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DEVELOPMENTS IN QUANTUM ELECTRODYNAMICS.

By P. A. M. DIRAC.
§ 1. Recapitulation.

Quantum electrodynamics is based on analogy with classical eleetro-
dynamics. We start out with the equations of classical electrodynamies,
consisting of Maxwell’s equations for the electromagnetic field and
Lorentz’s equations for the motion of charged particles, the latter equations
including terms to represent the effect of radiation damping. In order
that we may have a precise mathematical theory, we picture the particles
as point charges for the purpose of determining their action on the
electromagnetic field. This classical theory is in exact agreement with
the laws of conservation of energy and momentum and with the require-
ments of relativity, and provides a satisfactory foundation on which to
build, although there are some difficulties in its application, which will
be discussed at the end of §3.

‘Before one can pass to the quantum theory one must put the classical
equations into Hamiltonian form. The method of doing this has been
described in my previous lectures' and the results only will be given
here. There is one Hamiltonian for each particle, that for the 4-th being

F, = - QJ;",L; {(p.- - ciA(z,-))’ - m.-'} =0 11)
where 2z; and p; are 4-veetors which give the position in space-time and
the momentum-energy of the i-th particle, in terms of units which make
the velocity of light unity, and e; and m; are the charge and rest-mass
of this particle. These Hamiltonians determine the dependence of any
dynamical variable £ on the proper time s; of the i-th particle by means
of the equation

dt ' ‘
7 - R, (12)

1 Communications of the Dublin Institute for Advanced Studies, Series A, No. 1.
This will be referred to later by I. A mistake in this paper may be pointed out
here, namely, the u’s introduced on page 7 should be proved to be equal and cannot be
arranged by definitions to be equal. The equation

. (Bl @Ela)) =8 ]|a)
gives .
wibiay 4+ pabeay + palaaz 4 ... = pobido + prbaar + pabsaz + ...

This must hold for all values of the b’s and a’s, and hence the u’s must be equal.
We can now redefine the a’s and b’s to make the p’s unity.

[42]
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where the condition that F; = 0 must not be used before evaluating
the Poisson Bracket. We assume the P.B.’s of the particle variables
$,i» P,; With one another to have their usual values, the P.B. of a
particle variable and a field variable A (2) to be zero, and the P.B. of
two field variables 4, (%), 4,(x), where x and %’ are any two points
in space-time, to be

[4u(®), 4, )] =tglax - ¥+ M) + A@E-x-N)). (13

The A here is a small time-like 4-vector, which is ultimately to be made
{0 tend to zero. The equations
04 =0 . (14)
04, ()
0,

=-3¥ea{AE-X+MN)+AEX-X~-N)) (15)

are also needed, and as they are not deducible from the equations of
motion (1-2), although they are consistent with these equations of motion,
they must be assumed as supplementary conditions. The equation (1'5),
like the equation F; = 0, must not he used before evaluating a P.B.

The foregoing scheme of Hamiltonians, P.B.’s and supplementary
conditions reproduces the Maxwell Lorentz equations in the limit )\ —> 0
when the times of all the particles z,; are put equal, and, it is of a suitable
form from which one can make a passage to the quantum theory According
to the usual rules for this passage, one must make all the dynamical
variables into linear operators satisfying commutation reiations corre-
sponding to their P.B. relations in the classical theory, and must use the
Hamiltonians (1'1) to provide wave equations

{(p: - A (z)) - md)]|) =0, . (1'6)

[ > denoting a veetor, called a ket-vector, in a many-dimensional space,
the coordinates of which veetor form the Schrédinger wave funection.
Also the equation (1:5) must be used to provide supplementary eonditions
" on the wave function or on | ), namely
{a—‘%g;ﬁ_") S 1S A X -2+ \) + AR - 24 - )‘)}} [y =0 (1)
The equation (1'4), however, is to be retained unchanged in the
quantum theory. The difference in the treatments of (1-4) and (1-5) is
due to their different status, {1-4) being an equation such that one can
take the P.B. of both sides of it with any dynamical variable and get a
correct result, but not so (1°5).

The wave equations (1'6) and supplementary conditions (1-7) are
easily seen to be self-consistent, provided one restricts oneself to consider
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only positions for the particles z; which are all outside each other’s
light-cones, or rather which satisfy the slightly more stringent conditions

(z - 2+ A < 0 i 4 (1-8)

To prove the self-consistency, one has only to verify that the linear
operators operating on | ) in the various equations (1-6) and (1'7)
obtained by putting different values for ¢ in (1-6) and different values
for X in (1-7) all commute with each other, provided the condition (1-8)
holds. The condition (1-8) does not restrict the range of applicability of
the theory, since in practice one is interested in all the times z,; being
equal and then the condition (1'8) merely prevents two particles being
closer together than a distance of order A, and since A is to be considered
as excessively small and is ultimately made to tend to zero, this does not
matter.

The wave equations (1'6) refer to particles without spin, for which
one must use the Klein-Gordon interpretation of the wave functions,
involving sometimes negative probabilities for the particles to be in
certain positions. One can modify the theory to make it refer to particles
of spin 4hand at the same time eliminate these particular negative
probabilities by replacing the wave equations (1-6) by

{p,,; - e,-Aa (Z.‘) + 32, api (pri - ¢ A,- (Z,‘)) + am,'mi} l ) =0 (19)

the variables a,;, am; being spin variables of the usual kind belonging
to the -th particle. This replacement does not affect the self-consistency
of the equations. The present lectures will be concerned mainly with the
{reatment of the field variables and with general properties of the theory,
for which it does not matter whether one uses the equations (1-6) or (1°9).

Equation (1'4) shows that the field can be resolved into waves all
moving with the velocity of light. The usual Maxwell field cannot be so
resolved when there are charges present, but the field occurring in the
Hamiltonian formulation of electrodynamics is defined somewhat
differently from the usual Maxwell field. It is called the Wentzel field
to distinguish it, and its properties were dealt with in I.

The Wentzel field may be split up into two parts, a part consisting
of longitudinal waves and a part consisting of transverse waves. By
making a certain mathematical transformation one can eliminate the
variables deseribing the longitudinal waves from all the equations, in
either classical or quantum theory, as was shown in L Some new terms
appear in the Hamiltonians to replace the longitudinal waves, and these
terms just give rise to the Coulomb forees between the particles, while
the supplementary conditions (1-5) or (1-7) are automatically satisfied
and drop out. The new formulation of the theory so obtained is much
simpler than the previous one from the practical point of view, since it
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contains only half as many field variables. But the new formulation is
not of relativistic form, since the splitting of the field into longitudinal
and transverse parts is not Lorentz invariant, and so it may be unsuitable
for certain theoretical investigations.

The development of the theory so far has been fairly straightforward
and has led to a scheme of equations for quantum electrodynamies in
which one can have confidence. It remains to solve the equations and to
get a physical interpretation of the solution, and here the difficulties
arise. The obvious way of solving the equations is to use a perturbation
method, after eliminating the longitudinal waves, treating the interaction
between the particles and the transverse waves as small and working in a
representation referring to the numbers of photons in the various Fourier
components of the field, but this way leads to divergent integrals. A
deeper analysis of the problem is therefore necessary.

§2. The Method of Redundant Voriables.

A powerful way of handling the wave equations is provided by the
method of redundant variables. A form of the method was given in I
and was there connected with a special assumption for the physical
interpretation of the wave functions. The method will be here formulated
in a more general way, in which it can be applied independently of any
special assumptions for physical interpretation.

We express the field 4 (%) as the sum of two fields

Ap (%) = Mu(x) + Nu(X + N), (21)

where the fields M and N are both resolvable into waves travelling with
the veloeity of light, i.e.
OM = 0, - ON = 0, (22)

and satisfy the commutation relations

[Mu(x), My(%)] =0, [Nu(x), N, (x)] =0, } @3)
[Mu(x), Nv(X)] = 39w A(x - X).

