f & lim j 4
€30 ‘9 = - W < T 8.0, (5.4)
28 “€

From the field equations we also have

€
mn mn 4
:Z (g Gmn + Kg Tmn) dx = 0, (5.5)
and hence
@
lim f g 6 s, (5.6)
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- The Einstein tensor Gmn is connected with the Ricei tensor Rmrl and the

invariant R by the formulae (cf. Syngc and Schild, 1949, p. 89)

= 2§ = mn R
s P - 2 Egn B Boom g R B e oy
(547)
and so we get from (5.4) and (5.6) the equations
3 €
im 1 e
€ -0 j. (Rmn = 2 8m R) ax 0, (5.8)
€
13 X 4
im
€0 J R dx m O (5.9)
~£

Now any parts of these integrands which are B will disappear on taking the
limits. To explore this, we write out the formula for the Ricci tensor in

terms of the Riemann tensor:

R = g’%R :

mn pmng
2 2 2 g
S 2 & - L 3., - & )
o 27 ™ xR oxP ¥x? »x" oxd oxP dx"

e g [pa,r] [mn,s] - Em,r‘] [mq,s] S AR

Now we know from Hypotheses II, VI and VII that the following are B:

2
28 e
Emn’ gmn’ in; [mnar] ’ __rmn_ ’ (5411)
Bx dx »xY

and so the only parts of the integrands in (5.8) and (5.9) not necessarily B

are those which involve two differentiations with respect to x4. All com-
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onents of R are B except those with two 4's:
P pmng D

328
1 o
R = R = - R = - R = - — 4+ B .
4 w4 H4a 4 pav A4 V4 2 (3 £4)2
(5.12)
Hence
2
4
rs 44 1 44 O 8y
R = R = R + B = g 38
v & Rrpve = & Rapvy 28 il 2
2
g
rs 4o | 1 4w Pt
R = R w; g R e Shy T o S + B
/-4 € r jibds 44 2 ('bx4)2 :
2
VD Euyp
- s o Pv— + B = l #‘v i i
Ria & Rous & Rp g0 25 (> x4)2 :
T?S
v )
R o ot o e e o )-(-;-i‘;_?- e
x
(5.13)
Thus we get from (5.9)
€ 2
s D g/;.,\)
E‘f,moJ‘ (giolpbd _ o5 84")3—4)'2"61:4 = 0, (5.14)
x
or
S lim [( v 44 apr 4wy DEuy €
g £ -8 £ -
€50 bt
-€
(3
3 : Ty
2 2% AAV 4
sy f sy e ‘o gg T W oy
S Dx Tx
(5.15)

This integrand is B and so the limit of the integral is zero; this gives us
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the result that

is continuous across 23. (5.16)

We now treat (5.8) in the same way. By (5.13) it gives the ten

equations
€ ‘bgg
lim J 44 ot pPT 44 4P AT
g - g (& g =gk ax* = 0,
g0 € (33{4)2 oz (‘bx ]
2
lim J‘ [4» g}*-V o ( pa 44 4p 4"’ 0 gﬁa' =
iy a7 % g g £ - & & 5 ax* = 0,
g0 -€ - (‘bx4) ]
g
lin f po 4t 4p 4T, Pd"]
= g T F = g8 ax? = 0.

(5417)

On integrating by parts as in (5.15), we are left with B integrands, and so

we find that the following quantities are continuous across 23:

4 984, (P g AP 4T PEeg
- s ’
bx4 ey ‘bx4
v D8,y o. S8py
gt —£2 4 ¢ (g?‘r gt . g“ gt )-----"-—-"4 ] (5.18)
bx4 e Vx
e & i PT 44 4p 4T P8pq
g 7 Tew. Hes w o e Shedbees n
D x e o

. mn
Now since 8yn BT continuous across 23, so also are g , and so, when

we combine (5.18) with (5.16) we see that
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dDe g, &
g44 __#.'_ : g4v ......L‘A:i_ . g/‘—‘v ——-%‘-i- are continuous across 2,3.
Vx v x Bx

(5.19)

This result includes (5.16).

