Super (a,d)-Edge-antimagic Total Labeling of Shackle of Fan Graph

Wicha Dwi Vikade^{1,2}, Dafik^{1,3} ¹CGANT- University of Jember ²Department of Mathematics FMIPA University of Jember ³Department of Mathematics Education FKIP University of Jember, (wicha180790,d.dafik)@gmail.com

Abstract

A graph G of order p and size q is called an (a, d)-edge-antimagic total if there exist a bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p+q\}$ such that the edge-weights, $w(uv) = f(u) + f(v) + f(uv), uv \in E(G)$, form an arithmetic sequence with first term a and common difference d. Such a graph G is called *super* if the smallest possible labels appear on the vertices. In this paper we study super (a, d)-edge-antimagic total properties of connected of shackle of Fan Graph. The result shows that shackle of Fan Graph admit a super edge antimagic total labeling for $d \in 0, 1, 2$ for $n \ge 1$. It can be concluded that the result of this research has converted all the feasible n, d.

Key Words :(a, d)-edge-antimagic total labeling, super (a, d)-edge-antimagic total labeling, Fan Graph.

Introduction

Defnitions of (a,d)-EAT labeling and super (a,d)-EAT labeling were introduced by Simanjuntak at al [7]. These labelings are natural extensions of the notion of edge- magic labeling, dened by Kotzig and Rosa [6], where edge-magic labeling is called magic valuation, and the notion of super edge-magic labeling, is natural extension of the notion of edge-magic labeling dened by Kotzig and Rosa [6]. The super (a, d)-edge-antimagic total labeling [8] is natural extension of the notion of super edge-magic labeling. For more information about graph can be found in [1],[3],[4],[2],[5]. In this paper we will now concentrate on the connected shackle of Fan graph denoted by \mathbb{F}_n . The example of figure 1.

Super (a, d)-edge Antimagic Total Labeling

An (a, d)-edge-antimagic total labeling on a graph G is a bijective function $f:V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., p + q\}$ with the property that the edge-weights w(uv) = f(u) + f(uv) + f(v); $uv \in E(G)$, form an arithmetic progression $\{a, a + b, a + 2b, ..., a + (q - 1)d\}$, where a > 1 and $d \ge 0$ are two fixed integers. If such a labeling exists then G is said to be an (a, d)-edge-antimagic total graph. Such a graph G is called super if the smallest possible labels appear on the vertices.

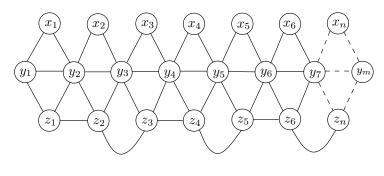


Figure 1:

Thus, a super (a, d)-edge-antimagic total graph is a graph that admits a super (a, d)-edgeantimagic total labeling.

Shackle of fan graph denoted by \mathbb{F}_n with $n \ge 1$ is a connected graph with vertex set. $V(\mathbb{F}_n) = \{x_i, y_j, z_i; 1 \le i \le n; 1 \le j \le m; m, n \in N\}$ and $E(\mathbb{F}_n) = \{x_i y_i, x_i y_{i+1}, y_i z_i, z_i z_{i+1}, z_i y_{i+1}; 1 \le j \le n \cup y_j y_{j+1}; 1 \le j \le m\}$. Thus $|V(\mathbb{F}_n)| = p = 3n + 1$ and $|E(\mathbb{F}_n)| = q = 6n - 1$.

We continue this section by a necessary condition for a graph to be super (a, d)-edge antimagic total, providing a least upper bound for feasible values of d.

Lemma 1 If a (p,q)-graph is super (a,d)-edge-antimagic total then $d \leq \frac{2p+q-5}{q-1}$

Proof Assume that a (p, q)-graph has a super (a, d)-edge-antimagic total labeling $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, p+q\}$. The minimum possible edge-weight in the labeling f is at least 1+2+p+1=p+4. Thus, $a \ge p+4$. On the other hand, the maximum possible edge-weight is at most (p-1)+p+(p+q)=3p+q-1. So we obtain $a + (q-1)d \le 3p+q-1$ which gives the desired upper bound for

the difference d. Or we can write:

$$\Leftrightarrow a + (q-1)d \leq 3p + q - 1$$

$$\Leftrightarrow (p+4) + (q-1)d \leq 3p + q - 1$$

$$\Leftrightarrow d \leq \frac{3p + q - 1 - (p+4)}{q - 1}$$

$$\Leftrightarrow d \leq \frac{2p + q - 5}{q - 1}$$

$$\Leftrightarrow d \leq \frac{2(3n+1) + (6n-1) - 5}{(6n-1) - 1}$$

$$\Leftrightarrow d \leq \frac{6n + 2 + 6n - 6}{6n - 2}$$

$$\Leftrightarrow d \leq \frac{12n - 4}{6n - 2}$$

$$\Leftrightarrow d \leq 2$$

$$\Leftrightarrow d \in \{0, 1, 2\}$$

$$(1)$$

Lemma 2 A(p,q)-graph G is super edge-magic if and only if there exists a bijective function $f: V(G) \rightarrow \{1, 2, ..., p\}$ such that the set $S = \{f(u) + f(v) :$ $uv \in E(G)\}$ consists of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with magic constant a = p + q + m, where m = min(M) and $S = \{a - (p + 1), a - (p + 2), ..., a - (p + q)\}.$

The two above lemma will be used for develop theorem 1.

Result

If shackle of Fan graph has a super (a, d)-edge-antimagic total labeling then for p = 3n + 1 and q = 6n - 1 it follows from Lemma 1 that the upper bound of d is $d \leq 2$ or $d \in \{0, 1, 2\}$. The following Lemma describes an a, 1-edge-antimagic vertex labeling for shackle of Fan graph.

Lemma 3 If $n \ge 1$, then the Shackle of Fan graph \mathbb{F}_n has an (a, 1)-edgeantimagic vertex labeling.

Proof. Define the vertex labeling $f_1 : V(\mathbb{F}_n) \to \{1, 2, \dots, 3n + 1\}$ in the $f_1(x_i) = 3i$, for $1 \le i \le n$ and i ϵ odd number $f_1(x_i) = 3i - 1$, for $1 \le i \le n$ and i ϵ even number following way: $f_1(y_i) = 3j - 2$, for $1 \le j \le m$ $f_1(z_i) = 3i - 1$, for $1 \le i \le n$ and i ϵ odd number $f_1(z_i) = 3i - 1$, for $1 \le i \le n$ and i ϵ odd number $f_1(z_i) = 3i$, for $1 \le i \le n$ and i ϵ even number

The vertex labeling f_1 is a bijective function. The edge-weights of \mathbb{F}_n ,

under the labeling f_1 , constitute the following sets

$w_{f_1}(x_i y_i)$	=	$5i - 1$, for $1 \le j \le n$,
$w_{f_1}(x_iy_{i+1})$	=	$6i + 1$, for $1 \le i \le n$ and i ϵ odd number
$w_{f_1}(x_i y_{i+1})$	=	$6i$, for $1 \le i \le n$ and i ϵ even number
$w_{f_1}(y_i z_i)$	=	$6i - 3$, for $1 \le i \le n$ and i ϵ odd number
$w_{f_1}(y_i z_i)$	=	$6i-2$, for $1 \le i \le n$ and i ϵ even number
$w_{f_1}(z_i z_{i+1})$	=	$6i+2, \text{for } 1 \le i \le n,$
$w_{f_1}(z_i y_{i+1})$	=	$6i$, for $1 \le i \le n$ and i ϵ odd number
$w_{f_1}(z_i y_{i+1})$	=	$6i + 1$, for $1 \le i \le n$ and i ϵ even number
$w_{f_1}(y_j y_{j+1})$	=	$6j - 1$, for $1 \le j \le m$,

It is not difficult to see that the set $w_{f_1} = \{3, 4, 5, \dots, 6n - 1\}$ consists of consecutive integers. Thus f_1 is a (3, 1)-edge antimagic vertex labeling.

Bača, Y. Lin, M. Miller and R. Simanjuntak [5], Theorem 5) have proved that if (p,q)-graph G has an (a,d)-edge antimagic vertex labeling then G has a super(a+p+q,d-1)-edge antimagic total labeling and a super(a+p+1,d+1)edge antimagic total labeling. With the theorem Lemma 3 in hand, we obtain the following result.

♦ **Teorema 1** If $n \ge 1$ then the graph \mathbb{F}_n has a super (9n+3, 0)-edge-antimagic total labeling and a super (3n+5, 2)-edge-antimagic total labeling.

Proof.

Case 1. d = 0

We have proved that the vertex labeling f_1 is a (3, 1)-edge antimagic vertex labeling. With respect to Lemma 2, by completing the edge labels $p+1, p+2, \ldots, p+q$, we are able to extend labeling f_1 to a super (a, 0)-edge-antimagic total labeling, where, for p = 3n + 1 and q = 6n - 1, the value a = 9n + 3.