Those commutation relations make

[Mu(s) + Nu(z+N), M(E&)+ N(@E& +N)] =
=3gw{AE-X+N)+AE-¥-)N)]. (24)

It is legitimate to express A, (x) in the form (2-1), since this leads, from
(2-4), to the correct commutation relations (1-3) for A, (x), and also
(3-4) follows from (2:2). The field variables M, (%), N, (X’) may be
assumed to commute with all the particle variables zu, pui.

Sinee the variables J/, (x) for different values of u and x all commute
with one another, we can set up a representation in which they are all
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dlagonal The M, (X) now play the rdle of field coordinates and the

u (X), or rathel certam linear combinations of the N, (x), play the
role of field momenta. To complete the determination of the represen-
tation we may take the particle coordinates z.i to be also diagonal, so
that a wave function appears as{zui, Mu(X)}), a function of the variables
z,i for all p and ¢ and the variables M . (x) for all u and x. These
wave functions are not the ones needed for physical interpretation, since
in practice one is interested in the probability of various numbers of
photons being in various states and not in the probability of the field
variables M, (x) having certain values, but the representation is a good
onc for examlnmg the wave equations mathematically, on account of its
snnph(nty and the directness with which it can be introduced.

* When we express the 4, (x) in the form (2:1) we double the number
of field variables occurring 1n the theory, since we have eight functions
of position M, (x), N, (x)(p=0,1,2,3) instead of the four composing
A (%). 'l‘111s doubhng means that we have introduced some unnecessary
vamables that have no physical meaning. Put

Bu(x) = Mu(®) = Nu(x - \). | (2°5)
Then -
[du(), By(x)] = [Nu(x+)\), M (x)]-[Mu(x), NyE-N]=0

from (2'3). The B, (x/) thus commute with the < . (x) and therefore,
since they also commute with the particle variables, they commute with
all the variables occurring in the wave equalions and supplementary
conditions. These are then the unnecessary variables without physical
meaning. We call them redundant wvariables. Their commutation
relations amongst themseclves are

(B, D)) = - b (A®-% + N+ A@-%-N), (26)

the same form as (1-3) except for a difference in sign.

Let us examine in a general way the effect of redundant variables in
quantum mechanics. Consider a general dynamical system treated with
redundant variables. Set up a representation which separates the
- redundant and the physical variables, so that some of the variables
occurring in the wave function are physical variables and the others are
redundant variables. Calling the physical variables in the wave function
g and the redundant variables r, the wave function will be written
(q7|),and will satisfy a wave equation in which the operators operate
only on the g variables. The r variables now appear as parameters
inserted arbitrarily into the solution of the wave equation, each set of
numerical values that one assigns to the s’s giving one solution of the
wave equation. To get a physical interpretation for the wave function,
we must integrate over all values for the variables r. Thus we can form
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J1<g7]|) |2dr and consider it as giving the probability distribution for the
physical variables ¢, and we can also form [Cgr|ydr{|g ) and
consider it as a matrix in ¢ and ¢’ giving the density of a Gibbs ensemble.

When we do not have redundant variables in the treatment, to get a
general Gibbs ensemble we need several wave functions. However, with
the redundant variables, one wave funetion is sufficient, since the one
wave function (¢»|) contains several solutions of the wave equation
without redundant variables, one arising with each set of numerical valucs
for the r’s. '

We can get a more general interpretation for the wave funetion
(g7 |)> by introducing a weight function p(r) in the redundant variables.
Thus we ean consider [1<g7|>|?p(r)dr as giving the probability distri-
bution for the ¢’s, and Kgrly p(r) dr(lg’r} as giving the density of the
Gibbs ensemble. The weight funetion p(r) is completely arbitrary, except
for the condition that it must be aways positive or zero if we want to
restrict our Gibbs density to be positive definite and to give only positive
probabilities. We thus see that, in a treatment with redundant variables,
the physical interpretation of the wave functions is not determined until
we choose a weight funclion in the redundant variables.  This general
conclusion must still hold if we are working in a representation which
mixes up the redundant and physical variables, as must the previous
conclusion that a single wave funetion can give a general Gibbs ensemble,
sinee a mere change of representation eannot affect such questions.

With a weight function p(r), the general rule for physical inter-
pretation is that the average value of an observable £ for the Gibbs
. ensemble corresponding to the ket vector | 4) is

(A |Ep|Ady/C(A|p[4d) @)

Let us return to quantum electrodynamics. Instead of introducing the
redundant variables by means of equations (2'1), (2-2), (2'3), we might
first eliminate the longitudinal waves and then introduce the redundant
variables. This will lead to fewer redundant variables being introduced
into the theory. The elimination of the longitudinal waves leaves wave
equations involving only a transverse field, A% (X)  say, satisfying

04’ (x)
0z,

Al =0, 04 =0, =0 - (r=1,23). (28)

The commutation relations for this transverse field are, corresponding to
(1'3), -

(A% @), 45@&)] = 3 {gna@E@ -+ N +g,a@-x - N}, (29)
where {g,sA(%)}* means the transverse part of grs A(X), obtained by
resolving A (x) into its Fourier components and multiplying each
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component moving in the direction &, (with % 4%&# =0) by g,s + ko k[T
A straightforward calculation gives :

1 A
) 5
{gre A} = grs A(X) + 5z 6.’1:‘, <" To{lw_ > (2+10)
0
x, s . Zy Ors _ RN
’ =(|:v|]-— ”>A(x)+<|xl3 Ix|5)<(]i>
(2-11)

. ‘ 0

where |z | = (2.2 + a.% + #3%) ¥ and for the triplets such as (1 the first
. , 0

member is to be taken when x is inside the past light-cone, the second

when X is outside the light-cone, and the third when it is inside the future
light-cone. Note that

N s} -

oz,
We may now express 4% (%) as
At(x) = M) + Ni@E + N, (2:12)

where M,¢ and N,! are transverse flelds resolvable into waves travelling
with the velocity of light, i.e.

oMt =0, ON! = 0
DU _ 9N 1(x) (213)
oL X)) _ o, o2 _p,
ox, oz,
and satisfy the commutation relations
D )0 V@ TS0 gy
M), NSE)] =% lgeax - X))

This is legitimate, since equations (2:12), (2:13), (2:14) make 4,/(X)
satisfy all the conditions it has to according to (2'8) and (2'9). Putting

Bi(x) = Mt(x) - NA(x - \), (215)

we find that the B (x) commute with 4, (x)) and thus with all the
" variables occurring in the Hamiltonians, so they are the redundant
variables. They satisfy the commutation relations

[B(x), Bt(x)]=-3{gaAE@-% 4N +gusA(x-%X-]N)}, | (2:16)

the same form as (2'9) except for a difference in sign.
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We assume the field variables M,” (x), N, (/) commute with all the
- particle variables zui, pui. We can now set up a representation in which
the field variables M, (x) and the particle coordinates zui are diagonal,
so that a wave function appears as (zui, M,%(x) | >. This wave function has
a point in its domain corresponding to cach set of values for the variables
#zui satisfying (1-8) together with a set of functions J,! (x) satisfying the
conditions given for M,! in (2-13), so that the wave function is a
functional of the functions M,!(x). The operator p.i applied to | )

results in the operator i h 88 - being applied to the wave function, as is
usual in quantum mechanies, while the operator N, (x’) applied to | >
results in a certain operator of functional differentiation being applied

to the wave function, defined by : .