We have now to digtinguish a particular case from the general case.
The particular case is that in which g44 =0 on 23, the general case that
in which g“’ ;( 0 on 23. What does this particular case mean? In a
Riemannian 4-space with a metric of signature + + + - or - - - + (space-
time is of one or other type, according to the convention we choose) there
exists at each point an elementary null cone with equation Lo dxm dxn = 0,
an;i there are 3-spaces with the property that they are tangent to the ele-
mentary null cono at each of their points. Such 3-spaces we call null sur-

faces (Synge and McConnell 1928). If the equation of a 3-space is written

P (x1, x2, x3, x4) = 0, the condition that it shall be a mull surface 1is

gmn DY DO

2xT vx”

il
O

for ¢ = 0. (5.20)

The equation of 23 is xﬂr = 0, and so the condition that it shall be a

null surface is

g = 0 for x = 0. (5.21)

44

S EB is not a null surface (the general case), then g' ' does not vanish,

and the continuity of the first of (5.19) gives us the result that

08w

are contimious across ... (5.22)
2 x4 a2

But if 133 is a null surface (partictlar case), then the continuity of the
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e e

L .

first of (5.19) is merely the trivial continuity O = 0, and we get, in-

stead of the six conditions (5.22), only the four conditions

8 ‘ vg
g4v -—"—:g— and g"""v ——1'-"'4—‘-’- are continuous across 25
Dx dx

(5.23)

Iet us collect these results:

Theorem IV: In general, i.e. when 23 is not & mull surface, the six

derivatives Q_g}n, S/ bx4 are continmuous across the 3-gpace of dis-

continuity 53 with equation x4 = 0; or equivalently

bg/uv ! Py p
( a2 e o 35 ) , (5.24)
X X

If 23 is a null surface, we have only the four jump conditions

+ -
4v P8y e Sy
( g 4 ) o (g 4 ) 4
Dx ox
(5.25)
+ £ -—
( ﬁvf_gﬁ_v_) o e AT
g 4 2 € 4 s
Vx D x

The physical meaning of the expression " 23 is a null surface" is
that the discontinuity is being propagated in space-~time like a light
wave, for a mull surface is the space-time representation of the wave
propagation of light according to Huygens' principle. This would
correspond for example to the advance of an electromagnetic shock wave
into empty space, the tensor Tmn being the electromagnetic stress-energy

tensor.
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6. Jump conditions for TE

Integration of the conservation equation (1.5) across the boundary

layer gives

€ :
m 4 g
‘[ Tn'm dx = 0. (6.1)
- &
Now
™ - -—b-—-—Tm+v{m}Tp—{p g (6.2)
njm ‘bxﬁ n pm} n nmj p

By Hypotheses III and VII, 10 and T / > x¥ are B, and as in (5.11),

-

the Christoffel syrbols are B. Hence, going to the limit € -3 0 in
(601), we get

€

lim ~I D 4 4
—=— 77 dx = 0 (6.3)
&-—-}O,_e '6x4 n r
and so
+ -
4 % 4
o e ! (6.4)

Thus we have the result:

Theorem V: Across a 3-space of discontinuity 523, with equation x4 = 0,

the components Ti of the stress-energy tensor are continuous, as shown in

!’6;4!.

7, Conclusion

We have investigated the jump conditions across a 3-space 123 with
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$a 0 and found in Theorems II, IV and V that if 23 is not a

equation x
mll surface (it may be either space-like or time-like), then the follow-

ing 20 quantities are continuous across 23:

08
R f“f— i@ . Alatin 1.2, 3, 41 Opeek 1,.2,.3)c 1341
X

This appears to leave open the possibility of jumps in the 16 quantities

28,0 B &y P (7.25
4 ’ 4 ’ n . .
Bx Vx

mn - Car T; = Gy T; ’ (7.3)
and so
gmf: Tr,: = gnf Tuf 2 = Emg o+ €na T ! (7.4)
But by (7.1) the right hand side is continuous across 2.3; therefore
ng Trf e gnP Trf are contimogs across 23- (7.5)

There are six conditions here.

The jump conditions on TE may also be expressed in tensor form for

~ a general coordinate system as

(R . By (7.6)

"--vhere ¥ isa vector normal to 23. We recognize a generalization to



e

space-time of the familiar jump conditions for stress in the theory of
elasticity. .

We recall that if 23 is a null surface, the six conditions (5.24)
are replaced by the four conditions (5.25).

If we regard the field equations, not as partial differential equa-
tions for the determination of g ., but (as is sometimes done) as equa-
tions defining Tmn’ then the jump conditions on TE are to be regarded
as conditions on the partial derivatives of Ean of the first and second
order-

We wish to thank Professor E. Schroedinger for some basic suggestions
with regard to the treatment of the problem. He also drew our attention

to the fact that the jump conditions are verified in Schwarzschild's

exterior and interior solution for the sun (cf. Tolman 1934, p. 245).
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