Case 2. d = 2

Label the vertices of \mathbb{F}_n with f_3 that the edge labeling for d = 2, so we can that

label the edges with the following way.

$f_3(x_iy_i)$	=	$3n + 6i - 3$, for $1 \le i \le n$ and i ϵ odd number
$f_3(x_iy_i)$	=	$3n + 6i - 4$, for $1 \le i \le n$ and i ϵ even number
$f_3(x_i y_{i+1})$	=	$3n + 6i$, for $1 \le i \le n$ and i ϵ odd number
$f_3(x_i y_{i+1})$	=	$3n + 6i - 1$, for $1 \le i \le n$ and i ϵ even number
$f_3(y_i z_i)$	=	$3n + 6i - 4$, for $1 \le i \le n$ and i ϵ odd number
$f_3(y_i z_i)$	=	$3n + 6i - 3$, for $1 \le i \le n$ and i ϵ even number
$f_3(z_i z_{i+1})$	=	$3n + 6i + 1, \text{for} 1 \le i \le n,$
$f_3(z_i y_{i+1})$	=	$3n + 6i - 1$, for $1 \le i \le n$ and i ϵ odd number
$f_3(z_i y_{i+1})$	=	$3n + 6i$, for $1 \le i \le n$ and i ϵ even number
$f_3(y_j y_{j+1})$	=	$3n + 6j - 2, \text{for} 1 \le j \le m,$

The total labeling f_3 is a bijective function from $V(\mathbb{F}_n) \cup E(\mathbb{F}_n)$ onto the set $\{1, 2, 3, \ldots, 3n + 1\}$. The edge-weights of \mathbb{F}_n , under the labeling f_3 , constitute the sets

$$\begin{split} W_{f_3} &= \{w_{f_3} + f_3(x_iy_i); \, \text{for } 1 \leq i \leq n\} = 3n + 11i - 4 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_3} &= \{w_{f_3} + f_3(x_iy_i); \, \text{for } 1 \leq i \leq n\} = 3n + 11i - 5 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(x_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12 + 1 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_3} &= \{w_{f_3} + f_3(x_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(y_iz_i); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(y_iz_i); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 5 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(y_iz_i); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 5 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(z_iz_{i+11}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_3} &= \{w_{f_3} + f_3(z_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_3} &= \{w_{f_3} + f_3(z_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(z_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(z_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(z_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(z_iy_{i+1}); \, \text{for } 1 \leq i \leq n\} = 3n + 12i - 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_3} &= \{w_{f_3} + f_3(y_jy_{j+1}); \, \text{and } 1 \leq j \leq m\} = 3n + 12i - 3 \\ W_{f_3} &= \{w_{f_3} + f_3(y_jy_{j+1}); \, \text{and } 1 \leq j \leq m\} = 3n + 12i - 3 \\ W_{f_3} &= \{w_{f_3} + f_3(y_jy_{j+1}); \, \text{and } 1 \leq j \leq m\} = 3n + 12i - 3 \\ W_{f_3} &= \{w_{f_3} + f_3(y_jy_{j+1}); \, \text{and } 1 \leq j \leq m\} = 3n + 12i - 3 \\ W_{f_3} &= \{w_{f_3} + f_3(y_jy_{j+1}); \, \text{and } 1 \leq j \leq m\} = 3n + 12i - 3 \\ W_{f_3} &= \{w_{f_3} + f_3(y_jy_{j+1}); \, \text{and } 1 \leq j \leq m\} = 3n + 12i - 3 \\ W_{f_3} &= \{w_{f_3} + f_3(y_jy_{j+1}); \, \text{and } 1 \leq j \leq m\} \\ W_{f_3} &= \{w_{f_3} + f_3(y_{$$

It is not difficult to see that the set $W_{f_3} = \{3n+5, 3n+7, 3n+9, \dots, 15n+1\}$ contains an arithmetic sequence with a = 3n+5 and d = 2. Thus f_3 is a super (3n+5, 2)-edge-antimagic total labeling. This concludes the proof. \Box

Theorem 2 If $n \ge 1$, then the graph \mathbb{F}_n has a super (6n + 4, 1)-edgeantimagic total labeling.

Proof. Label the vertices of \mathbb{F}_n with $f_4(x_iy_i) = f_1(x_iy_i), f_4(x_iy_{i+1}) = f_1(x_iy_{i+1}), f_4(y_iz_i) = f_1(y_iz_i), f_4(z_iz_{i+1}) = f_1(z_iz_{i+1}), f_4(y_jy_{j+1}) = f_1(y_jy_{j+1}), f_4(z_iy_{i+1}) = f_1(z_iy_{i+1})$ untuk $1 \le i \le n, 1 \le j \le m$ and label the edges with the

following way.