<Zn M) | V@) | ) =
= lim & [{z;, M,4(%) - ihie{gb(x - X)) ) = (2, M) | )]
>0 (217)

The presence of redundant variables in the theory results in a great
deal of arbitrariness in the solutions of the wave equations, since we can
opcrate on any solution with any funection of the redundant variables
and get another solution. There is a greater generality in the’solutions
of the wave equations than is needed for the treatment of physical
problems. It becomes desirable to restrict the solutions of the wave
equations as far as possible without spoiling their adequacy for the
treatment of all physical problems. The following restrictions will be
found suitable, namely, we consider only those solutions | > of the wave
equations that satisfy

NS (®) ) = 0 for x’inside future light-cone of all z;. (2:18)

Let us examine the consistency of the restrictions (2°18). There is one
condition for each point x’ that lies inside the future light-cone of all
"the particle points z;, and these conditions are all consistent with one
another since the operators N, (x') all commute, from (2-14). Again,
N (x’) commutes with all the variables occurring in the Hamiitonians
except 4,¢(z;) and its P.B. with this is, according to (2:12) and (2-14),

5lga@ - X))t

. From (2-11) this vanishes for x’ inside the future light-cone of z;, and
hence the conditions (2-18) are consistent with the wave equations.
Let us now sce what effect the restrictions (2:18) will have on the
wave function (z;, M, (x)| ). The restictions will read

o, M (x) | VS (2) | > = 0
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for x’ inside the future light-cone of all z;. From (2:17) we see that
the wave function must remain unaltered if we substitute

Mi(x) - }ihe{gsA (x-X))

for M, (%), where X’ is any-point inside the future light-cone of all z; .
* More generally, the wave function must remain unaltered if we change
M, (x) by any field K,* (%) expressible linearly in terms of the various
quantities (g, A (x - X')}! obtained by giving different values to s and
‘taking x’ to be different points inside the future light-cone of all z;.
Now if K ,!(x) is any field of transverse waves which vanishes at every
point inside the past light-cone of a 2, it is expressible linearly in this
form, as is shown by the following argument.

It is sufficient to consider the case when K, (X) at any time lies
entirely in a finite volume, since if the required result can he proved for
this case, it can be proved also for the case when K, (X) extends to
infinity, by the application of a limiting process. With K’ (x) lying
entirely in a finite volume at a certain time, we can choose a time '
sufficiently far in the future so that K,* then consists only of outward
going waves. These outward going waves must lie entirely within the
future light-cone of every z;, if K,! (%) vanishes at every point inside
the past light-cone of a z;. We can express K ! (x) in the form

¢ 1 * X a
t —_— t ’ R - 4
K (x) = 4n]”[1{’ ()50 A-x)+
t (v -
NE2CACO N x')] Ay daly dedy,  (219)
R

as may be verified by observing that the right-hand side of (2:19) gives,
with the help of well-known properties of the A funection (see equation
(4:7) of I), the correct value for K, (x) and 0K ,/(x)/0x, at the time

z, = a’,, which is sufficient to ensure that it gives the correct value of
K.t (x) throughout space-time. (2:19) leads to

1 0
¢ o Ft(e’N = (.S ~ %))t
o) = = g [[] [ g o A -
+ i_)_l_g%(}_) {9° A (X - x')}‘] da’, da’, dz’y (2:20)
[}
with the help of (2:10) and an integration by parts, and of the transverse
wave conditions : :

0

or’s

Sinee K (x’) and 0K,' (x')/dx’, vanish except when X’ lies inside the

future light-cone of every z;, equation (2°20) gives XK,'(x) expressed

linearly in terms of (g, A (X - X)}* with x’ inside the future light-cone
of all z;. )

Ty .
K (xr) = 0, __é, Q‘IQSE_) =0.
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We can row conclude that the wave function (z;, A/ (%) | » remains
unaltered if we change M ,'(x) by any field of tranverse waves which
vanishes at every point inside the past light-cone of some z;. 'This
means that the wave function depends only ow z; and on the feld
variables M, (X) ot points x that lie inside the past light-cone of some 2 ; .
The field M,* may thus be considered as a physical field which affects
the state of the particles only when it reaches them. This consequence
of the restrictions (2'18) is the chief reason why these particular
restrictions are interesting to incorporate into the theory, rather than any
others which are mathematically possible. .

The conditions (2-18) give, with the help of (2:12) and (2-15),

{4 (x)- B (X)) | ) = 0 for x" + ) inside future light-cone of all z,

s0 that : (2:21)
(Zi, M) | A8 @@) - BLE) | ) = for zi=-o (2:22)
with any x’. The conditions z,; = — 0 mean taking the initial wave

funetion.« Thus equation (2-22) shows that the A¢ field and the B¢ field
are equal when applied to the initial wave function. This is sufficient to
" fix the form of the initial wave function completely, so far as concerns
the field variables, as is shown by the following argument.

Let a be one of the Fourier amplitudes of thc A field, i.e. the (vector)
component in a transverse direction of the coefficient of one of the terms
¢ikx) in the Fourier expansion of A’(x). We may suppose the Fourier
components to be discrete, by enclosing the field in a finite box or some
similar device. Then « satisfies with its conjugate a a commutation
relation of the form ' .

da - aa = ¢, (2-23)

where ¢ is a real number, depending on how close together the Fourier
components are and also on \, We arrange to have ¢ positive, by inter-
changing « and ¢ if it is not. Let (3 be the Fourier amplitude of the
B! field corresponding to a, so that is the amplitude corresponding to a.
Then, since the commutation relations for the A! and B‘ fields are the
same except for a difference in sign, as is shown by equations (2'9) and
(2:16), ; o
| BB - BB = o (224)
Equation (2.22) gives S _

12 -
o MA@ |a- Bl =0 } for 24 =~ w. (2:25)
(z:, M,.t(X)IE—ﬁi)=0 :

Let us pass to a representation in which the variables e« and B for the
various Fourier components are diagonal, instead of M,* (x). This will
be a representation of the Fock type (see §2 of I) for. all the harmonic
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~ oscillators that make up the A¢ and B! fields, and the new wave function
will be an ascending power series in the variables a, 8. Equations (2°25)
transform into

Ei, ay Bla-B|>=0 )
@i, a, Bla-B|y=0 )

Equation (2:23) shows that a applied to a|) is equivalent to ¢ 0/0a
applied to the representative of the |) and equation (2.24) shows

similarly that 3 applied to a | ) is equivalent to ¢ 9/08 apphed to its
representative. Thus equations (2:26) glve

(a - ¢9/oB) ziv a, PB|>=0
(B - cofoa){zi, a, B|)=

for 24 = - ». (2-26)

} for z, = — .

Hence -
(z;, a, PB|) =r«eable Tofor 2y = - . (2:27)

where « is independent of o and 8. This shows that the form of the
initial wave function is fixed, so far as concerns the variables o, 8. Since
this applies to all the Fourier components, the form of the initial wave
function in the original representation with z;, M ! (X) diagonal must
also be fixed so far as concerns the field variables M ? (X).

The form (2:27) shows, when one refers to the physical interpretation
of wave functions in Fock’s representation, that the number of photons
in a Fourier component of the Bf field is equal to the number of photons
initially in the corresponding Fourier component of the A’ field. This
number is not restricted in any way, but ecan be any integer from zero
to infinity. Thus the conditions (2-18) do not put any restriction on the
number of incident photons in any Fourier component of the field, so
they do not spoil the adequacy of the scheme of equations for the treatment .
of all physical problems.

One further question with regard to the conditions (2-18) should be
looked into, namely, their Lorentz invariance. Since the relativistic form
_of our equations is destroyed when we eliminate the longitudinal waves,
we cannot be sure whether any extra equations which are introduced
subsequently are Lorentz invariant or not. In order to settle this question
we must rearrange the work so that any extra equations needed are intro-
duced before eliminating the longitudinal waves, and must then sece that
everything is all right. To do this we assume, instead of (2:18), the
conditions

{BN“(X’\ 9 N (x)
ox, = 04k

[>=0 for x’ inside future hght cone of all z;
(2:28)

hefore eliminating the longitudinal waves. These conditions are obviously
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Lorentz invariant. We have to verify that they are consistent, not only
with one another and with the wave equations, but also with the supple-
mentary conditions (1'7). This can be done by observing that the linear
operators in the various equations all commute. Tor example, calling
R(x) the linear operator that oceurs in (1.7),

2 ’ .Ap. Y., fo?
(2@, ¥ @) - [P0, rw] -2

A -X),

..va

oV @) N ()] _ ,
a x’v a III'- ‘J .

so that [R (%),

We can now eliminate the longitudinal waves for both the A and B fields
together. The result of this elimination is just our previous scheme with
(2-18), which is thus obtained in a more roundabout but more logical way.
The details of the elimination will not be given here, as they can hest be
expressed with the method of §4. They will be given at the end of §4.

