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A b s t r a c t  
Folate receptor (FR) is well known for its overexpression on surface of various cancer cell lines, 
which is identical to normal tissue. Folic-based targeting drug delivery systems, therefore, are one of 
the most effective targeting carriers that effectively bind to FR up-regulated cancer cells. Curcumin 
was used both for labeling and chemotherapy. The materials were characterized and structurally 
confirmed by FT-IR spectra, fluorescent images and FE-SEM images. Bioassays were conducted on 
HeLa and HT29 cancer cell lines after 4 and 12 hours. Results show that folic acid significantly 
enhanced both targeting efficiency and internalization of curcumin to FR-expressing cancer cells. 
Keywords: Drug delivery systems, Nanoparticle, Targeting effect, Curcumin, OCMCs, Folic acid. 
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Introduction 
Cancer is one of the most lethal diseases. Vast amount of 
investigation has been attracted for feasible treatment. For 
chemotherapy, large numbers of agents such as cisplatin, 
doxorubicin, paclitaxel or combination of drugs have been widely 
investigated [1]. However, unexpected toxicity to normal organs 
and serious side effects to the patients still hinder their 
applications. Therefore, it is crucial to develop a therapeutic model 
with no or minimal side effects to normal organs.  
Curcumin (Cur), 1,7-bis(4-hydroxy-3-medithoxyphenyl)-1,6-
heptadiene-3,5-dione, isolated from a herb Curcuma longa, has 
been received considerable attention, for it proves remarkable non-
toxic and promising anti-cancer activities [2-4]. Although previous 
hindrance due to its low aqueous solubility has been enhanced [5-
7], Cur still remains an enormous gap to be a perfect moiety in 
term of chemotherapy. To eradicate this, collaboration with novel 
biodegradable polymer that offers significant enhancement in 
bioavailability, solubility and retention time [6, 7] for the drug has 
been developed.  
O-carboxylmethyl chitosan (OCMCs) is a derivative of a natural 
product named chitosan of which hydroxyl groups on C6 along the 
chain is substituted by carboxymethyl groups via an ether bond. 
OCMCs is advanced not only for non-toxic, biocompatible, 
biodegradable, amphiprotic and strong bioactive properties [8] but 
also for high aqueous solubility. More impressively, it has a very 
large loading capacity to anticancer drugs [8, 9], which are water 
insoluble. Therefore, OCMCs-based nanoparticles not only protect  
 

 
 
the bioactive substances but also facilitate the control release of 
the materials during chemotherapeutic process. 
Nonetheless, protecting and releasing drugs are not the only 
requirements for a perfect drug delivery system. All these 
advances might fall into a fallacy if the drug were delivered to liver, 
kidney or normal tissue instead of desired tumor [10,11]. Here 
emerges one of the most crucial factors determining the 
effectiveness of the delivery nanoparticles so-called targeting 
capacity or selectivity. To actively and effectively target to the 
cancer cells, folic acid (Fol) was corporated with OCMCs drug 
carriers. Folic acid has received enormous consideration for 
biocompatibility or no immunogenicity, high stability and economic 
cost [12]. By mean of receptor-mediated endocytosis, it has been 
reported that folate conjugates mediate faster internalization 
kinetics than other approaches through cellular membrane [12]. 
The fact is impressive because unlike normal tissues a various 
cancer cell lines, namely ovary, brain, breast, kidney, myeloid and 
lung cancer, over expresses folate receptor (FR) on their outer 
membrane therefore have special affinity to Fol [12-14]. Moreover, 
according to literature [15], Fol released from OCMCs-Fol 
nanocarrier behaved as an antidote, relieving healthy tissues from 
neurotoxicity caused by drugs at high dose.   
This study is aimed to develop OCMCs-Fol nanoparticles 
containing and a targeting factor (Fol) on the purpose of increasing 
the active targeting effect. 
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Materials and methods 

Materials 

Curcumin  and  OCMCs  were  obtained  from  Institute  of  
Chemistry  (VAST).  Folic  acid,  N-Hydroxysuccinimide  (NHS),  1-
Ethyl-3-(3-dimethylaminopropyl)  carbodiimide  (EDC),  ethanol, 
ammoniac  solution  were  purchased  form  Sigma-Aldrich. Human  
cervical  carcinoma  (HeLa) and Human colon adenocarcinoma 
(HT-29) cell lines were obtained from Lab of Department of Biology 
(HUS). Solvents and chemicals for bioassays were purchased from 
Invitrogen. 