$f_4(x_i y_i)$	=	$9n - 3i + 3$, for $1 \le i \le n$ and i ϵ odd number
$f_4(x_i y_i)$	=	$6n - 3i + 4$, for $1 \le i \le n$ and i ϵ even number
$f_4(x_i y_{i+1})$	=	$6n - 3i + 5$, for $1 \le i \le n$ and i ϵ odd number
$f_4(x_i y_{i+1})$	=	$9n - 3i + 2$, for $1 \le i \le n$ and i ϵ even number
$f_4(y_i z_i)$	=	$6n - 3i + 4$, for $1 \le i \le n$ and i ϵ odd number
$f_4(y_i z_i)$	=	$9n - 3i + 3$, for $1 \le i \le n$ and i ϵ even number
$f_4(z_i z_{i+1})$	=	$9n - 3i + 1, \text{for} 1 \le i \le n,$
$f_4(z_i y_{i+1})$	=	$9n - 3i + 2$, for $1 \le i \le n$ and i ϵ odd number
$f_4(z_i y_{i+1})$	=	$6n - 3i + 2$, for $1 \le i \le n$ and i ϵ even number
$f_4(y_j y_{j+1})$	=	$6n - 3j + 3, \text{for} 1 \le j \le m,$

The total labeling f_4 is a bijective function from $V(\mathbb{F}_n) \cup E(\mathbb{F}_n)$ onto the set $\{1, 2, 3, \ldots, 3n + 1\}$. The edge-weights of \mathbb{F}_n , under the labeling f_4 , constitute the sets

$$\begin{split} W_{f_4} &= \{w_{f_4} + f_4(x_iy_i); \text{ for } 1 \leq i \leq n\} = 9n + 2i + 2 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_4} &= \{w_{f_4} + f_4(x_iy_i); \text{ for } 1 \leq i \leq n\} = 6n + 2i + 3 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(x_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 6n + 3i + 6 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_4} &= \{w_{f_4} + f_4(x_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 9n + 3i + 2 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(y_iz_i); \text{ for } 1 \leq i \leq n\} = 9n + 3i + 1 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_4} &= \{w_{f_4} + f_4(y_iz_i); \text{ for } 1 \leq i \leq n\} = 9n + 3i + 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(z_iz_{i+1}); \text{ for } 1 \leq i \leq n\} = 9n + 3i + 1 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(z_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 9n + 3i + 2 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_4} &= \{w_{f_4} + f_4(z_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 9n + 3i + 2 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_4} &= \{w_{f_4} + f_4(z_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 9n + 3i + 2 \text{ and } i \ \epsilon \text{ odd number} \\ W_{f_4} &= \{w_{f_4} + f_4(z_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 6n + 3i + 3 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(z_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 6n + 3i + 3 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(z_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 6n + 3i + 3 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(y_iy_{i+1}); \text{ for } 1 \leq i \leq n\} = 6n + 3i + 3 \text{ and } i \ \epsilon \text{ even number} \\ W_{f_4} &= \{w_{f_4} + f_4(y_iy_{i+1}); \text{ jika } 1 \leq j \leq m\} = 6n + 3j + 2 \end{aligned}$$

It is not difficult to see that the set $W_{f_4} = \{6n + 4, 6n + 5, \dots, 12n + 2\}$ contains an arithmetic sequence with the first term 8n+6 and common difference 1. Thus α_3 is a super (6n + 4, 1)-edge-antimagic total labeling. This concludes the proof.

Conclusion

We can conclude that the graph \mathbb{F}_n admit a super (a, d)-edge-antimagic total labeling for all feasible d and $n \ge 1$.

References

- M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, *Utilitas Math.* 60 (2001), 229–239.
- [2] Dafik, M. Miller, J. Ryan and M. Bača, Antimagic total labeling of disjoint union of complete s-partite graphs, J. Combin. Math. Combin. Comput., 65 (2008), 41–49.
- [3] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, *Discrete Math.*, **309** (2009), 4909-4915.
- [4] Dafik, M. Miller, J. Ryan and M. Bača, Super edge-antimagic total labelings of $mK_{n,n,n}$, Ars Combinatoria , **101** (2011), 97-107
- [5] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, *Discrete Math.*, **309** (2009), 4909-4915.
- [6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13(1970), 451–461.
- [7] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms(2000), 179–189.
- [8] K.A. Sugeng, M. Miller and M. Baca, Super edge-antimagic total labelings, Utilitas Math., 71 (2006), 131-141.