§ 3. Application to a Single Electron.

For the further development of the theory it is convenient to restrict
ourselves to the case of a single electron, as this removes some complications
which are not really relevant to our main problem of radiation damping.
The case of a single electron is sufficient for the discussion of all funda-
mental questions.

In this case there are no Coulomh forces arising from the elimination
of the longitudinal waves, so the wave equation (1'9) reads, after
elimination of the longitudinal waves,

[P0+ Zrap(p, - eM}i(z) — eNS(z + N)} +anm] | >=0. (31)

for an eleciron with spin, with the help of (2:12). In our work up to the
present \ has been a small 4-vector lying within the light-cone. We now
impose on it the further condition that it shall lie within the future light-
cone, i.e. A, > 0. Then

Ni@z+MN|)>=0
from (2-18), so that (3-1) reduces to ‘
[P0+ Sia, (pr— eM(@)) + aum]|>=0. (32

The N¢ field has completely disappeared from the equation. We are
left with o wave equation which is equivalent to the wave equation in the
elementary theory of radiation in which the electromagnetic field is not
quantized. A similar simplification in the wave equation occurs for the
Klein-Gordon electron withou! spin, though the reduction is not quite
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so straightforward on account of the quadratic terms in the field
quantities. .

To get a solution of (3-2), we need solutions of the wave equation in
the elementary theory with unquantized field—one solution for each field
M, (x). The various solutions for different M, (X) must not be chosen
arbitrarily, but must be made to satisfy the condition that the solutions
for two fields M ,* (x) whose difference is the field I ,* (x) must be equal
for the electron in that region of space-time which has not been reached
by the field K ' (x), i.e. for the electron at a point within whose past
light-cone K,' (x) vanishes. This will ensure that (2-18) is satisfied. The
various solutions all put together to make a functional of M. (x) will
then give a solution of (3-2) in the representation with z and M} (X)
diagonal.

It remains to get a method of physical interpretation for this solution
of (3-2). From the general discussion of redundant variables on page
we see that we must choose a weight function p in the redundant variables
and then each wave function will give us a Gibbs ensemble. p may be
any function of the variables that describe the B¢ field. In particular
we may take p to be a function of the numbers of photons, ny, say, in
the various Fourier components of the B¢ field. (The general p would
be a function of the np’s and of their conjugate phases) If p is a
function of the n,’s’only, it will give Gibbs ensembles with a definite
probability for any particular numbers of photons in the various Fourier
components of the B¢ field, and thus with a definite probability for any
particular numbers of photons initially in the various Fourier components
of the At field. The arbitrariness in the wave function cannot influence
this probability, since, as we saw in connection with (2-27), the form of
the wave function is initially fixed, so far as eoncerns the field variables.
Thus with p a funetion of the n,’s only, we have a definite probability
for any particular numbers of photons in the ingoing beams of radiation.
For example, we may take p to be that function of the ny ’s which is
unity when every n, = 0 and is zero otherwise, and it will give us Gibbs -
ensembles with no ingoing photons. (A Gibbs ensemble of this simple
kind corresponds to a pure state, ie. it could come from: a single wave
function without redundant variables.)

We can choose a solution of (3-2) to correspond to a given initial state
for the electron. We can also choose p to correspond to given ingoing
radiation. Thus we can get a Gibbs ensemble to correspond to any given
initial physical conditions. We can then use the standard interpretation
of quantum mechanics to calculate the probability for particular numbers
of outgoing photons associated with a particular final state for the electron.
This completes the general theory of the method of redundant variables.

The usual way of solving the wave. equation of guantum electro-

- dynamies without redundant variables leads to divergent integrals. The

-
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question arises—What corresponds to these divergent integrals in the
method of redundant variables? The divergent integrals oecur when we
try to get a solution of the wave equation without redundant variables
as a power series in the electronic charge e. To see what corresponds to
the divergent integrals in the method of redundant variables let us take,
for definiteness, the case of no ingoing photons, and let us get the solution
of equation (3'2) as a power series in e, say

[> = 10>+ e|1) +e]2 ) + ¢ |8 ) +... (3+3)

" Then the various terms on the right-hand side of (3'3) must correspond
to the various terms in the solution of the wave equation without redundant
variables for no ingoing photons, and the infinities that oceur in the latter
solution mean that the corresponding terms in (3:3) must be infinitely
great ket-vectors, in fact each term in the right-hand side of (3-3) must
usually be infinitely greater than the previous one. Thus the series (3:3)
does not converge. It is now a relatively unimportant matier that, by using
the representation with # ! (%) diagonal, we can represent the various
terms in the right-hand side of (3-3) in a finite form, while, if we use the
usual representation without redundant variables, the infinities show up
directly. In any case we do not have a workable solution of the wave
equation.

The squared length of a ket-vector | # ) in our scheme with redundant
variables is (7| p |7 ) and thus depends on p, so the question of the
convergence of (3+3) depends on our choice of p. We considered above
the case of p corresponding to no ingoing photons, but the argument would
not be changed if we took p instead to correspond to certain definite
ingoing photons, such as would oceur in, an actual physical problem.
With p corresponding to any practical ingoing field, the expansion (3'3)
always diverges.

This is how the fundamental difficulty of the divergent integrals
.appears in the redundant-variable theory. Two methods will now be
proposed by which one might hope to get over it.

" Method (i).—Instead of choosing p so as to correspond to the ingoing
photons in the problem in which we are interested, we may try to choose
it so as to make (3'3) converge, without in the first place paying any
attention to its physical consequences. This leads to the theory given
in I. The most suitable p for this method is

nf-"s2} (39

with one factor { } for each independent state of a photon of the B¢
field. The alternating plus or minus sign in (3-4) introduces a new
convergence factor into the expansion, but it leads to Gibbs ensembles
with negative probabilities, which cannot appiy to the actual world. One

R
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can, however, use these Gibhs ensembles to calculate probability coefficients
for transition processes, and since these prebability coefficients turn out

‘to be always 'positive, it is reasonable to assume that they are the same

as those of the actual world.?

Method (ii).—We may keep p corresponding to the ingoing photons
for the problem we are interested in and abandon the power series form for
the solution of (3-2). The power series form must be a good one for weak
fields M‘(x), but it is not good for strong fields, and as both weak and
strong fields contribute to the importance of the various terms in the

. expansion (3-3), it might be that the lack of eonvergence of the expansion

is due entirely to the inappropriateness of the power series form. To find
out whether this is the case, we should see whether the accurate solution
of (32) would give rise to any infinities when we proceed to its physical
interpretation. ,

Suppose we have the accurate solution of (3-2) in the representation
with z and M,! (x) diagonal, i.e. we have the wave function ¢z, 1/%(x) | ).
We may resolve M,’ (x) into its Fourier components and, calling a typical
Fourier amplitude £ and its conjugate complex £, express the wave
function in terms of the variables & & instead of 3 ,!(X), so that it reads
(z s?; ). We can now pass to the representation in which z and the
Fourier amplitudes o and B arve diagonal, as we had in the previous
seetion. In the limit A = 0 the transformation reads

-0

| (zaf]) = (.".C)qJ'J.=<> e[-aB+\/2aE+'/‘ZBE‘EE~]/0 (zsg‘ yd £, dE, | (3'5)

where £, and £, are the real and pure imaginary parts of the complex
variable £ as may be verified in the following way. The connection
between the Fourier amplitudes o, 8 and the Fourier amplitudes ¢ of the
M? field and 7, say, of the N* field is of the form '

V2a=E+n w/a=§+n (3_'6)-

2
V2B =E - V2B =

from (2-12) and (2-15) with A = 0. The commutation relations (2-23), (2-24)
show that & and 3 are cquivalent to the operators of differentiation ¢ 9/0a
and ¢ 9/0B in the o, B8 representation and the commutation relations eon-
necting the N field with the M’ field show that 5 and 7 are equivalent to the
operators of differentiation—c 9/0E and c¢2/0& in the g, £ representation.