Preparation of Curcumin encapsulated OCMCs 
nanoparticles (Cur-OCMCs NPs) 

Polymer-encapsulated curcumin was prepared by 
nanoprecipitation technique. 
Firstly, 40 mg of OCMCs was disovled in 40 ml of double distilled 
water and stirred for 1 hour. Then 40 ml of 1.5 mg/ml curcumin 
solution in ethanol was added into OCMCs solution, stirred or 
ultrasonically vibrated this mixture for hours until optained a clear 
dispersion. The organic solvent was removed by vaccum 
evaporated. To remove the large aggregate and free polymer, the 
suspension after evaporated was centrifugated at 5600 rpm in 10 
minutes. The supernatant containing Cur-OCMCs nanoparticles 
then was ultracentrifugated at 30000 rpm to optain Cur-OCMCs 
nanoparticles. 

Preparation of Folate  grafted  Curcumin  encapsulated  
OCMCs  nanoparticles  (Fol-Cur-OCMCs NPs) 

To synthesize folate grapted OCMCs, folate was attached to the 
surface amino groups of OCMCs via a carbodiimide reaction [15, 
16]. Briefly, 20 mg of folic acid was dissolved in 20 ml of distilled  
water  at  pH  8  and then was activated by adding 5.5  mg  of  
NHS  and  8.5  mg  of  EDC and stirred  for  24  hours  in  dark.  On 
the other hand, 40 mg of OCMCs and 8.5 mg of EDC were 
dissolved in 40 ml of distilled water and stirred for 1 hour. pH of 
OCMCs solution was adjusted to 8 by adding 2M NH3 solution. The 
activated folic acid was added  slowly  to  the  OCMCs  solution  
and  stirred  in  dark  for  24  hours. The  resulting  solution was 
filtered to remove unsoluble substance and pH was changed to 7 
by adding 2M HCl solution. The solution was dialyzed against 
distilled water for 24 hours. The obtained yellow solid was 
redissolved into 40 ml of distilled water.  
The Fol-Cur-OCMCs nanoparticles was optained by the process in 
the same with that of Cur-OCMCs NPs by replacing OCMCs with 
Fol-OCMCs.  

Characterization methods 

Molecular  structure  of  synthesized  copolymer  was  
characterized  by  Fourier  transform  infrared spectroscopy (FTIR, 
SHIMADZU spectrophotometer) using  KBr pellets in the  wave 

number region of  400 4000  cm-1 and the Fluorescence spectra 
was recorded by using a Jobin-Yvon FL3-22 and taken with a 442 
nm excitation line. Surface  morphology  of  Cur-OCMCs and Fol-
Cur-OCMCs nanoparticles  were observed by a microscopy (FE-
SEM) on a Hitachi S-4800 system. 

Cellular uptake experiments 

To investigate targeting efficiency of folic acid, two cancer cell lines 
HeLa and HT29 were chosen. 2x105 cells were seeded on a 
coverslip placed in 24-well plate and cultured for 24 hours. After 
that, the cells were treated with Cur-OCMCs or Fol-Cur-OCMCs at 
the concentration 10 øg/ml-1 and incubated for different periods of 
time and then fixed with 4% PFA (Sigma). After icubating, the cells 
got fluorescent staining  to label actins with Rhodamine-phalloidin 
and nuclei with Hoechhst (Invitrogen), then the presence of 
Curcumin inside HeLa and HT29 cells were indicated with 
fluorescent images taken by  LSM 510 microsope (Carl Zeiss). The 
green signal is due to the auto-fluorescence of Curcumin excited 
by Argon laser (488 nm). 

Results and Discussion 

Chemical structure of Cur-OCMCs NPs and Fol-Cur-
OCMCs NPs 

Chemical  structures  of  Cur-OCMCs  NPs  and  Fol-Cur-OCMCs  
NPs  were  investigated  by  FT-IR spectroscopy.  
The characteristic peaks at 1628  cm-1 (C=O  stretching),  1510  
cm-1 (C=C  olefienic  stretching) and  850  cm-1,  805  cm-1 (C=C-H 
aromatic stretching) [17] in the FT-IR spectra of Cur were shifted  
to  1625 cm-1,  1505  cm-1 and  860  cm-1,  810  cm-1 in the FT-IR 
spectra of Cur-OCMCs, respectively. Meanwhile the characteristic 
peak of OCMCs at 2357 cm-1 [18] also appeared at 2360 cm-1 in 
the FT-IR spectra of Cur-OCMCs. These changes were due to the 
success in encapsulating Cur by OCMCs (See Supporting 
information 1a [25]). 
The characteristic peaks of folic acid  at  1697  cm-1   (corresponds 
to the C=O  stretching  carboxyl  group)  and  1411  cm-1   
(attributed to the OH  deformation  of  phenyl skeleton) [19] were 
shifted to 1630 cm-1  and 1371 cm-1, respectively. Especially, the 
appearance of peak at  1595  cm-1  were  demonstrated  the  
formation  of  amide  bond  (-CONH-)  between  amine  group  of 
OCMCs and carboxyl group of folic acid [20] (See Supporting 
information 1b [25]). 
In the fluorescence spectra of Cur, Cur-OCMCs and Fol-Cur-
OCMCs, curcumin in ethanolic solution exhibited an absorption 
peak at 540 nm, while the solutions of Cur-OCMCs and Fol-Cur-
OCMCs had peaks at 491 and 525 nm, respectively. The blue-
shifts in the fluorescence were likely due to the intermolecular 
hydrogen bonding between curcumin and polymers (See 
Supporting information 2 [25]). 
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Supporting information 1 

 
FT-IR spectra of Cur-OCMCs and Fol-Cur-OCMCs. 

 
Supporting information 2 

 

Fluorescence spectra of Cur, Cur-OCMCs and Cur-OCMCs-Fol. 
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After 4h of incubating with Fol-Cur-OCMCs, fluorescence intensity 
in HeLa and HT29 is higher than that of cells incubated with Cur-
OCMCs. Importantly, Fol-Cur-OCMCs nanoparticles were 
distributed in nuclei, indicate that the folate-conjungated 

nanoparticles were uptaken by the endocytosis mediated folate 
receptor on cell memberanes. This observation clearly infers that 
folate-conjugated OCMCs would be better effective carriers for 
targeting anticancer drugs. 
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Figure 4. Comparison of cellular uptake between Cur-OCMCS (left) and Fol-Cur-OCMCs (right) on HT29 and HeLa cell lines at 4 and 12 hours 

The expression of folate receptor in different cell lines are different, 
so that the internalization of folic acid depends on the cell lines. We 
observed that proportion of fluorescence intensity of Fol-Cur-
OCMCs and Cur-OCMCs is 2.53 for HT29 and 1.47 for HeLa. 
Because of the overexpression of   
FR on HT29Ês cell surfaces, there are more folate-conjugated 
OCMCs uptaken by HT29 than by HeLa, therefore HT29 have 
stronger fluorescent intensity than HeLa. 
The fluorescence intensity after 12 hours of incubation was higher 
than that of 4 hours for Cur-OCMCs (See Supporting information 3 
[25]), while that intensity decreased from 4 hours to 12 hours for 
Fol-Cur-OCMCs (See Supporting information 4 [25]). It could be 
explained that folic acid inducts the internalization of Cur, so 

curcumin is internalizied into cancer cells more quickly and 
efficiently. When curcumin accumulates to a certain concentration, 
there are chemical reactions that produces by-product such as 
trans-6-(4-hydroxy-3-methoxyphenyl)-2,4-dioxo-5-hexenal, 
vaniline, ferulic acid or feruloyl methane which do not auto-
fluoresce [21,22].Eventually, fluorescent signal in cancer cells 
incubated with Fol-Cur-OCMCs after 12h is weaker than that with 
Cur-OCMCs. 
Moreover, red signal of actins in cells after 12h incubated with Fol-
Cur-OCMCs demonstrates that actins localization changes (Figure 
5). It no longer formed the sharp and clear circle around the cell 
since actins was transformed from G structure into F structure with 
smaller molleculars [23,24]. 
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Figure 5. Fluorescent Image of HT29 in control group (a) and after 12h incubating Fol-Cur-OCMCs (b). 

Conclusion 

The Cur-OCMCs and Fol-Cur-OCMCs nanosystems were 
successfully prepared. With an average size from 50 to 100nm, 
they are also believed to be suitable for drug delivery applications. 
The systems have been proved that successfully target curcumin 
to HT29 and Hela cells. Most importantly, it was determined that 
folic acid substantially increases the internalization of the 
nanosystem into the cancer cells. The efficiency internalization of 
Fol-Cur-OCMCs system depends on level of FR expressions on 
the cell surface: the stronger affinity to folic acid, the more efficient 

the treatment was. In addition, folic acid facilitates impacts of 
nanosystem on cellÊs growth and structure after internalization. 
With all these good features of Fol-Cur-OCMCs, it is promising to 
be a new smart nano-material for drug delivery. 
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