: The notation of I differs from the present notation and may be obtained from
the present mnotation by writing ( X} for ( X|p and defizing this { X| as the
conjugate imaginary of | X ). Thus p does not appeer explicitly in I, but gets
absorbed in the connexion between a | ) and its conjugate imaginary (1.

[]
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One now finds that if one operates on the wave function ( z€ € | ) with the
right-hand side of any of the equations (3:6) and transforms the result
by (8-5), one gets the wave function ( za (3 | ) operated on by the left-
hand side of the equation. These conditions ensure that the transformation
equation (3-5) is correct except for the numerieal coefficient on the right-
hand side. This numerical coefficient was chosen so as to make the unit
wave function transform into simply e

The wave function (za3 | ) expressed in the form of an ascending
power series in « and B is very suitable for physical interpretation. For
example, if we are dealing with a problem with no ingoing photons, we
must take p to vanish except when there are no photons in the B! field,
and then only the part of (z« 3 | ) which is independent of 8 will be
effective. This part will be a power series in « alone and the various
coefficients will correspond to various numbers of photons being present
at any time in the physical problem.

. The necessary and sufficient condition that there should be no infinities
in the physical interpretation is that all the coefficients of (zaf|)
expressed as an ascending power series in o and 8 should be finite. It
seems very likely that this is so, on account of the strong convergence
produced by the factor e-¢/c in the integrand on the right-hand side
of (3-5). For example, the term independent of o and B is

oyt [ el cagE ) at, at, 37)

Now the wave function ¢z £€| ) should be normalized for all values of
£, E and hence the expression (3-7) can be looked upon as the weighted
average of a set of normalized wave functions, with the weight (wrc) ! ¢- €¢/e
which is always positive. Such a weighted average is presumably finite.
The other coefficients are of the form (3:7) with powers of & and £ inserted
as Tactors in the integrand and such factors are unlikely to disturb the
convergence of the integral.

The coefficients of (zaB | ) expressed as a power series in a and g8
must be the same as the coefficients in the solution of the ordinary wave
equation without redundant variables for various values of the ingoing
numbers of photons. The above argument thus makes it likely that the
solution of the crdinary wave equation would be finite if obtained by a
correet method and that the infinities oceurring in the usual method
are due entirely to the unsuitability of the power series in e for the form
of the solution,

To continue with method (ii) it is necessary to find a better way of
solving (3-2). A suggestion for this is as follows: Let us work in the
representation with % and M ¢ (x) diagornal and let us consider first the
case when M ! (X) consists entirely of waves moving in one particular

st
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direction, say the direction of the z, axis, so that M,! (x) = 0, and M,* (%)
and- M,! (x) are functions of the single variable x, - z,. ‘With this
simplification, the wave equation can be solved accurately. The solution
for the electron initially at rest is

Il

(M@ |)

[1 + Qf-—{m M (z) + az Myt (z)} (1 + .,3)] p e imeh ~ix
m _ . ’
(3'8)
where
' e

X = Omhj {M (ronrmz) + Mt (xozlz,z,)]‘ dey, (39)

and v is a wave function in the spin variables satisfying
1+ am)v = 0.

Note that x is an integral along a world-line parallel to the time axis
ending at the electron point z. The solution (3'8) may be verified directly
by substitution in the wave equation.

For strong fields M ! (x) the factor e *x in (3 8) is the most important
factor in the wave functlon The existence of this factor in (3:8) shows
that for strong fields it would not be suitable to express the wave funetion
as a power series in the electronic charge e, as the first few terms in the
expansion would give a very poor approximation.

With M ! (x) not restricted to consist entirely of waves moving in
one dlrectlon the form of the solution of the wave equation for strong
fields is not known, but probably, for an electron initially at rest, it
contains as its most important factor e :, where .

c? zy . , N
X, = 2;];?1]’_ B ScME (2 mz) Ao, , (310)

as this factor goes over into the correct factor when M. (x) consists
entirely of waves moving in one direction, no matter what that direction

is.. Tt therefore seems reasonable to try to get a solution of the wave
equation in the form

(2, M) | ) = eix, (3-11)

with ¢ a power series in e. One may hope that the form (3'11) will not
lead to infinities in the physical interpretaton, i.e. that when this form
is substituted into (3:5) it will lead to a (zaf3]) expressible as a
power series in o and B with finite coefficients, but I have not yet worked
this out.

Two methods have been proposed for oxttlng over the difficulty of

the divergence of the expansion (3'3) and the question presents itself,
[B2]
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which of these methods is to be preferred. Each method has its advantages
and its disadvantages. Method (i) has the advantage that the mathematics
is simple (relatively to the other method) and it connects directly with
the relativistic theory of sccond quantization to form an elegant general
scheme. But it has the disadvantage that its wave functions apply only
to a hypothetical world, so that its physical interpretation is indirect.
Method (ii) has the advantage of a direct physical interpretation according
to the standard rules of quantum mechanies, but it has the disadvantage
that the mathematics is extremely complicated. Even the problem of a
single electron initially at rest, in the absence of any static electro-
magnetic field or any ingoing photons, leads to a very complicated wave
equation which has not yet been solved. The complication is to be
attributed to the interacticn of the electron with its own field. I do not
know which method to prefer and think that both are worth further
study. One would like to find a new form of the theory which combines
the advantages of both methods, but this is hardly possible without some
drastic alterations of the foundations.

There is onc further fundamental problem in quantum electrodynamics.
In the classical theory the equations of motion of a charged particle in a
given ingoing field (Loreniz’s equations with radiation damping) involve

2, 50 the motion is not determined by the initial position and velocity of
the particle. The equations allow the particle, in the absence of an
ingoing field, to build up an acceleration and to radiate energy. This,
of course, disagrees with experiment. One can get over the difficulty in
the classical theory by assuming the extra condition that only those
solutions of the equations of motion are allowed for which the final
accleration ef the particle is zero.

In the quantum theory treated by method (ii) we again have the
possibility of a single particle by itself emitting radiation in the absence
of an ingoing field. Some extra condition is thus needed to correspond
to the classical condition that the final acceleration is zero, but it is not
at all clear what form this condition should take. The wave function of
the quantum. theory is connected with a Hamilton’s principal funection
in the classical theory, referring to a family of solutions of the classieal
equations of motion, most of which solutions are not allowed by the final
condition on the aceeleration. So it looks as though we have to pick out
that part of the final wave function which corresponds to no acceleration
of the particle and discard the rest as unphysieal.  However, such a
procedure would not fit in with the general principles of quantum
mechanics as at present formulated. v :

With method (i) in the quantum theory, the analogy with the elassical
theory is not so close and there does not seem to he any need for an
extra condition,
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§ 4. The Transformation Law of the Wave Functions.

In theoretical physics we have to deal with quantities embedded in
space-time having a number of components which transform linearly when
we make a change of axes. The quantities first used were tensors, and at
one time it was thought that all physical quantities would be expressible in
terms of tensors. IHowever, when the equations for the spinning electron
were set up, it was found that the wave function was not expressible in terms
of tensors. It provided a new quantity with components which transform
linearly. = These new quantities were called spinors and their study was
. called spinor analysis. They are rather more general than tensors in that
there is an ambiguity of sign attached.to their components.

With tensors and spinors together, people again thought they had
the complete scheme in terms of which all physical quantities would be
expressible. However, the wave functions of quantum electrodynamics
(in a representation referring to the numbers of photons in the various
Fourier components) are not expressible in terms of tensors and spinors,
so a further extension of the scheme is needed. A new kind of quantity
with components which transform linearly under Lorentz transformations
must be introduced, and I call it an expansor. It is rather more general
than a tensor or a spinor in that the number of its components is infinite,
but enumerable.

Let us resolve the field 4, (x) into its Fourier components and take
the number of components to be discrete, thus

A (%) = Spfag, ¢ k3 + dy, e ikm] (41)

where k, is a four-vector lying along a null line with %k, > 0. Let us
confine our attention to the variables «, ,» ax, for one particular value

_ of k and drop the suffix k. The variables « W @, satisfy the commutation
relations '

a,a, - a, a, = 07 a,a, — a, a, = 0,
» " R ' (4-2)

&,u a, .~ a, qp = — Juv € >

where ¢ is some positive number. The o of equation (2:23) is just a
transverse component of our present «, . . '

We may set up a representation of the Fock type with the four o’s
diagonal. From (4-2) @, a., a;, will be equivalent to the operators ¢ 9/0a,,
¢ 0/da, ¢ 0/da, applied to the wave function (wa, |y, and d to the
operator — ¢ 0/0a, .

In order that the operators & a;, ds az, @s as, &, «, May have positive
- eigenvalues, the wave function (e, | ), expressed as a power series in the
«’s must contain positive powers of a;, a; a; and negative powers of
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a,. The wave function will therefore be an ascending power series in
the variables «,, a,, @ beginning with the power zero, like expression
“(25) of I and will be a descending power series in the variable a,,
beginning with the power -1, like expression (2:6) of I. It will thus be
of the form

4 o I ) = 2: Anr'a:t ao_"-l a" «® (l3t ., (43)

We can add on here arbitrary terms containing zero or positive powers
of a, (with zero or positive powers of a,, a,, a,), for the same reason
as we found we could add on an arbitrary ascending power series to (2°6)
of I. These arbitrary terms are of no physical significance and should be
regarded as corresponding to the ket-vector zero.

The coefficients 4,,s; in (4'3) are the components of a new kind of
quantity that I call an expansor. By subjecting the four o’s to a Lorentz
transformation and expressing the wave function ( q, |) in terms of the
new a’s, we get a new set of coefficients A,,s; which are linear functions
of the original ones. The connexion between the new A,,,; and the
original ones gives the law of transformation of the components of an
expansor. This transformation has been studied in a paper by the
author.? ‘ : oLt

The coefficients 4,,,: are not arbitrary hut are restricted by the
supplementary condition (1-7). Expressed in terms of Fourier components,
this supplementary condition reads

(W ay, = b)) =0

(B dy, = B 1D = 0

(44)

where b, is a number depending on the positions of the electrons. Thus,
dropping the suffix k again, we get

(k”aﬂ - b)(alul)=0 45)
‘(Ck,u. a?l; + b_)(a/,. |> =10 (4:6)

Equation (4'5) shows that ¢ a, | ) is of the form
('a}‘ I y = (k" a, - H1ra, 47

where G is an ascending power series in a,, a, a; and the factor
(A au—0)" is to be considered as expanded in a descending power

® Dirae, Proc. Roy. Soc., A., 183, p. 284 (1944).
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series in @, and an ascending power series in aj, a, a; b. [If (4'7) is
substituted in (4°5) it gives for the left-hand side of (4'5) a set of terms
independent of a, which terms are equivalent to zero when they occur
in a wave function in the a, representation.] (47) substituted into
(4:6) now gives, when one observes that the operator in (4'6) commutes
with (A* ap - b)™!

ckud@ldap + 5G = 0, | 48)

showing that @ is of the form ' » )
G = ¢-bIkarlkoe @, ' (4.'9).'A

wliere G, is a function of a,, a, and «, satisfying o
kpoG [0ap = 0. (410)

This equation shows that G, is a function of only the transverse components
of (a;, ay ay). )

Substituting (4'9) into (4'7) and applying the argument to all k-values,
we get the final result that the wave function (z;a, | ) in the particle
positions z; and field variables a, is of the form

(Ziap | ) = Mi{(krag, - bk)! e-bxZrkrakikotex) @,  (411)
©

where the continued product contains one factor for cach k-value (with
k, > 0) and G, is a function of the z; and of the transverse components
of the ay,. The right-hand side of (4-11) should be considered as expanded
in a descending power series in all the ay, and an ascending power series
in all the ay;, ayq, @y, and the various coefficients in it will then ecorrespond
to various numbers of photons being in the different Fourier components
of the field. The coefficients will transform under a Lorentz transformation
like a product of a large number of expansors, one expansor for cach
k-value. ‘ ‘ '

' The physically important part of the wave function (4-11) is the
factor @, involving the transverse field variables. The other factors
merely show how the wave function depends on the longitudinal field
variables. The climination of the longitudinal waves means passing to
wave equations for which @, by itself is the wave funetion.

Equation (4'11) gives the form of the wave function when there are
no redundant variables in the theory. To do the corresponding work
when redundant variables are introduced before eliminating the longi-
tudinal waves, we must resolve the redundant field B, (x) into its Foarier
components thus, ‘ '

Bu®) = 34 { By 0F %) + B e=i (7)) (412)
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like (4'1), with 3 and f3 the opposite way round to what would be the
analogue of (4:1). Confining our attention as beforc to one particular
k-value and dropping the suffix k, we have the commutation relations

B# By “_ﬁv /3# = OL /'3# [3" - ﬁ"ﬁ/& =0, (413)
BuBrv = By Bu = —Gw C,
and, of course, the B’s commute with the «’s. The introduction of B
and S the opposite way round compensates for the commutation relations
between the B, (x), equations (2:6) involving the opposite sign to those
between the 4, (x), cquations (1-3).

We set up a representation of the Fock type in the four B’s as well
well as in the four a’s, so that the wave function reads {a,, Bul) The
variables f applied to this wave function will be equivalent to certain
operators of differentiation, like the a’s, and the wave function will be
an ascending power series in B, 8,, B, as in a,, a,, a, and a descending
power series in B, as in a,. The supplementary conditions (4-4) will
still hold, showing that the new wave function (au, Bu|) is still of the
form of the right-hand side of (4'7) with G given by (4'9) and (4°10),
but @, will now involve the variables B as well as the transverse
components of «, . ‘ ‘

For the initial wave function the conditions (2-28) will hold for all
%', Resolving these conditions into their Fourier components we get, for
the particular k-value under consideration,

Uey (= Bu) = buar =BV = 0y g
{kyv (du - Bu) = ku(av - By)) )= 0. )

Multiplying by %k*, we get

ke ky (au - Bu)|) =0, kuky(aw - Br)|) =0,
showing that
lew (ap = Bu) ]y =0, ke (ap = Bu)|> = 0. (415)
For the initial wave function cquations (4'4) will hold with bk put equal
to zero, since electrons in the infinite past will not contribute to ok,
Combining these equations with (4-15) we get

kuBuly =0, EefBu|)=0. (4°16)

These results hold in the first place only for the initial wave funection,
but since they involve only redundant variables they must hold for all

times and thus be generally true.
Equations (4-16) show that the wave function Cau, x|) is of the

form
Cap, Bul) = (br Bu) ! &
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where @, is a function of the transverse components of B, and of the
four o’s. Combining this with our previous knowledge of how the wave
funetion involves the a’s, we find

Capy Buly = (bt au = b) "L (kr Br)~t e-bxrkearle Gy, (417)

where @, is a function of the transverse compouents of a«, and of the
transverse components of B,, We have not used all the information
contained in equations (4'14). The remaining information leads to the
result that initially G, involves the transverse components of a, and of
B- in the form shown by (2-27).

We may apply the above argument for all k-values and get the result
that the complete wave funetion (z;, aku, 3ku | ) is of the form of the
product of a number of factors like the coefficient of G, in (4-17) and a
factor, @, say, which is a function of the z; and of the transverse
components of the ay, and By,. The elimination of the longitudinal
waves in the theory with redundant variables consists in passing to wave
equations for which G; is the wave function. The Hamiltonians in these
wave equations must be the same as the Hamiltonians in the corresponding
wave equations for G, in the theory without redundant variables, since
the factors (k” [3k,)-' which cause the difference between G, and G,
commute with the Hamiltonians. Also the conditions (2°28) must
lead to the conditions (2:18) for the wave function G;, since
the factors (kv Bk,) ' commute with the operators N, (x’) occurring in
(2:18). Thus we get the same scheme of equations as we would get if
we introduced the redundant variables after elimination of the longitudinal
waves, as was done in § 2 from equations (2°8) onwards.

§ 5. The Position of a Photon.

In most practical problems involving radiation the momentum ‘of the
photons is defined and not their position. ~ There are a few problems,
however, for which the position of a photon is important, e.g. if a photon
is emitted from an atomic nucleus it starts in a state in which its
position is defined fairly accurately. IFrom the point of view of general‘
theory, a photon is always emitted by the motion of a charged particle,
and initially the photon is in a state for which its position is the same
as the position of the particle. This fact must correspond to some
property of the wave equation which it is interesting to investigate. We
can get in this way some detailed information about the wave function,
without meeting the difficulty of the infinite integrais.

Let us confine our attention to one of the four potenials A.,say a
spatial one (= 1, 2 or 3), and let us drop the suffix. ~We resolve this
potential into its Fourier components.

" A(z) = hi (zw)-lm Lageioen o ake-ﬂkx)} ket diydly dky,  (51)
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with L, = (k* + k2 + E;»)} in agreement with the notation of T.
The ax’s satisfy the commutation relations :
ax akr — ax ak = ko8 (k- k') S{ky = &) 8 (ks - 1) (5°2)

in the limit \ = 0. _

We introduce the variables 7, 1,, I, to give the direction cosines of
the vector k,, k,, k, in three dimensional space, so that

ky = kly, Ky = koly, kg = koly, 1,2+ 1,2+ 2= 1.

The suffix k may now be replaced by the two suffices k, and 7, with 1
standing for 1, I,, I,, so that ay may he written o k- Thus equation

(5-2) may be written
' Akt akoet = aker @nt = kel 8(ho - k) S(U - 1), - (53)
where §(I — V) is defined so that

S(ho= k)8 = U) = kP 8(ky = k') 8(ha = 1) S(hs - k).
Note that this definition of §(I — V) makes ‘

J {f (Foy 1) 8l = 1) S(1 = V) dydl = (R, V), (5'4) -

where dl denotes an clement of solid angle for the direction L, L, 7.
Now put

S ®
)’ = ,[0 o Jiol cikor ]"‘o dko, &,,.l = J.O Ekole_'k”kod/"o: (55)

the integrations being taken for fixed 7,, I,, 7,. The variable = appearing
here is of the nature of the position variable of a photon measured along
its direction of motion. If we identify r with

. T =2 - Ly - La, - Lo, (5°6)

so that e¢iht = ¢i(kx) = equations (5:1) and (5'5) show that
A® = B e (o + dpal (5°7)

From the first of the equations (5°5), for any real number «

® et ® ik -
T -1K . 0T —tKT
I way € dr = Jo akolkodko[ e ) dr

- - @

Il

¢ .
JO akol kodlx'OQ‘;TS(ko - K) .

il

2mkay for k>0 and 0 for k < 0. (58)



Dirac—Developments in Quanium Electrodynamics. 217

ikT .

Similarly Jm a e dr = 2wka,; for k>0 and 0 for x < 0. (59)
-~® ‘ :

The a;", @, variables satisfy the commutation relations that the a;" ’s

all commute with each other, the a ;’s all commute with each other, and

from (5'3) ’

a a "r’ - T’ a, = ® - ~ikoT ik'o'r'k 1 dk.dk
1 @ v 0 (“kol“/:o'l' - Ay akol)c e o Ay AK

@ N )
3@ - z')JO ik =) I dly

Y AN CYCRSR SR (510)

We may set up a Fock representation in the variables a. The wave
funetion is then an ascending power series in the variables ay, the terms
of degree n corresponding to the presence of n photons in states with
definite momentum values. With the help of equation (5°'8) for « > 0,
we can transform the wave function to the variables a;7 . It is then a
power series in the variables a,7, the terms of degree n corresponding to
the presence of n photons in states with definite directions of motion and

_ with positions connected in some way with the parameter r. The nature
of this connexion is what we have to investigate.

Let us consider the terms of the first degree, corresponding to one
photon. In the ax representation they will be of the form

j Uak ay o b dly dy RCEEY

determined by a coefficient a,. Transformed to the o representation,
expression (5°11) becomes, from (5°8), '

oo

owyt (e, dbydl | arme-ibordr = ||a a7 drdl, (512)
\ 0 Tl

-

" where
o

art = (2m)"! ,[0 ay etk dh. (5:13)

Expression (5-12), which gives the part of the wave funetion corresponding
to one photon in the new representation, is determined by a coefficient @ -2
involving the position parameter = and the direction parameter I. Now
| ax | * multiplied by a suitable coefficient gives the probability of the
photon being in the momentum state deseribed by k, and one might
expect | arz| * to give similarly the probability of the photon being in
the' state with direction I and position . This is not so, however, on
account of the special features of the a7 representation. The a7 variables
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are not even all independent, being connected by the linear equations
(5-8) with x < 0, so that the coefficients of a linear expression in the a7,
are not uniquely determined.

The equation (5°13) may he looked upon as defining e, , also for
complex values of r, so that @, becomes a function of the complex
variable 7. This function must be regular for r in the lower half-plane
[ie. for ¢ (r — 7) > 0], since the integral in (5-13) then converges more
strongly than for real . Further, a,” defined by (5-5) may be looked
upon as a function of the complex variable r regular in the upper half-
plane.  All the functions of r occurring in the present theory may be
looked upon as functions of a complex variable and are then regular
either in the upper half-plane or in the lower half-plane. In order to
distinguish easily the two kinds of functions we make the rule that, when
7 oceurs as a suffix in a function which is regular for = in the upper
half-plane, the suffix is put in the upper position, and when in a function
which is regular for r in the lower half-plane, it is put in the lower
position.  Thus, for example, = must be in the lower position in a,;
The various functions of = that we shall deal with may have
singularities on the real axis, but are then to be looked upon as limits
of functions with singularities Just -off the real axis, just above the
real axis in the case of functions which are regular in the lower half-
plane and just below the real axis in the case of functions which are
regular in the upper half-plane. With these rules, we have the general
results

X"Y"dr =0,
o«

J X:Vodr = 0 J

e

while J’ X+ Y7 dr has a definite value usually not zero.

-

In a linear function of the variables « ;7 such as the right-hand side
of (5°12), we may add on to the coefficient of a;™ any function of r which
is regular in the upper half-plane without changing the value of the
expression. The coefficient of o7 is thus arbitrary to this extent. If,
however, we impose on it the further condition that it shall be regular
in the lower half-plane (and shall satisfy a suitable condition at infinity)
it is uniquely determined. We take the coefficient restrieted in this way
to be the wave function for a single photon in the variables 7, I. Owing
to its property of being regular in the lower half-plane instead of being
an arbitrary funection of 7, it cannot be interpreted. in the usual way to
give the probability of = having any value,

It is possible to add an infinite series of arl’s, each regular in the
lower half-plane, to get a sum which is not regular in the lower half-
plane. Such a sum must be reckoned as non-convergent from the physical
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point of view, even though there is a region of the r-plane in which it is
mathematically convergent. It would certainly not be convergent if
transformed to the k variables.

The situation is similar with the terms of higher degree in the wave
function, corresponding to more than one photon. Ior example the terms
of the second degree, expressed in the a;m variables, would read

””a il @rar™ dr de’ di dl

where the coefficient «../z» is arbitrary to the extent that we may add
on to it any function of =, #/, I,  which is regular in the upper half-
plane for + and +, but becomes uniquely determined if we impose on it
the condition that it shall be regular for r and + in the lower half-plane
(and also the condition that it shall be symmetrical between =, I, and
o ). ‘

The operator d.; can be considered as an operator of differentiation
when applied to the wave function in the a;7 variables in the following
way. Since the left-hand side of (5-10) is regular for 7 in the lower
half-plane and + in the upper half-plane, the right-hand side must be
looked upon as the limit of ‘

-8 -U)(r -1 -1 (5'14)
with € a small positive number tending to zero. The operator a-i applied

to the linear wave function an v alT,' dr’dl'’ then gives the result

w
a-r'l(r -7 - ’I:E)'2 ar’
)

”aw (@ria} - a} an)de’dl = - J
= 2widaqfdr. (5:15)

for = in the lower half-plane. The result of the operator ar; applied to
terms.of higher degree in the wave function may be worked out in the
same way. In the notation of functional differentiation

— . 0 . d 0
= - - - -2 2 _d =9 — e 516
arl J (r T ) 1¢) dar T a2 I Dar (5 3)

To make a deeper investigation of the position variable, we must
study the transformation function connecting the dynamical variables at
one time with their values at an earlier time. We must first see how the
idea of such a transformation funection is to be made precise in a many-
time theory. We start with a wave funection (zui, ¢ | ) involving the
coordinates of the electrons z,i and certain field, variables ¢. Let us
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look upon the electron times z, as independent variables and the other
variables z,;, ¢ as dependent on them, so that they may be written
S (25), ¢ (255). The wave function may then be considered as a function
of only the dependent variables and written

(2ri (2a), ¢ () | ) (6:17)

It involves fewer explicit variables than before, but since these variables
are themselves subject to variation with the z,’s, it is actually just as
complicated as before. The =z,(s,) in (5'17) are subject to certain
restrictions, corresponding to the points z,; being all outside each other’s
light-cones.  When one works with the wave-function (5-11), all the
dynamical variables become operators which depend on the times z,; .
They vary with the zq according to equations of motion which are the
analogues of the classical equations of motion. There will now be a
transformation function

(#,i (2 o) ¢ 0.}') ' %y (z o) s ¢ (zojo»

connecting the dynamical variables at the times z, with their values at
some other times s,°. We may write this for brevity

(zriy (I’ ! zrio ¢0>’

using the index ° for variables at the times 2, and no index for variables
at the times z,;.

Let us take the variables ¢ on the left of the transformation functlon
to be the Fock variables a;, so that the transformation function is an
ascending power series in the ax. If we take the variables ¢° on the
right to be the corresponding Fock variables «;° at the times g4, the
transformation function would be a descending power series in the a L.
It is more convenient to take the ¢° to be the @;° so that the transformation
function is an ascending power series in the & #,as well as in the az It
then reads

(2pi, ar| 8, al).

. To evaluate this transformation function we should have to solve the
wave equation and would get into the difficulties discussed in §§ 2 and 3.
We can, however, get some information about the transformation function
just from general arguments. Tet us suppose first that no change takes
place in the field between the times 2,;° and z,;, so that

ay = ay’, ar = ar.
Then

(srivar]ar = ax®|2,0,8°) = 0,(z, | @ - @] 2,0 a®) = O.
| (5-18)
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Interpreting «;* and a; as operators of functional differentiation in
conformity with the commutation relations (5-2), we get from (5-18)

C(ax - ko0/0dx) {2yiy @ | 2,0, @) = 0

(koa/aak - &k) (2,5, ag | 2.0, al®) = 0.
Hence
(Zyiy ap | 2o @y = ¢ [fera kot dhdbadbsy 0 (519)
where y is a function of the electron variables only. )

In general, of course, the field does change between the times 2,;° and
5,;.  But it is useful to express the transformation function always in
the form (5-19) and to allow y to involve the field variables a,, ax’. It
will be an ascending power series in these variables, and the term of
degree zero in it will correspond to no change taking place in the field,
the terms of the first degree will correspond to one photon being emitted
or absorbed  (emitted for terms involving o, and absorbed for terms
involving a "), the terms of the second degree will correspond to two-
photon processes, and so on. By means of (5'8) and (5'9), equation
(5-19) can be expressed in terms of the a;7, ar? variables and then gives
us the form of (2., a;7 | % a®t ).

Let us now bring in the condition that an electron influences the field
only at the place (in three dimensions) where it is situated. This means
that the j-th electron, in moving from the point 2,;° to z.; (assuming
2,j° is the earlier) can influence the field only in that region of space-
time which lies inside the future light-cone of z,;" but not inside the
future light-cone of s,; and in that region which lies inside the past
light-cone of z,; but not inside the past light-cone of s5,.;°. Outside
these regions we must have, in the quantum theory as well as in the
classical theory with the Wentzel field,

A(x) = A°(x). - (520)
Expressed in terms- of the variables a;7, ‘6 v, (5'20) gives
ar’ + drl = a;" + an® for v <7 or t>m, (6-21)

where 7, and 7, are two r-values depending on I, r, being the minimum

r-value obtained by substituting each z,,° for z, in (5°6) and 7,(> 7,)

being the maximum -value obtained by substituting each z,; forz, .
The effect of the conditions (5°21) on the transformation function
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(%4, @7 | 8, a-’) may easily be worked out. We have, for r < 7,
cr T > 7y, '

(%, a17 | aT+ arl — a3’ - asi° I g,0%, ar1°> = 0. (522)

This becomes, with the help of (5:16) and of a similar equation giving
the result of the operator a;™ applied to a wave function (|- 2,0, a-i°),
6 a0 .d 0 - , -

(al'f + ,.37]"& - = - aml Zl; a*&-;‘l'u - a-rl°) <Z,.i, a) Iz,i", ((-rlo> = O.

dr da;7
' (5-23)

The first factor on the right-hand side of (5:19), expressed in terms of
the variables «;7, a.°, must evidently satisfy these equations, and indeed
for all values of 7. The general solution of (5-23) is thus of the form
of the right-hand side of (5°19) expressed in terms of the variables a;r,
an®, with ¢ satisfying

d 0y ad oy

(7; m - *("i“; 5&*}(—) =0 for < Try, O 72>71;., (5'24)

Let us take the linear terms in ¢ and suppose they are

Yy = [’j(a,, o+ b7 a ) drdl.

v

Substituting i, into (5:24), we get

d
(i"r(a"'l - Z)lT)=0 for r <7 or r>nr,
or
d_rl =47 =0 for r<7 oOr v>m, (5°25)
if we require «,; and 0] to vanish at 7 = o and 7 = - w. Now a;1 is

regular for r in the lower half-plane and ] is regular for r in the upper
half-plane and equation (5:25) expresses that «,; = 5" along that part
of the real axis for which = < 7,, and that part for which r > r,. It
follows that a,; and b7 must together form a function of = which is
regular and singlevalued over the whole plane except for a slit along the
real axis joining v, and T, . '

Processes which involve the emission of just one photon and no
absorption of photons while the electrons move from the times z,,° to z,;
will be connected with that part of the transformation function which
contains «,; and so « _,may be looked upon as the wave function of the
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emitted photon, expressed in terms of the direction variables ! and the
position variable . We know physically that the position of the emitted
photon must be between 7, and 7, and we have worked out mathematieally
that the wave function «_;can be considered as a function of the complex
variable = and is then regular over the whole 7 plane except for a slit
along the real axis joining =, and 7,. This then is the condition that
the wave function must satisfy when the position of the photon is restrieted
to be between r, and 7,. It replaces the condition that one has in non-
relativistic quantum theory that the wave funetion must vanish for those
real values of the position variable that lie outside the domain in which
the particle is restricted to be. It shows that the existence of a photon
in a given position is connected, not with the non-vanishing of the wave
funetion in 7, but with the occurrence of singularitics in this wave funetion
considered as a function of a complex variable .

[c]



